Comp 512
Rice University
Spring 2015

The Big Picture

The Programming Assignment &
A Taxonomy of Optimizations

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Programming Assignment (aka “The Lab”)

You will build an ILOC optimizer

* Larger set of operations than in the COMP 412 assignments

¢ Documents will be posted on CLEAR later today
— Simulator document describes set of operations
— Lab document lays down the ground rules

¢ To get started, build a scanner, parser, & design an IR

The ILOC Simulator
®* One functional unit

* All the simulator operations, except the character operations
— cload, cloadAO, cloadAl, cstore, cstoreAO, cstoreAl, i2c, c2i, c2c

* QOperation latencies:
¢ Most operations take a single cycle
¢ Multiplies take three cycles (mult, multl)
¢ Load and store operations take five cycles

— load, loadAO, loadAl, store, storeAO, storeAl

COMP 512, Spring 2015 2

Programming Assignment (aka “The Lab”)

Rules of the game

. All code must be your own code.
* You will choose & implement four (4) optimizations | you can reuse code that you

* | will provide a set of test codes (six to ten codes) wrote for other classes.
4 Several input data sets for each code

* You will report operation counts for the codes & data sets
¢ We will have a mini-competition
¢ The goal is to minimize cycles measured by the simulator on the various inputs

* Your code should work on CLEAR, but you can write & test it anywhere

The software (simulator & compiler that generates examples)
* Simulator (source & executable) will be posted under comp512 on CLEAR

* The code is, in some aspects, still under development

— Simulator version number appears at the head of each trace output

* | will post notices on Piazza when | distribute new versions of simulator

COMP 512, Spring 2015 3

Optimization

The subject is confusing
* Whole notion of optimality
* Incredible number of transformations

* Odd, inconsistent terminology

Maybe this stuff is inherently hard

* Many intractable problems

Many NP-complete problems

COMP 512, Rice University

Cooper McKinley, & Torczon cite 237
distinct papers in their unpublished survey!

Value numbering
Redundancy elimination
Common subexpressions

Much overlap between problems and between solutions

If optimization wasn’t confusing, why take COMP 5127

Optimization

Allen-Cocke Catalog (1971)

Procedure integration Linear function test replacement

(open, semi-open, semi-closed, closed) L.
Carry optimization

Loop unrolling Instruction scheduling

Loop fusion Register allocation

Loop unswitching Storage mapping

Redundancy elimination Shadow variable optimization

Code motion Anchor pointing

Constant propagation Special case code generation
Dead-code elimination Peephole optimziation

Strength reduction And a discussion of parsing methods

And this was before the literature exploded

COMP 512, Rice University 5

Optimization

Sites & Perkins (1979)

Stack-height reduction
Constant-valued arithmetic
Operator simplification

Local common subexpressions
Global common subexpressions
Procedure merging
Activation-record merging
Loop induction expressions

Moving subscript range test

Zero iteration test

Code motion out of loops
Code hoisting

Live range shrinkage
Storage (register) allocation
Forced copies

Unreachable code

Branch logic

Test ellision

And this was before the literature exploded

COMP 512, Rice University

Optimization

Cooper’s thesis proposal

Activation record merging
Adjacency analysis
Anchor pointing

Carry optimization

Dead code elimination
Dead space reclamation
Detection of parallelism
Instruction Scheduling
Linear function test replacement
Live range shrinking

Loop unrolling

Loop fusion

(circa 1982)

Loop unswitching

Operator simplification
Operator strength reduction
Peephole optimization
Procedure integration (inlining)
Special case code generation
Register allocation
Reassociation

Shadow variable introduction
Stack height reduction

Test elision

Zero iteration test

And this was before the literature exploded

COMP 512, Rice University

And | forgot constant propagation ... 7

Optimization

From EaCle (2006) and EaC2e (2012)

LVN, SVN, DVN, GCSE w/AVAIL Operator strength reduction
DAG construction Linear function test replacement
Superblock cloning Procedure abstraction
Eliminating useless code (DEAD) Procedure placement

Eliminating unreachable code (CLEAN) Block placement & fluff removal

Lazy Code Motion Instruction scheduling
Hoisting Register allocation
Sinking Tree-height balancing
Constant propagation Leaf-call optimization
Loop unrolling Parameter promotion
Loop unswitching Procedure cloning
Renaming Copy coalescing
Peephole optimization Inline substitution

Tail-recursion elimination

COMP 512, Spring 2015 8

Optimization

The literature throws fuel on the fire

* Terminology is non-standard & non-intuitive

Explanations are terse and incomplete

Little comparative data that is believable

No sense of perspective

Papers give conflicting advice

An example - Is inline substitution profitable?
* Holler’s thesis: it almost always helps

=

Revival
Partially-dead code
Forward propagation

| Not all those techniques

can possibly be the best !

* Hall’s thesis: it occasionally helps, but has lots of problems

* MacFarland’s thesis: it causes instruction cache misses

Reality lies somewhere in the middle

=Waterman showed that program-specific heuristics win

COMP 512, Rice University

Optimization

To make matters worse

* Individual optimizations often have multiple effects

* The effects of those optimizations can overlap

January, 2001

Balke - Value Numbering
DVNT - Dominator VN
SCCVN & VDCM - Global VN
AVAIL - Classic CSE

LCM - Lazy Code Motion
AWZ - Partitioning algorithm

SSC - Sparse Simple Constant
SCC - Sparse Cond. Constant

And, there are many others ...

10

Optimization

Improvement should be objective

* Easy to quantify

* Produce concrete improvements
* Taking measurements seems easy

Code either gets better or it gets worse

But, ...

* Linear-time heuristics for hard problems

* Unforeseen consequences & poorly understood interactions
* “Obvious wins” have non-obvious downsides

* Multiple ways to achieve the same end

Experimental computer science takes a lot of work

COMP 512, Rice University

11

The Role of Comp 512

Bringing order out of chaos
* Provide a framework for thinking about optimization
* Differentiate analysis from transformation’

* Think about how things help, not what they do

Goal: a rational approach to the subject matter
* QObjective criteria for evaluating ideas & papers

* Bring high school level science back into the game

"The Comp 512 Motto:

Knowledge alone does not make code run faster.
You have to change the code to make it run faster.

COMP 512, Rice University 12

Classic Taxonomy

Machine independent transformations

* Applicable across a broad range of machines
* Decrease ratio of overhead to real work

* Reduce running time or space

* Examples: dead code elimination

Machine dependent transformations

* Capitalize on specific machine properties

* Improve the mapping from IR to this machine

* Might use an exotic instruction (shift the reg. window for a loop)

* Example: instruction scheduling

COMP 512, Rice University 13

Classic Taxonomy

Distinction between independent & dependent is not always clear
* Replacing multiply with shifts and adds

* Eliminating a redundant expression

The truth is somewhat muddled

* Machine independent means that we deliberately & knowingly ignore
target-specific constraints

* Machine dependent means that we explicitly consider target-specific
constraints

Redundancy elimination might fit in either category

¢ Versions that consider demand for registers

COMP 512, Rice University 14

The Comp 512 Taxonomy

An effects-based classification (for speed)

* Five machine-independent ways to speed up code

¢ Eliminate a redundant computation

¢ Move code to a place where it executes less often
¢ Eliminate dead code

¢ Specialize a computation based on context

¢ Enable another transformation

* Three machine-dependent ways to speed up the code

¢ Manage or hide latency
¢ Take advantage of special hardware features

¢ Manage finite resources

For scalar optimization, this covers most of them

COMP 512, Rice University

15

The Comp 512 Taxonomy

Machine Independent

N

Redundancy Code motion Dead code Specialization Create opportunities

Redundancy elim’n Dead code elimination

. .,) . Reassociation
Partial red. elim’n Partial dead code elim’n

C lidati . v Replication
onsolidation Constant propagation Replication
! Algebraic identities Strength Reduction
Loop-invariant code motion Method caching
Consolidation Heap—>stack allocation
Global Scheduling [click] Tail recursion elimination

Constant propagation

From Chapter 10 of EaC2e and
COMP 512, Rice University §6 of the Cooper, McKinley, & Torczon unpublished survey 1¢g

The Comp 512 Taxonomy

Machine Dependent

v

Hide latency Manage resources Special features
Scheduling Allocate (registers, tlb slots) Instruction selection
Blocking references Schedule Peephole optimization
Prefetching Data packing
Code layout Coloring memory locations

Data packing

COMP 512, Rice University From §6 of Cooper, McKinley, & Torczon 17

Other Axes: Scope of Optimization

Optimizations are performed at a variety of different scopes

* Local

Superlocal

Regional
Global

Interprocedural

Scope of optimization forms another axis for comparing analyses and
transformations

* Some combinations make no sense, such as local code motion

* Other scopes are possible, such as logical-window peephole optimization

COMP 512, Rice University 18

Other Axes: Decision Complexity

The complexity of making decisions varies across optimizations

Constant time

Low-order polynomial
time

Hard Problems

LVN, SVN, DVNT
Block placement

Tree balancing (ILP)

Loop unrolling

Reassociation
Inline substitution
Spill Choice in RA

Copy Coalescing

Decision complexity forms another axis of comparison among transformations

COMP 512, Rice University

19

Other Axes: Selection and Order

The “hidden” problem in optimizer design is deciding what to do

* Pick a set of transformations

¢ Every project has a limited budget, unless it is an open source compiler that lives
forever, uses volunteer labor, and lacks oversight

¢ Design under constraint is hard

¢ Design without a target market is equally hard
— Fortran H and PL.8 had well-defined code bases against which they were tested

* Pick an order in which to apply the transformations

¢ Because of the interactions between techniques, order is a complex issue
— PL.8’s -00, -01, and -02 options correspond to different orders and parameters
4 Each application presents different inefficiencies and may need different
transformations and a different order

— Each transformation attacks some specific problem
— Code that does not contain that problem will not benefit

COMP 512, Spring 2015 See the “ordering” papers on web site. 20

What have we seen so far?

Redundancy elimination
* LVN, SVN, DVN, GCSE based on AVAIL information

* |tis a category by itself in the taxonomy

Loop Unrolling

* Form of specialization (replication)

Block placement

* Form of latency hiding & resource management

Inline substitution

* Form of specialization

Procedure placement

* Form of latency hiding & resource management

COMP 512, Rice University

21

Near-term Roadmap

Data-flow analysis
* 1 lecture look at other data-flow problems

* May come back and do another data-flow solver later

Static single assignment form
®* Construction and destruction of SSA

* Example algorithms that use SSA
Populating the Taxonomy

* More transformations, more transformations, more ...

* Fill in the taxonomy in time for you to make progress on the lab

COMP 512, Rice University 22

