Comp 512
Rice University
Spring 2015

Data-Flow Analysis

Dominators to Reaching Definitions

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Data-flow Analysis

Definition
Data-flow analysis (DFA) is a collection of techniques for compile-time
reasoning about the run-time flow of values

* We use the results of DFA to prove safety & identify opportunities
¢ Not an end unto itself

* Almost always involves building a graph
¢ Control-flow graph, call graph, or graphs derived from them
¢ Sparse evaluation graphs to model flow of values (efficiency)

* Usually formulated as a set of simultaneous equations
¢ Sets attached to nodes and edges
¢ Often use sets with a lattice or semilattice structure

We have seen several data-flow problems.

COMP 512, Rice University

Prior Examples

Computing LIVEOUT Sets
* Domain is the set of variable names in the procedure
* Data-flow equations define LIVE at the end of a block, LIVEOUT

Initialization: LIVEOUT(n) =, Vn

Fixed-point

equations: LIVEOUT(b) = UEVAR(b) U (LIVEOUT(b) M VARKILL(b)))

LIVE is a backward-flow problem

where
UEVAR(b) is the set of names used in b before definition in b
VARKILL(b) is the set of names defined in b

COMP 512, Rice University 3

Prior Examples

Computing AVAIL Sets
* Domain is the set of expressions computed in the procedure

* Data-flow equations are more complex

AVAIL(n,) =

Initialization:
AVAIL(n) =D, ¥ n #n,

Fixed-point _
equations: AVAIL(b) = (DEEXPR(X) U (AVAIL(x) N EXPRKILL(b))

\N\

AVAIL is a forward-flow problem

where
DEEPXR(b) is the set of expressions defined in b and not subsequently killed in b
EXPRKILL(D) is the set of expressions killed in b because one or more operand is
redefined in b

COMP 512, Rice University

Prior Examples

Global constant propagation

B1: {b=3,c=4} B2: {b=1,c=6} Function “f,” models the effect of block B3
* f5({b=3,c=4}) = {a=7}
* f5({b=1,c=6}) = {a=7}
B3:| a<—b+c * f.(B1AB2) = f,(®) = {a=1]}

Result depends on order of evaluation of
the A operation and application of f

First condition in admISSIbIIIty Because meet does not distribute over

YVIEFVYXxyELf(xay)=f(x)Afly) function application, constant
propagation is not “admissible” in the

* Constant propagation is not admissible Kam-Ullman sense

¢ Kam & Ullman time bound does not hold
¢ There are tight time bounds, however, based on lattice height

¢ Require a variable-by-variable formulation ...

COMP 512, Rice University forward problem 5

Prior Examples

Interprocedural May Modify sets

shift(a,b,c,d,e,f) ® Assume call-by-reference
{ local t: ® Compute the set of variables (in
! namespace of shift) that can be
call shift(t,a,b,c,d,e); modified by a call to shift
f - ®* How long does it take?
}
* |terations proportional to number of parameters @
¢ Not a function of the call graph
¢ Can make example arbitrarily bad Nothing to do with d(G)

* Proportional to length of chain of bindings...
Call-by-reference parameters plus

recursion make the summary
e Q 0 Q Q G problems fail the Kam-Ullman
“rapid” condition.

COMP 512, Rice University backward problem 6

GDFAP = Global Data-Flow Analysis Problem
Proliferation of GDFAPs

In the late 1960’s and the 1970’s many data-flow problems were propose

* GDFAP became the standard way to prove safety of a transformation
¢ New transformation implied new GDFAP
¢ Optimizing compilers spent a large fraction of compile time solving GDFAPs
¢ Computers were relatively slow (1 - 10 MIPS) and small (16 to 32 MB)
¢ Development of “frameworks” for GDFA

* Many papers showed a new GDFAP & a new transformation
¢ Other applications arose for the GDFAP technology
¢ See the papers on “DAVE” by Osterweil et al.

COMP 512, Rice University

More GDFAPS: Very Busy Expressions

An expression e is very busy on exit from block b, iff e is evaluated & used
along every path from b to n; and evaluating e at the end of b would
produce the same result as the next evaluation along those paths

The Plan
* Annotate each block n with a set VERYBuSY(b) that contains expressions
¢ Solve data-flow equations (standard iterative solver)

* |f eisin VERYBUSY(b), insert an evaluation at the end of n and eliminate
the subsequent evaluations that it covers

¢ If eiis in VERYBUSY(b) for successive blocks, want to insert it in the “right” block

¢ Might be the last b (minimize register demand) or least frequently executed b
(minimize dynamic number of evaluations) or ...

* This optimization aims, primarily, to reduce code space

COMP 512, Rice University

| VERYBUSY | = | expressions|

More GDFAPS: Very Busy Expressions

Transformation: Hoisting
* e defined in every successor of b
* Evaluating e in b produces same result

* Saves code space, but shortens no path Standard f(x)=a U (b N ¢c). s N.

Data-flow problem: Very Busy Expressions

VERYBUSY(b) = N, .. (VEEXPR(s) U (VERYBUSY(s) N EXPRKILL(s)))

VERYBUSY(n) = @
* VERYBUSY(b) contains expressions that are very busy at end of b
* UEEXPR(b) is the set of expressions used before they are killed in b
* EXPRKILL(b) is the set of expressions killed before they are used in b

VERYBUSY expressions is a backward flow problem

COMP 512, Rice University | Same transfer function as LIVE and AVAIL, different meet operators. |9

| CONSTANTS| = |variables |

More GDFAPS: Constant Propagation (Classic formulation)

Transformation: Global Constant Folding

* Along every path to p, v has same known value T
* Specialize computation at p based on Vv’s value Cz{lﬂco\>
\\|//z
1
The Lattice C

Data-flow problem: Constant Propagation

Domain is the set of pairs <v,,c> where v, is a variable and ¢, e C

CONSTANTS(b) = A, 2 preqs) So(CONSTANTS(p))

* A performs a pairwise meet on two sets of pairs
* f,(x) is a block specific function that models the effects of block p on the
<V;,C> pairs in x
Form of fis quite different than in the
other GDFAPs that we have seen

Constant propagation is a forward flow problem

COMP 512, Rice University 0

More GDFAPs: Constant Folding

Meet operation is more complex than we have already seen

*c AC=¢ifcy=c, else L (bottom & top as expected)

f, does not fit into the mold of the
functions in our Kam-Ullman rapid

* If p has one statement then frameworks.

What about f, ?

X <=y with CONSTANTS(p) = {...<x,|;>,...<y,1,>...}
then f,(CONSTANTS(p)) = CONSTANTS(p) - <x,1;> + <x,l,>

X <=y op z with CONSTANTS(p) = {...<x,1;>,..<y,l,>... >,..<z,1;>...}
then f,(CONSTANTS(p)) = CONSTANTS(p) - <x,I,> + <x,1, op 15>

* If p has n statements then

fo(CONSTANTS(p)) = folfp1(Fo-al--Fo(f,(CONSTANTS(p)))...)))
where f; is the function generated by the i statement in p

/

Constant propagation, in its more general forms, can
COMP 512, Rice University become intractable because it encodes arithmetic. 11

SRS

Building a Control-Flow Graph

(K5
The first step in almost any data-flow analysis is building a CFG ~
// find all the leaders, assume first op If target, taken, or not_taken are
// & block are numbered zero ambiguous, then we must include all
next «— 0 labeled ops as leaders.

leader[next] + 0 .
Sources of ambiguous targets:

& Fall-through branch path
€ Jump to a register

fori+—0ton
if op[i] is a jump
then leader[next++] « target(i)
if op[i] is a branch then

leader[next++] < taken(i) No Ambiguity In ILOC:

leader[next++] « not_taken(i) All branches in ILOC have two explicit
// build all the blocks targets. Branches and jumps target a
fori+— Otonext—1 label rather than a register.
j < leader[i] +1 In the original compiler, jump to
while j<n and j & leader register was followed with an advisory
jej+1 list of labels generated when the ILOC
last[i] —j—1 was generated.

COMP 512, Spring 2015 12

Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero
next < 0 0 a«4*
leader[next] + 0 1 tl—a™4
forie Oton 2 L1: t2+tl/c
: e 3 if t2 < w then goto L2
if op[i] is a jump
: 4 m + t1 * k
then leader[next++] « target(i) .
: s 5 t3e—m+i
if op[i] is a branch then .
: 6 L2: h+i
leader[next++] « taken(i)
leader[next++] < not_taken(i) ’ m <13 -h
) - 8 if t3 > 0 then goto L3
// build all the blocks 9 goto L1

fori—0Otonext—1
j «+ leaderli] +1

while j<n and j & leader LEADER | 0
je—j+1

halt

[N
o
—
w

LAST

last[i] —j—1

COMP 512, Spring 2015 13

Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero
next < 0 0 a«4*
leader[next] + 0 1 tl—a™4
forie Oton _ 2 L1: t2+t1/c
: e 3 if t2 < w then goto L2
if op[i] is a jump
: 4 m + t1 * k
then leader[next++] « target(i) .
; . L 5 t3—m+i
if op[i] is a branch then T .
: 6 L2: h+i
leader[next++] « taken(i)
leader[next++] < not_taken(i) ’ m <13 -h
) - _ 8 if t3 > 0 then goto L3
// I?ulld all the blocks 9 goto L1
fOF.I —0to ngxt -1 10 L3: halt
j «+ leaderli] +1
. . . A\
while j<n and j & leader EADER 1ol elalolil 2
jeg+l
LAST
last[i] —j—1

COMP 512, Spring 2015 14

Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero
next < 0 0 a«4*
leader[next] + 0 1 tl—a™4
forie Oton 2 L1: t2+tl/c
: e 3 if t2 < w then goto L2
if op[i] is a jump
: 4 m + t1 * k
then leader[next++] « target(i) .
: - 5 t3e—m+i
if op[i] is a branch then .
: 6 L2: h+i
leader[next++] « taken(i)
leader[next++] < not_taken(i) ’ m <13 -h
) - 8 if t3 > 0 then goto L3
// I?ulld all the blocks _ 9 goto L1
forie—0Otonext—1 10 L3: halt

j «+ leaderli] +1

Wh.I|EJ.Sn and j & leader — LEADER | 0 | 6 | a |l 9 110! 2
jej+1

_ _ LAST 1,|8|5]|9 103
last[i] —j—1 _ 7

COMP 512, Spring 2015 15

Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero e
next + 0O 05 a«4*
Ieader[next] 4_ 0 1 '_'_________'_'_:_t'_:!:__f:'_a_'_______q:_'_'_'_________'_'_'_'_________'_'_'_.
fori—0ton 2 L 2etl/c
DU 3 0] ift2 <wthengotol2 |
if op[i] is a jump P EE e B 5 JAARRREREEEEEE e
then leader[next++] « target(i) | .
e o 5 . Bem+i
if op[i] isa branchthen | reszmmssstsosiiosiimoozoozooziozoos
: 6 " L2: hei
leader[next++] « taken(i) |
leader[next++] < not_taken(i) ! m e 3-h
A B 8 ‘\:_'_'___________'i_:f_'F:%:?::Q:?b:_e:r:]:g'_o:t:(_?_'fl?_s::::_
// b.mld all the blocks 9 (T eoto Ll
o7 | = DD M= 2 10013 halt T |
j « leaderfiyl+2 . TTTTTmommmmmmoomoooeotoeoe
while j<n and j & leader eaDER lolelaloliol 2
jej+l
_ _ LAST 1/ 85|99 10| 3
last[i] —j—1

COMP 512, Spring 2015 16

Dominators

Definitions
In a flow graph, x dominates y if and only if every path from the entry of
the control-flow graph to the node for y includes x

* By definition, x dominates x

* We associate a DOM set with each node
* |DOM(x)| =1

Immediate dominator

* For any node x, there must be a y in DOM(x) closest to x
¢ Unless x =n,, x # IDOM(x)

* We call this y the immediate dominator of x

* As a matter of notation, we write this as IDOM(x)

Original idea: R.T. Prosser. “Applications of Boolean matrices to the analysis of flow diagrams,” Proceedings of
the Eastern Joint Computer Conference, Spartan Books, New York, pages 133-138, 1959.

COMP 512, Rice University 17

Dominators

Dominators have many uses in analysis & transformation

* Finding loops N
n, <~ a+b>b
* Building SSA form 4
B pp < ¢c +d C
* Making code motion decisions T —c+d
Dl e, <« b + 18
s, < a+b
Dominator sets Dominator tree u, < e + f
X
Block DOM IDOM A]
A A o /l\
B A,B A B C G
C A,C A /l\ o
b | ACD | > BT BTy
E A,C,E C
F A,C,F C
G A,G A

COMP 512, Rice University

18

Computing Dominators

Critical first step in SSA construction and in DVNT

* A node n dominates miff n is on every path from n,to m
¢ Every node dominates itself

¢ n’s immediate dominator is its closest dominator, IDOM(n)"
Initially, bOM(n) = N,

DOM(n0)={n0} Vn;tno.
Can do better.

DOM(n) = {n } U (N, cpresssn) DOM(p))

Computing DOM
* These simultaneous set equations the data-flow problem

¢ The simplest equations we have seen

¢ Transfer function is the identity function
* Equations have a unique fixed point solution

* An iterative fixed-point algorithm will solve them quickly

TIDOM(n) # n, unless n is n,, by convention.

COMP 512, Rice University 19

Round-robin Iterative Algorithm for DOM

DOM(n,) < n,
forx << n;ton,
DOM(x) <— { all nodes in graph }
change < true
while (change)
change < false
forx < n,ton,

TEMP <— { X } U (myEpred (x) DOM(y))
if DOM(x) # TEMP then

change < true
DOM(x) < TEMP

Termination
* Makes sweeps over the nodes

* Halts when some sweep produces no change

COMP 512, Rice University

20

DOM Example

Flow Graph

COMP 512, Rice University

Progress of iterative solution for DOM

Iter- DOM(n)
ation |, 1 2 3 4 5 6 7
o | o | wn N N N N N N
1 o| o1 |012|013]|0134]0135]|0136| 01,7
2 | ol o1 |012]013]0134]0135]|0136] 01,7
*21

Example

Dominance
Tree

COMP 512, Rice University

If we have time, the last three slides
show how to use DOM to improve SVN

Progress of iterative solution for DOM

Iter- DOM(n)
ation | 1 2 3 4 5 6 7
0 0 N N N N N N N
1 0 01 | 01210130134 |0135]| 01,36]| 01,7
2 0 01 | 012101310134 |0135]| 01,36]| 01,7
Results of iterative solution for DOM
0 1 2 3 4 5 6 7
DOM | 0O 01 01210130134 1|0135]|0136]| 01,7
IDOM | 0O 0 1 1 3 3 3 1

There are asymptotically faster algorithms.

With the right data structures, the iterative algorithm can be
made extremely fast (competitive out to 10,000 or 20,000 nodes)

See Cooper, Harvey, & Kennedy [100], or § 9.5.2 in EaC2e.

Proliferation of GDFAPs

In the late 1960’s and the 1970’s many data-flow problems were propose

* GDFAP became the standard way to prove safety of a transformation
¢ New transformation implied new GDFAP
¢ Optimizing compilers spent a large fraction of compile time solving GDFAPs
¢ Computers were relatively slow (1 - 10 MIPS) and small (16 to 32 MB)
¢ Development of “frameworks” for GDFA

* As transformations proliferated, need for a new paradigm emerged
¢ One GDFAP that could be used for multiple transformations
¢ Simplify the implementation
¢ Reduce the time spent in analysis

¢ The result was the development of information chains

In truth, the story is not that simple. Information chains did not arise overnight in response to an excessive
number of GDFAPS; however, by the late 1980’s they were being used to replace individual GDFAPs.

Information Chains

A tuple that connects 2 data-flow events is a chain
* Chains express data-flow relationships directly. "

. event = definition
* Chains provide a graphical representation or use
* Chains jump across unrelated code, simplifying search

We can build chains efficiently

Four interesting types of chain

Source Sink Dependence Type DEF-USE chains are the
DEF USE true, flow most common
USE DEF anti
DEF DEF output
USE USE input

COMP 512, Rice University 24

Information Chains

Example

a.< 5
b 3
c + 2 dis dead
d, < = 20— [lthasnouse

e < a + bf/ e < 13

ebe + ¢

v
f < 2\+‘e
write £
DEF-USE Chains DEF-USE Chains form a sparse evaluation graph

that we can use in many transformations.

For example, a DEF with no reachable use is dead.

COMP 512, Rice University * 25

Notation

Assume that, V operation i and each variable v,

* DEFS(v,i) is the set of operations that may have defined v most recently
before i, along some path in the CFG

* USES(v,i) is the set of operations that may use the value of v computed at j,
along some path in the CFG

X € DEFS(A,y) < y € USES(A,x)

To construct DEF-USE chains, we solve reaching definitions (YAGDFAP)

* A definition d of some variable v reaches an operation i if and only if i reads
v and there is a v-clear path from dto i

¢ v-clear = no definition of v on the path

* Prior definition of vin same block = |DEFS(v,i)| =1
* No prior definition = |DEFS(v,i)| 21

COMP 512, Rice University 26

Domain is |definitions|, same as number of operations

Reaching Definitions

The equations
REACHES(b) =@, VY nEN

REACHES(b) = U, ¢ .45 (DEDEF(p) U (REACHES(p) N DEFKILL(p)))
Form of f is same as in LIVE
* REACHES(b) is the set of definitions that reach block b
* DEDEF(b) is the set of definitions in n that reach the end of b
* DEFKILL(b) is the set of defs obscured by a new defin b

Computing REACHES(b)
* Use any data-flow method (rapid framework)

* Zadeck shows a simple linear-time algorithm

F.K. Zadeck, “Incremental data-flow analysis in a structured program
editor,” Proceedings of the SIGPLAN 84 Conf. on Compiler Construction,
COMP 512, Rice University | June, 1984, pages 132-143.

Building DEFS Sets

The Plan
1. Find basic blocks & build the cFG
2. V block b, compute REACHES(b)

3. V block b, V operation i, V referenced name v,
Set DEFS(v,i) according to the earlier rule
If there is a prior definition, d, of vin b
DEFS(v,i) < d
Otherwise
DEFS(v,i) < {d | d defines v & d € REACHES(b) }

To build USES
* |nvert DEFS, or

* Solve reachable uses, and use the analogous construction

COMP 512, Rice University

28

Building DEF-USE Chains

Miscellany

* Domain of REACHES is the set of definitions (oc | operations|)
* Domain of DEFS & USES is also definitions

* Need a compact representation of DEFS & USES

Detecting Anomalies

* DEFS(v,i) = @ implies use of a never initialized variable

* Add a definition for each v to n, to detect larger set of anomalies
¢ If initial def € DEFS(v,i) then 3 a path to i with no initialization

NEXT LECTURE: using information chains & moving into SSA
COMP 512, Rice University 29

Back to Redundancy Elimination

Dominators Can Improve Superlocal Value Numbering

SVN did not help with blocks F or G

* Multiple predecessors
B

* Must decide what facts holdin Fand in G
¢ For G, combine B & F?
¢ Merging state is expensive
¢ Fall back on what’s known

* Can use table from IDOM(x) to start x
¢ Use Cfor Fand A for G
¢ Imposes a DOM-based application order

Leads to Dominator VN Technique (DVNT)

COMP 512, Rice University

pp < c +d
r, < c +d

Dl ¢, <« b + 18 El e,
s, <~ a+b
u, < e + £ u,

— a + 17

t, <~ c +d

— e + £

i

e; < ¢(egse)
uZ < q)(uolul)
vVp <~ a+b
w, << c +d
X, < e + £

r; < 0(re,ry)
Yo < a +b

z, <~ c +d

-

30

Dominator Value Numbering

The DVNT Algorithm
* Use superlocal algorithm on extended basic blocks

¢ Retain use of scoped hash tables

¢ Need to use the SSA name space to avoid bookkeeping headaches

* Start each node with table from its Ibom
¢ DVNT generalizes the superlocal algorithm
* No values flow along back edges (i.e., around loops)

* Constant folding, algebraic identities as before

Larger scope leads to (potentially) better results
¢ LVN + SVN + good start for EBBs missed by SVN

COMP 512, Rice University 31

Dominator Value Numbering

A DVNT advantages
m< a-+b
® Find more redundancy

/ ‘\ ® Little additional cost

Bl p <« ¢ + 4 Cl gq<a+0b ® Retains online character
r < c +d r < c +d
D| e « b + 18 El e <« a + 17

t < c+d
u-<-e+ £

\ i«

F e; < ¢(ey,e,)
u, < ¢(ug,uy)
v<a+bhb DVNT shortcomings
we<oc+d . .-
% < o + f ® Misses some opportunities
— ® No loop-carried redundancies

G r, < ¢(ry,r;) or constants

y << a+b
z < c +d

COMP 512, Rice University See [53] or § 10.5.2 in EaC2e | 32

