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Data-flow Analysis

Definition
Data-flow analysis (DFA) is a collection of techniques for compile-time
reasoning about the run-time flow of values

* We use the results of DFA to prove safety & identify opportunities
¢ Not an end unto itself

* Almost always involves building a graph
¢ Control-flow graph, call graph, or graphs derived from them
¢ Sparse evaluation graphs to model flow of values (efficiency)

* Usually formulated as a set of simultaneous equations
¢ Sets attached to nodes and edges
¢ Often use sets with a lattice or semilattice structure

We have seen several data-flow problems.
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Prior Examples

Computing LIVEOUT Sets
* Domain is the set of variable names in the procedure
* Data-flow equations define LIVE at the end of a block, LIVEOUT

Initialization: LIVEOUT(n ) =, Vn

Fixed-point

equations: LIVEOUT(b) = UEVAR(b) U (LIVEOUT(b) M VARKILL(b)))

LIVE is a backward-flow problem

where
UEVAR(b) is the set of names used in b before definition in b
VARKILL(b) is the set of names defined in b
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Prior Examples

Computing AVAIL Sets
* Domain is the set of expressions computed in the procedure

* Data-flow equations are more complex

AVAIL(n,) =

Initialization:
AVAIL(n) =D, ¥ n #n,

Fixed-point _
equations: AVAIL(b) = (DEEXPR(X) U (AVAIL(x) N EXPRKILL(b))

\N\

AVAIL is a forward-flow problem

where
DEEPXR(b) is the set of expressions defined in b and not subsequently killed in b
EXPRKILL(D) is the set of expressions killed in b because one or more operand is
redefined in b
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Prior Examples

Global constant propagation

B1: {b=3,c=4} B2: {b=1,c=6} Function “f,” models the effect of block B3
* f5({b=3,c=4}) = {a=7}
* f5({b=1,c=6}) = {a=7}
B3:| a<—b+c * f.(B1AB2) = f,(®) = {a=1]}

Result depends on order of evaluation of
the A operation and application of f

First condition in admISSIbIIIty Because meet does not distribute over

YVIEFVYXxyELf(xay)=f(x)Afly) function application, constant
propagation is not “admissible” in the

* Constant propagation is not admissible Kam-Ullman sense

¢ Kam & Ullman time bound does not hold
¢ There are tight time bounds, however, based on lattice height

¢ Require a variable-by-variable formulation ...
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Prior Examples

Interprocedural May Modify sets

shift(a,b,c,d,e,f) ® Assume call-by-reference
{ local t: ® Compute the set of variables (in
! namespace of shift) that can be
call shift(t,a,b,c,d,e); modified by a call to shift
f - ®* How long does it take?
}
* |terations proportional to number of parameters @
¢ Not a function of the call graph
¢ Can make example arbitrarily bad Nothing to do with d(G)

* Proportional to length of chain of bindings...
Call-by-reference parameters plus

recursion make the summary
e Q 0 Q Q G problems fail the Kam-Ullman
“rapid” condition.
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GDFAP = Global Data-Flow Analysis Problem
Proliferation of GDFAPs

In the late 1960’s and the 1970’s many data-flow problems were propose

* GDFAP became the standard way to prove safety of a transformation
¢ New transformation implied new GDFAP
¢ Optimizing compilers spent a large fraction of compile time solving GDFAPs
¢ Computers were relatively slow (1 - 10 MIPS) and small (16 to 32 MB)
¢ Development of “frameworks” for GDFA

* Many papers showed a new GDFAP & a new transformation
¢ Other applications arose for the GDFAP technology
¢ See the papers on “DAVE” by Osterweil et al.
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More GDFAPS: Very Busy Expressions

An expression e is very busy on exit from block b, iff e is evaluated & used
along every path from b to n; and evaluating e at the end of b would
produce the same result as the next evaluation along those paths

The Plan
* Annotate each block n with a set VERYBuSY(b) that contains expressions
¢ Solve data-flow equations (standard iterative solver)

* |f eisin VERYBUSY(b), insert an evaluation at the end of n and eliminate
the subsequent evaluations that it covers

¢ If eiis in VERYBUSY(b) for successive blocks, want to insert it in the “right” block

¢ Might be the last b (minimize register demand) or least frequently executed b
(minimize dynamic number of evaluations) or ...

* This optimization aims, primarily, to reduce code space
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| VERYBUSY | = | expressions|

More GDFAPS: Very Busy Expressions

Transformation: Hoisting
* e defined in every successor of b
* Evaluating e in b produces same result

* Saves code space, but shortens no path Standard f(x)=a U (b N ¢c). s N.

Data-flow problem: Very Busy Expressions

VERYBUSY(b) = N, .. (VEEXPR(s) U (VERYBUSY(s) N EXPRKILL(s)))

VERYBUSY(n ) = @
* VERYBUSY(b) contains expressions that are very busy at end of b
* UEEXPR(b) is the set of expressions used before they are killed in b
* EXPRKILL(b) is the set of expressions killed before they are used in b

VERYBUSY expressions is a backward flow problem
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| CONSTANTS| = |variables |

More GDFAPS: Constant Propagation  (Classic formulation)

Transformation: Global Constant Folding

* Along every path to p, v has same known value T
* Specialize computation at p based on Vv’s value Cz{lﬂco\>
\\|//z
1
The Lattice C

Data-flow problem: Constant Propagation

Domain is the set of pairs <v,,c> where v, is a variable and ¢, e C

CONSTANTS(b) = A, 2 preqs) So(CONSTANTS(p))

* A performs a pairwise meet on two sets of pairs
* f,(x) is a block specific function that models the effects of block p on the
<V;,C> pairs in x
Form of fis quite different than in the
other GDFAPs that we have seen

Constant propagation is a forward flow problem
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More GDFAPs: Constant Folding

Meet operation is more complex than we have already seen

*c AC=¢ifcy=c, else L (bottom & top as expected)

f, does not fit into the mold of the
functions in our Kam-Ullman rapid

* If p has one statement then frameworks.

What about f, ?

X <=y with CONSTANTS(p) = {...<x,|;>,...<y,1,>...}
then f,(CONSTANTS(p)) = CONSTANTS(p) - <x,1;> + <x,l,>

X <=y op z with CONSTANTS(p) = {...<x,1;>,..<y,l,>... >,..<z,1;>...}
then f,(CONSTANTS(p)) = CONSTANTS(p) - <x,I,> + <x,1, op 15>

* If p has n statements then

fo(CONSTANTS(p)) = folfp1(Fo-al--Fo(f,(CONSTANTS(p)))...)))
where f; is the function generated by the i statement in p

/

Constant propagation, in its more general forms, can
COMP 512, Rice University become intractable because it encodes arithmetic. 11




SRS

Building a Control-Flow Graph

(K5
The first step in almost any data-flow analysis is building a CFG ~
// find all the leaders, assume first op If target, taken, or not_taken are
// & block are numbered zero ambiguous, then we must include all
next «— 0 labeled ops as leaders.

leader[next] + 0 .
Sources of ambiguous targets:

& Fall-through branch path
€ Jump to a register

fori+—0ton
if op[i] is a jump
then leader[next++] « target(i)
if op[i] is a branch then

leader[next++] < taken(i) No Ambiguity In ILOC:

leader[next++] « not_taken(i) All branches in ILOC have two explicit
// build all the blocks targets. Branches and jumps target a
fori+— Otonext—1 label rather than a register.
j < leader[i] +1 In the original compiler, jump to
while j<n and j & leader register was followed with an advisory
jej+1 list of labels generated when the ILOC
last[i] —j—1 was generated.
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Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero
next < 0 0 a«4*
leader[next] + 0 1 tl—a™4
forie Oton 2 L1: t2+tl/c
: e 3 if t2 < w then goto L2
if op[i] is a jump
: 4 m + t1 * k
then leader[next++] « target(i) .
: s 5 t3e—m+i
if op[i] is a branch then .
: 6 L2: h+i
leader[next++] « taken(i)
leader[next++] < not_taken(i) ’ m <13 -h
) - 8 if t3 > 0 then goto L3
// build all the blocks 9 goto L1

fori—0Otonext—1
j «+ leaderli] +1

while j<n and j & leader LEADER | 0
je—j+1

halt

[N
o
—
w

LAST

last[i] —j—1

COMP 512, Spring 2015 13




Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero
next < 0 0 a«4*
leader[next] + 0 1 tl—a™4
forie Oton _ 2 L1: t2+t1/c
: e 3 if t2 < w then goto L2
if op[i] is a jump
: 4 m + t1 * k
then leader[next++] « target(i) .
; . L 5 t3—m+i
if op[i] is a branch then T .
: 6 L2: h+i
leader[next++] « taken(i)
leader[next++] < not_taken(i) ’ m <13 -h
) - _ 8 if t3 > 0 then goto L3
// I?ulld all the blocks 9 goto L1
fOF.I —0to ngxt -1 10 L3: halt
j «+ leaderli] +1
. . . A\
while j<n and j & leader EADER 1ol elalolil 2
jeg+l
LAST
last[i] —j—1
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Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero
next < 0 0 a«4*
leader[next] + 0 1 tl—a™4
forie Oton 2 L1: t2+tl/c
: e 3 if t2 < w then goto L2
if op[i] is a jump
: 4 m + t1 * k
then leader[next++] « target(i) .
: - 5 t3e—m+i
if op[i] is a branch then .
: 6 L2: h+i
leader[next++] « taken(i)
leader[next++] < not_taken(i) ’ m <13 -h
) - 8 if t3 > 0 then goto L3
// I?ulld all the blocks _ 9 goto L1
forie—0Otonext—1 10 L3: halt

j «+ leaderli] +1

Wh.I|EJ.Sn and j & leader — LEADER | 0 | 6 | a |l 9 110! 2
jej+1

_ _ LAST 1,|8|5]|9 103
last[i] —j—1 _ 7
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Building a Control-Flow Graph

The first step in almost any data-flow analysis is building a CFG

// find all the leaders, assume first op EXAMPLE
// & block are numbered zero e
next + 0O 05 a«4*
Ieader[next] 4_ 0 1 '_'_________'_'_:_t'_:!:__f:'_a_'_______q:_'_'_'_________'_'_'_'_________'_'_'_.
fori—0ton 2 L 2etl/c
DU 3 0] ift2 <wthengotol2 |
if op[i] is a jump P EE e B 5 JAARRREREEEEEE e
then leader[next++] « target(i) | .
e o 5 . Bem+i
if op[i] isa branchthen | reszmmssstsosiiosiimoozoozooziozoos
: 6 " L2: hei
leader[next++] « taken(i) |
leader[next++] < not_taken(i) ! m e 3-h
A B 8 ‘\:_'_'___________'i_:f_'F:%:?::Q:?b:_e:r:]:g'_o:t:(_?_'fl?_s::::_
// b.mld all the blocks 9 (T eoto Ll
o7 | = DD M= 2 10013 halt T |
j « leaderfiyl+2 . TTTTTmommmmmmoomoooeotoeoe
while j<n and j & leader eaDER lolelaloliol 2
jej+l
_ _ LAST 1/ 85|99 10| 3
last[i] —j—1
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Dominators

Definitions
In a flow graph, x dominates y if and only if every path from the entry of
the control-flow graph to the node for y includes x

* By definition, x dominates x

* We associate a DOM set with each node
* |DOM(x)| =1

Immediate dominator

* For any node x, there must be a y in DOM(x) closest to x
¢ Unless x =n,, x # IDOM(x)

* We call this y the immediate dominator of x

* As a matter of notation, we write this as IDOM(x)

Original idea: R.T. Prosser. “Applications of Boolean matrices to the analysis of flow diagrams,” Proceedings of
the Eastern Joint Computer Conference, Spartan Books, New York, pages 133-138, 1959.
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Dominators

Dominators have many uses in analysis & transformation

* Finding loops N
n, <~ a+b>b
* Building SSA form 4
B pp < ¢c +d C
* Making code motion decisions T —c+d
Dl e, <« b + 18
s, < a+b
Dominator sets Dominator tree u, < e + f
X
Block DOM IDOM A ]
A A o /l\
B A,B A B C G
C A,C A /l\ o
b | ACD | > BT BTy
E A,C,E C
F A,C,F C
G A,G A
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Computing Dominators

Critical first step in SSA construction and in DVNT

* A node n dominates miff n is on every path from n,to m
¢ Every node dominates itself

¢ n’s immediate dominator is its closest dominator, IDOM(n)"
Initially, bOM(n) = N,

DOM(n0)={n0} Vn;tno.
Can do better.

DOM(n) = {n } U (N, cpresssn) DOM(p))

Computing DOM
* These simultaneous set equations the data-flow problem

¢ The simplest equations we have seen

¢ Transfer function is the identity function
* Equations have a unique fixed point solution

* An iterative fixed-point algorithm will solve them quickly

TIDOM(n) # n, unless n is n,, by convention.
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Round-robin Iterative Algorithm for DOM

DOM(n,) < n,
forx << n;ton,
DOM(x) <— { all nodes in graph }
change < true
while (change)
change < false
forx < n,ton,

TEMP <— { X } U (myEpred (x) DOM(y))
if DOM(x) # TEMP then

change < true
DOM(x) < TEMP

Termination
* Makes sweeps over the nodes

* Halts when some sweep produces no change

COMP 512, Rice University

20




DOM Example

Flow Graph
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Progress of iterative solution for DOM

Iter- DOM(n)
ation |, 1 2 3 4 5 6 7
o | o | wn N N N N N N
1 o| o1 |012|013]|0134]0135]|0136| 01,7
2 | ol o1 |012]013]0134]0135]|0136] 01,7
*21




Example

Dominance
Tree
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If we have time, the last three slides
show how to use DOM to improve SVN

Progress of iterative solution for DOM

Iter- DOM(n)
ation | 1 2 3 4 5 6 7
0 0 N N N N N N N
1 0 01 | 01210130134 |0135]| 01,36 ]| 01,7
2 0 01 | 012101310134 |0135]| 01,36 ]| 01,7
Results of iterative solution for DOM
0 1 2 3 4 5 6 7
DOM | 0O 01 01210130134 1|0135]|0136]| 01,7
IDOM | 0O 0 1 1 3 3 3 1

There are asymptotically faster algorithms.

With the right data structures, the iterative algorithm can be
made extremely fast (competitive out to 10,000 or 20,000 nodes)

See Cooper, Harvey, & Kennedy [100], or § 9.5.2 in EaC2e.




Proliferation of GDFAPs

In the late 1960’s and the 1970’s many data-flow problems were propose

* GDFAP became the standard way to prove safety of a transformation
¢ New transformation implied new GDFAP
¢ Optimizing compilers spent a large fraction of compile time solving GDFAPs
¢ Computers were relatively slow (1 - 10 MIPS) and small (16 to 32 MB)
¢ Development of “frameworks” for GDFA

* As transformations proliferated, need for a new paradigm emerged
¢ One GDFAP that could be used for multiple transformations
¢ Simplify the implementation
¢ Reduce the time spent in analysis

¢ The result was the development of information chains

In truth, the story is not that simple. Information chains did not arise overnight in response to an excessive
number of GDFAPS; however, by the late 1980’s they were being used to replace individual GDFAPs.




Information Chains

A tuple that connects 2 data-flow events is a chain
* Chains express data-flow relationships directly. "

. event = definition
* Chains provide a graphical representation or use
* Chains jump across unrelated code, simplifying search

We can build chains efficiently

Four interesting types of chain

Source Sink Dependence Type DEF-USE chains are the
DEF USE true, flow most common
USE DEF anti
DEF DEF output
USE USE input
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Information Chains

Example

a.< 5
b 3
c + 2 dis dead
d, < = 20— [lthasnouse

e < a + bf/ e < 13

ebe + ¢

v
f < 2\+‘e
write £
DEF-USE Chains DEF-USE Chains form a sparse evaluation graph

that we can use in many transformations.

For example, a DEF with no reachable use is dead.
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Notation

Assume that, V operation i and each variable v,

* DEFS(v,i) is the set of operations that may have defined v most recently
before i, along some path in the CFG

* USES(v,i) is the set of operations that may use the value of v computed at j,
along some path in the CFG

X € DEFS(A,y) < y € USES(A,x)

To construct DEF-USE chains, we solve reaching definitions (YAGDFAP)

* A definition d of some variable v reaches an operation i if and only if i reads
v and there is a v-clear path from dto i

¢ v-clear = no definition of v on the path

* Prior definition of vin same block = |DEFS(v,i )| =1
* No prior definition = |DEFS(v,i )| 21
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Domain is |definitions|, same as number of operations

Reaching Definitions

The equations
REACHES(b) =@, VY nEN

REACHES(b) = U, ¢ .45 (DEDEF(p) U (REACHES(p) N DEFKILL(p)))
Form of f is same as in LIVE
* REACHES(b) is the set of definitions that reach block b
* DEDEF(b) is the set of definitions in n that reach the end of b
* DEFKILL(b) is the set of defs obscured by a new defin b

Computing REACHES(b)
* Use any data-flow method (rapid framework)

* Zadeck shows a simple linear-time algorithm

F.K. Zadeck, “Incremental data-flow analysis in a structured program
editor,” Proceedings of the SIGPLAN 84 Conf. on Compiler Construction,
COMP 512, Rice University | June, 1984, pages 132-143.




Building DEFS Sets

The Plan
1. Find basic blocks & build the cFG
2. V block b, compute REACHES(b)

3. V block b, V operation i, V referenced name v,
Set DEFS(v,i) according to the earlier rule
If there is a prior definition, d, of vin b
DEFS(v,i) < d
Otherwise
DEFS(v,i) < {d | d defines v & d € REACHES(b) }

To build USES
* |nvert DEFS, or

* Solve reachable uses, and use the analogous construction

COMP 512, Rice University
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Building DEF-USE Chains

Miscellany

* Domain of REACHES is the set of definitions (oc | operations|)
* Domain of DEFS & USES is also definitions

* Need a compact representation of DEFS & USES

Detecting Anomalies

* DEFS(v,i) = @ implies use of a never initialized variable

* Add a definition for each v to n, to detect larger set of anomalies
¢ If initial def € DEFS(v,i) then 3 a path to i with no initialization

NEXT LECTURE: using information chains & moving into SSA
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Back to Redundancy Elimination

Dominators Can Improve Superlocal Value Numbering

SVN did not help with blocks F or G

* Multiple predecessors
B

* Must decide what facts holdin Fand in G
¢ For G, combine B & F?
¢ Merging state is expensive
¢ Fall back on what’s known

* Can use table from IDOM(x) to start x
¢ Use Cfor Fand A for G
¢ Imposes a DOM-based application order

Leads to Dominator VN Technique (DVNT)
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pp < c +d
r, < c +d

Dl ¢, <« b + 18 El e,
s, <~ a+b
u, < e + £ u,

— a + 17

t, <~ c +d

— e + £

i

e; < ¢(egse)
uZ < q)(uolul)
vVp <~ a+b
w, << c +d
X, < e + £

r; < 0(re,ry)
Yo < a +b

z, <~ c +d

-
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Dominator Value Numbering

The DVNT Algorithm
* Use superlocal algorithm on extended basic blocks

¢ Retain use of scoped hash tables

¢ Need to use the SSA name space to avoid bookkeeping headaches

* Start each node with table from its Ibom
¢ DVNT generalizes the superlocal algorithm
* No values flow along back edges (i.e., around loops)

* Constant folding, algebraic identities as before

Larger scope leads to (potentially) better results
¢ LVN + SVN + good start for EBBs missed by SVN
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Dominator Value Numbering

A DVNT advantages
m< a-+b
® Find more redundancy

/ ‘\ ® Little additional cost

Bl p <« ¢ + 4 Cl gq<a+0b ® Retains online character
r < c +d r < c +d
D| e « b + 18 El e <« a + 17

t < c+d
u-<-e+ £

\ i«

F e; < ¢(ey,e,)
u, < ¢(ug,uy)
v<a+bhb DVNT shortcomings
we<oc+d . .-
% < o + f ® Misses some opportunities
— ® No loop-carried redundancies

G r, < ¢(ry,r;) or constants

y << a+b
z < c +d
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