Comp 512
Rice University
Spring 2015

Construction of Static Single-Assignment Form

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

DEF-USE Chains (see last lecture)

Example

* Figure shows only those DEF-USE
chains that involve x

* Figure ignores other variables

* Notice that multiple DEFs can reach
a given USE & each USE can reach
multiple DEFs

— Some authors call a connected
set of DEFs & USEs as a “web”

— DEF-USE webs are live ranges in
global register allocation [75,74]

S < w - X

COMP 512, Rice University 2

Review from prior lectures | CONSTANTS| = |variables |

Constant Propagation, The Old Way

Transformation: Global Constant Folding

* Along every path to p, v has same known value PN
o] , o Cn B Gy O G e
* Specialize computation at p based on v's value XA
1
The Lattice C

Data-flow problem: Constant Propagation

Domain is the set of pairs <v,,c> where v, is a variable and ¢, € C

CONSTANTS(D) = A, c preasss) .(CONSTANTS(p))

* A performs a pairwise meet on two sets of pairs

* f,(x) is a block specific function that models the effects of block p on the

<V;,C;> pairs in x
Form of fis quite different than in the
other GDFAPs that we have seen

Constant propagation is a forward flow problem

COMP 512, Rice University 3

Review from prior lectures

Constant Propagation, The Old Way

Meet operation requires more explanation

®* CiAC=C if C;=0C,, else L (bottom & top as expected)

f, does not fit into the mold of the
functions in our Kam-Ullman rapid

* If p has one statement then frameworks.

What about f,, ?

X <=y with CONSTANTS(p) = {...<x,|;>,...<y,1,>...}
then f,(CONSTANTS(p)) = CONSTANTS(p) - <x,|;> + <x,,>

X <=y opz with CONSTANTS(p) = {...<x,1;>,..<y,l,>... >,..<z,1;>...}
then f,(CONSTANTS(p)) = CONSTANTS(p) - <x,1;> + <x,l, op |5>

* If p has n statements then

fo(CONSTANTS(p)) = folfp-1(fo-2l--Fo(f,(CONSTANTS(p)))...)))
where f; is the function generated by the it statement in p

/

COMP 512, Rice University 4

\ x‘§

Constant Propagation over DEF-USE Chains

Worklist < @ while (Worklist # @)
remove a definition i from WorkList
for i < 1 to number of operations for each j € USES(out,i)
if in, of operation i is a constant c; let x be operand where j occurs
then Value(in, i) <= ¢ Value(in,,j) <= Value(in,,j)
else Value(in,i) <= T A Value(out,i)
if in, of operation / is a constant ¢; if (Value(in,j) is a constant &
then Value(in, i) < c; Value(in,,j) is a constant)
else Value(in,,i) <= T then Value(out,j) < evaluate op j
if (Value(in, i) is a constant & Worklist <= Worklist U {j }
Value(in,,i) is a constant) else if (Value(in,j)is L or
then Value(out,i) < evaluate op i Value(in,,j)is 1)
Worklist <= Worklist U {i } then Value(out,j) < L
else Value(out,i) <= T Worklist <= Worklist U {j }
Initialization Step Propagation Step

Any T left after fixed point derives from an uninitialized value. What should we do? 5

DEF-USE Chains

Example

Applying the algorithm involves:

* |nitialization step at each operation
— Two DEFs go on the worklist
— Others are not constant valued

* A multi-way meet at each use of x

S < w - X

COMP 512, Rice University 6

Constant Propagation over DEF-USE Chains

Back to the Example

* At each USE that can refer to
multiple definitions, the analysis
takes the meet of the incoming

X < a4k definitions.

* No work in blocks where info just
“passes” through

Computes A of three
values here

SeW—X\

Computes A of four
values here

COMP 512, Rice University

Constant Propagation over DEF-USE Chains

Complexity

* |nitial step takes O(1) time per operation

* Propagation takes
¢ |USES(v,i)| for eachi pulled from Worklist
¢ Summing over all ops, becomes |edges in DEF-USE graph |
¢ A definition can be on the worklist twice (lattice height)
¢ O(|operations| + |edges in DEF-USE graph|)

This sparse-graph! approach is faster than the straightforward iterative
approach in the Kildall style — both in asymptotic complexity and in practical
implementation.

Still, the number of meets is O(|definitions|?) in the worst case.
We can do better.

1 We think of the DEF-USE graph as sparse because it connects the
DEF directly to the USE without touching blocks in between them.

DEF-USE Chains and Birth Points

Birth Points Of Values

Value is born here
17-4Ay-2z

Value is born here
17-4Ay-z21A13

Value is born
17-4Ay-2
A 13 A atb

COMP 512, Rice University

DEF-USE Chains and Birth Points

Birth Points Of Values

S < w - X

COMP 512, Rice University

We should be able to compute
the values that we need with

fewer meet operations, if only
we can find these birth points.

® Need to identify birth points

® Need to insert some artifact to
force the evaluation to follow
the birth points

® Enter Static Single Assignment
form, or SSA

Essentially, we want a DEF-USE
graph that has fewer edges.

10

DEF-USE Chains and Birth Points

Making Birth Points Explicit

X < 17 - 4

There are three birth
points for x

z < %X *q

— =

COMP 512, Rice University

11

DEF-USE Chains and Birth Points

Making Birth Points Explicit

X < 17 - 4

COMP 512, Rice University

Each birth point needs a definition to
reconcile the values of x

® |nsert a g-function at each birth
point

® Rename values so each name is
defined once

® Now, each use refers to one
definition

=> Static Single-Assignment Form

Building Static Single-Assignment Form

SSA Form
* Each name is defined exactly once

* Each use refers to exactly one name

What'’s hard

* Straight-line code is trivial
* Splits in the CFG are trivial
* Joins in the CFG are hard

Building SSA Form
* Insert ¢-functions at birth points of values

* Rename all values for uniqueness

COMP 512, Rice University

A ¢-function is a special
kind of copy that selects
one of its parameters.

The choice of parameter is
governed by the CFG edge
along which control reached
the current block.

Ve S coo Vs S coo

.

Y3 < 9(Y1/Y,)
| know of no machine that

implements a ¢-function
directly in hardware.

13

SSA Construction Algorithm (High-level sketch)

1. Insert ¢-functions

2. Rename values

.. that’s all ...

... of course, there is some bookkeeping to be done ...

COMP 512, Rice University 14

SSA Construction Algorithm (The naive algorithm)

1. Insert ¢p-functions at every join! for every name
2. Solve reaching definitions
3. Rename each use to the def that reaches it (will be unique)

Builds a version of SSA with the
maximal number of ¢- functions

What’s wrong with this approach

* Too many ¢-functions (precision)
* Too many ¢-functions (space)
* Too many ¢-functions (time)
* Need to relate edges to ¢-functions parameters (bookkeeping)

To do better, we need a more complex approach

LEvery birth point occurs at a definition or a join point in the CFG. 15

Back to the Example and Birth Points

The naive algorithm inserts too
many @ functions

® Qur goal was a g-function at
each birth point

* Naive algorithm inserts a @ for
each name at each merge in
the CFG

The naive algorithm produces
* Correct SSA form

* More ¢'s than any other
known algorithm for SSA

S el construction

S < W - Xg The rest is optimization (!)

Key Point: number of meet operations that constant propagation performs is now a
property of both placement of definitions & CFG structure. In practice, we expect to
perform many fewer meets & to see that the number of meets grows more slowly. 16

SSA Construction Algorithm (Detailed sketch for pruned ssA)

1. Insert ¢-functions
Critical, but moderately complex;

a. calculate dominance frontiers 812 aufide G neEsen TresrEe

b. find global names
for each name, build a list of blocks that define it

c. insert ¢-functions Compute list of blocks where each name is

Y global name n assigned & use as a worklist

Y block b in which n is assigned

Y block d in b’s dominance frontier _
This adds to

Creates the iterated insert a ¢-function for nin d the worklist !
dominance frontier add d to n’s list of defining blocks

Use a checklist to avoid putting blocks on the worklist twice; keep
another checklist to avoid inserting the same ¢-function twice.

COMP 512, Fall 2013 *17

SSA Construction Algorithm (Detailed sketch)

2. Rename variables in a pre-order walk over dominator tree

(use an array of stacks, one stack per global name)

Staring with the root block, b 1 counter per name for subscripts

a. generate unique names for result of each ¢-function
and push them on the appropriate stacks

b. rewrite each operation in the block
i. Rewrite uses of global names with the current version (from the stack)
ii. Rewrite definition by inventing & pushing new name
c. fillin ¢-function parameters of successor blocks
d. recurse on b’s children in the dominator tree Reset the state

e. <on exit from block b > pop names generated in b from stacks

Need the end-of-block name for this path

COMP 512, Fall 2013 *18

Dominance Frontiers & Inserting ¢d-functions

Where does an assignment in block n induce a ¢p—function?
* n Dom m => no need for a ¢—function in m
¢ Definition in n blocks any previous definition from reaching m
* If m has multiple predecessors, and n dominates one of them, but not all of
them, then m needs a ¢g—function for each definition in n
More formally, m is in the dominance frontier of n if and only if
1. d p Epreds(m) such that n €Dom(p), and
2. ndoes not strictly dominate m (n €Dom(m)—{m})

This dominance frontier is precisely what we need to insert ¢—functions:

A def in block n induces a ¢—function in each block in DF(n).

“Strict” dominance allows a d—function at the head of a single-block loop.

COMP 512, Fall 2013 19

DOM Example

Flow Graph

COMP 512, Rice University

Results of iterative solution for DOM

1 2 3 4 5 6 7

DOM 01 | 012 013 | 0134 | 0,135 | 0,1,36 | 0,1,7

IDOM 0 1 1 3 3 3 1
* 20

Example

Dominance

Tree

COMP 512, Fall 2013

Results of iterative solution for DOM

1 2 3 4 5 6 7

DOM 0,1 01,2 013 01,34 | 01,35 0,1,3,6 | 0,1,7
IDOM 0 1 1 3 3 3 1
21

Dominance
Frontiers

COMP 512, Fall 2013

Dominance Frontiers & ¢-Function Insertion

e A definition at n forces a ¢-function at m iff
n & Dom(m) but n € Dom(p) for some p € preds(m)

® DF(n) is fringe just beyond region n dominates

0 1 2 3 4 5 6 7

DOM (01,012,013 /0134 0,135 0,136 01,7

Strict DF | 1 1 7 7 6 6 7 1

DF(4) is {6}, so <— in 4 forces ¢-function in 6
® < in 6 forces ¢-function in DF(6) = {7}
® < in 7 forces ¢-function in DF(7) = {1}

® < in 1forces ¢-function in DF(1) = {1}
(halt — the ¢ is already there)

For each assighment, we insert the ¢-functions

*22

Dominance
Frontiers

COMP 512, Fall 2013

0 1 2 3 4 5

DOM o/|o01,01201301,34 01,35

Strict DF | 1 1 7 7 6 6 7 1

Computing Dominance Frontiers
® Only join points are in DF(n) for some n
® |eads to a simple, intuitive algorithm for computing
dominance frontiers
For each join point x (i.e., |preds(x)| > 1)
For each CFG predecessor p of x

Run from p to IDOM(x) in the dominator tree, & add
x to DF(n) for each n from p up to but not IDOM(x)

® For some applications (other than building SSA), we
need post-dominance, the post-dominator tree, and
reverse dominance frontiers, RDF(n)

€ Just dominance on the reverse CFG
& Reverse the edges & add unique exit node

® We will use these ideas in dead code elimination * 53

SSA Construction Algorithm (Reminder)

1. Insert ¢-functions at every join for every name

a. calculate dominance frontiers : :
A “global” is LIVE on input to some block

b. find global names x is global iff 3b 5 x « UEVAR(b)

for each name, build a list of blocks that define it ‘

c. insert ¢-functions

Y global name n
Y block b in which n is assigned
Y block din b’s dominance frontier
insert a ¢-function fornin d
add d to n’s list of defining blocks

Step 1.b is not in the CFRWZ [110] algorithms
It produces an SSA form with fewer ¢-functions [50]

COMP 512, Fall 2013 * 24

SSA Construction Algorithm

Finding global names
* Difference between different forms of SSA Otherwise, needs no ¢-function.
* Minimal SSA uses all names [CFRWZ, 110] Can use local notion of five:

* Semi-pruned uses names that are /live on entry to some block [50]
¢ Shrinks name space & number of ¢-functions

¢ Pays for itself in compile-time speed

* For each “global name”, need a list of blocks where it is defined
¢ Drives ¢-function insertion

¢ b defines x implies a ¢-function for x in every ¢ € DF(b)

Pruned SSA adds a test to see if x is live at insertion point

Occasionally, building pruned is faster than building semi-pruned.

Any algorithm that has non-linear behavior in the number of ¢-functions
will have a size where pruned is the SSA flavor of choice.

COMP 512, Fall 2013 25

i > 100

BO i <« eeoe >
Example
. e
Example CFG
® |ots of assighments
B, 2 < ees ® Expression details
d < °°° ellided
B, /Bb-\A
d < eee C < ooo
b < eeo
‘BE/
y < atb
z < c+d
i «— i+l
Assume a, b, ¢, & d
defined before B,
i > 100 ¢

COMP 512, Fall 2013 26

B, i > 100

1 < eee >
. Example
B, a< @(a,a)
Excluding local \| b < &(b,b)
names avoids \ ¢ < 2(c,c) . i
@'s fory &z ° 2:‘3; After @ insertion
a < eoo ® Lots of new ops
C <— o000
- ® Renaming is next
B3 a < eoooe
d < eeoe
-— 9 —
B, < B, >
d < eeoe C < ooo
—,, —
d < @(d,d)
c < @(c,c)
BG b < eeoe

a< @(a,a)
b << @(b,b)
c < @(c,c)
d < ©(d,d)

Assume a, b, ¢, & d y < atb

z < c+d

defined before B, 1w i+l

i> 100

COMP 512, Fall 2013 27

SSA Construction Algorithm

One Final Point About @-function Insertion

* @O-functions have an unusual semantics

¢ When execution enters a block, all @-functions evaluate their arguments, in
parallel, and then perform their assignments, in parallel

¢ This behavior allows the compiler to manipulate @-functions without worrying
about the order in which they appear at the head of a block

* The parallel semantics of @-functions will introduce complications when
the compiler tries to translate code in SSA form back into executable code

COMP 512, Fall 2013 28

SSA Construction Algorithm (Detailed sketch)

2. Rename variables in a pre-order walk over dominator tree

(use an array of stacks, one stack per global name)
Starting with the root block, b 1 counter per name for subscripts

a. generate unique names for each ¢-function
and push them on the appropriate stacks

b. rewrite each operation in the block
i. Rewrite uses of global names with the current version (from the stack)
ii. Rewrite definition by inventing & pushing new name
c. fill in ¢-function parameters of successor blocks
d. recurse on b’s childreri in the dominator tree Reset the state

e. <on exit from block b > pop names generated in b from stacks

Need the end-of-block name for this path

%
COMP 512, Fall 2013 29

SSA Construction Algorithm (Less high-level sketch)

Adding the details ...

Rename(b)
for each global name i for each ¢-functioninb, x < ¢ (...)
counter[i] < 0 rename x as NewName(x)
stack[i] < @ for each operation “x <—yop z” in b
call Rename(n,) rewrite y as top(stack[y])
rewrite z as top(stack[z])
NewName(n) rewrite x as NewName(x)

i <= counter[n]

counter[n] <= counter[n] + 1

push n. onto stack[n]

return n, for each successor s of b in dom. tree
Rename(s)

for each successor of b in the CFG
rewrite appropriate ¢ parameters

for each operation “x<—yopz”’inb
or each phi-function

Minor engineering nit: assume, up front, that pop(stack[x])
we convert all names into unique small integers 30

i > 100

1 < eooo >

as< @(a,a)
b < @(b,b)
c < @(c,c)
d < 9(d,d)
i< @(i,1)

a < eoeoo

C <— o000

Assume a, b, ¢, & d
defined before B,

d < eeoe C < ooo
—
d < 9(d,d)
c < @(c,c)
B, b < eeoe a d I
- Counters | 1|1 [1]1]0
a< @(a,a) Stacks | a, | b, | c, | d
b < @(b,b) =11
c < @(c,c)
d < @(d,d)
y < a+b g
z < c+d i has not been
i< i+l defined
i> 100

COMP 512, Fall 2013

31

B, : i > 100

1, < oo

v

a < @(a,,a)
b << @(b,,b)
c < @(cy,C)
d < @(d,,d)
1< 0(io,1) End of B,

a < eoeoeoo

C < eoo

B4 D B5 -
d < eee C < o000
e
d < 9(d,d)
c < @(c,c)
B, b < eee a b c¢c d i
L Counters | 1 |1[|1]1]1
]:: ?(1';)) Stacks | a, | by | ¢ | dg | ig
c < @(c,c)
d < @(d,d)
y < atb
z < c+d
i« i+l
i> 100

COMP 512, Fall 2013 32

B, : i > 100

1, < oo |

a; < @(ay,a)
b, < @(by,b)
c; < @(cy,0)
d, <= 9(d,,d)
1 < O(do, 1) End of B,

a2 < o000

C, < eoee

/\
B, = B -
d < eee C < eooo
—,, —
d < 9(d,d)
c < @(c,c)
B, b < eeoe a b C d I
/ Counters | 3|2 |3 |22
a< @(a,a) Stacks | a, | b, | ¢, | do | i
b — B(b.b) 0 0 0 0 0
c < @(c,c) a, | by |c |d |}
d < @¢(d,d)
y < a+b a2 cz
z < c+d
i <— i+1
i> 100

COMP 512, Fall 2013 33

B, : i > 100

_'LO < o000 >

a; < @(ay,a)
b, < @(by,b)
c; < @(cy,0)
d, <= 9(d,,d)
1 < O(do, 1) End of B,

a2 < o000

C, < eoee

B3 a < o000
d < eeo
/\
B, = B; -
d < eee C < ooo
—_—
d < 9¢(d,d)
c < @(c,c)
B, b < eeoe a b C d I
L Counters | 33432
a< @(a,,a) Stacks | a, | by | ¢y | dy | i
b« B(b.b) 0 0 0 0 0
c < @(c;,C) a, | by [¢ [di|
d < @(d,,d)
Yy < aib 42 b2 c d2
z < c+d c
1 <«— 1i+1 ’
i> 100

COMP 512, Fall 2013 34

B, : i > 100

_'LO < o000 >

a, < @(ay,a)
b, < @(by,b)
c, < @(cy,c)
d, <= 0(d,,d)
1< 2(ie.1) Before starting B,

a2 < o000

C, < eoee

B3 a < eeoe
d < eee
/\
B, D B; -
d < eee C < ooo
\/
d < 9¢(d,d)
c < @(c,c)
BE b < eeoe a b C d I
L Counters | 3|3 |4|3]2
a < @(a,a) i =100 Stacks | a. | b, | ¢, | d, | i
b — Q(bz,b) 0 0 0 0 0
c < @(cy3,c) a, b1 C, d1 i1
d < 9(d,,d)
y < atb 9z €2
z < c+d
i «— i+1
i> 100

COMP 512, Fall 2013 35

B, : i > 100

1, < oo |

a; < @(ay,a)
b, < @(by,b)
c; < @(cy,0)
d, <= 9(d,,d)
1< 2(ie.1) End of B,

a2 < o000

C, < eoee

B3 a3 €« o000
d3 < o060
/\
B, B B; g
d < eee C < eooo
\/
d < 9(d,d)
c < @(c,c)
B, b < eeoe a b C d I
L — Counters |4 |3 |44 |2
a< @(a,a) Stacks | a, | b, | ¢, | dg | i
b < B(b.b) 0 0 0 0 0
c < @(c;,C) a, | by [¢ [di|
d < ©(d,,d)
y < atb 42 C d3
z < c+d a
1 <«— 1i+1 =
i> 100

COMP 512, Fall 2013 36

B, : i > 100

1, < oo |

a; < @(ay,a)
b, < @(by,b)
c; < @(cy,0)
d, <= 9(d,,d)
1 < O(do, 1) End of B,

a2 < o000

C, < eoee

B3 a3 €« o000
d3 < o060
/\
B, - B; -
d4 «— eoo0e0 C < eooo
\/
d < ©¢(d,,d)
c < @(c,,C)
B, b < eeoe a b C d I
L Counters | 4 |3 |4 |52
a< @(a,a) Stacks | a, | by | ¢y | dy | i
b« B(b.b) 0 0 0 0 0
c < @(cy,c) a, | by [¢ [di|
d < 9(d,,d)
y < a+tb 42 C d3
z < c+d
a d
1 <«— 1i+1 = :
i> 100

COMP 512, Fall 2013 37

B, i > 100

iO < eooo >

a; < @(ay,a)
b, < @(by,b)
c; < @(cy,0)
d, <= 9(d,,d)
1< 2(ie.1) End of B;

a2 < o000

C, < eoee

B3 a3 €« o000
d3 < o060
/\
B, - B; -
d4 < o060 c4 < oo0o
\/
d < @(d,,d;)
C < B(cy,Cy)
B, b < eeoe a b C d I
/ Counters |4 |3 |5|5|2
a< @(a,a) Stacks | a, | b, | ¢, | dg | i
b < B(bb) 0 0 0 ol lo
c < @(c;,C) a, | by [¢ [di|
d < ©(d,,d)
y < atb 42 e d3
z < c+d
d C
1 <«— 1i+1 = :

i> 100

COMP 512, Fall 2013 38

B, i > 100

iO < eooo >

a; < @(ay,a)
b, < @(by,b)
c; < @(cy,0)
d, <= 9(d,,d)
1< 2(ie.1) End of B,

a2 < o000

C, < eoee

B3 a3 €« o000
d3 < o060
— [—
B, d B;
4 < o000 c4 < o000
\/
ds < @(d,,d;)
Cy <— @(czlcz})
B, by < eee a b C d I
L Counters |4 |46 |62
a < @(a, a,) Stacks | a, | b, | ¢, | dg | i
b o< Q(b2,b3) 0 0 0 0 .0
c < @(c;,C5) a, | by [¢ [di|
d < 0(d,,d:)
y < aib5 2| b |G| d
z < c+d a; Cs d5
i < i+l

i> 100

COMP 512, Fall 2013 39

B, i > 100

iO < eooo >

a; < 0(a,,a)
b, <= @(by,b)
c, < @(cy,c)
d, < @(d,,d)
1 < O(do, 1) Before B,

a2 < o000

C, < eoee

B3 a3 €« o000
d3 < o060
— [—
B, d B;
4 < o000 c4 < o000
\/
d5 < @(d4ld3)
Cs <= O(c,,cy)
B, by < eee a b C d I
L — Counters |4 |4 |16 |62
a < @(a, a,) Stacks | a, | b, | ¢, | dg | i
b o< Q(bZIbB) 0 0 0 0 .0
c < @(c;,C5) a, | by [¢ [di|
d < ©(d,,ds)
y < atb i o
z < c+d
i < i+l

i> 100

COMP 512, Fall 2013 40

B,) i > 100

1, < oo |

a; < 90(agray)
b, <= O(by,by)
c; < ©@(cy,Cq)
d, <= 9(d,,dy)
i< O(i0s1,) End of B,

a2 < o000

C, < eoee

B3 a3 €« o000
d3 <« o000
— [—
B4 d XX} B5
4 <« C4 < o000
\/
dy < @(d,,d;)
C; <= @(c,,Cy)
B, b, < eee a b ¢ d i
/ Counters | 5| 5|7 |7 1|3
a, < B(a,a;) Stacks | a, | by | ¢y | dy | i
b, < 0(b,,b,) 0 0 0 0 0
Ceg < O(c53,C5) a; | by e | dy |y
dg <= 9(d,,ds))
y < a,tb, a, | by | ¢, | dg Iy
Z < CG+d6 a4 c6
i, < i;+1

i> 100

COMP 512, Fall 2013 41

B, . i > 100

1, < oo >

Example

al <«— @(ao,a4)
bl < @(bo,b4)
c; < O(cy,Cq) After renamin

dl < @(dords) g
i, < @(iy,1,)

a, < eeo

® Semi-pruned SSA form

C, < eoee

® \We’re done ...

B4 d4 e‘ooo B5 c4 ; XX
\/

dy < @(d,,d;)

C; <= @(c,,Cy)

BE b3 < o000

==

a, < 0(a,,a,)
b, <= @(b,,b;)
Ce < D(c53,Cs)
d6 < Q(dZ’dS)

y < a;tb, Semi-pruned = only names live
2 < Cetds in 2 or more blocks are “global
e T 4 names”

i> 100

COMP 512, Fall 2013

42

SSA Construction Algorithm (Pruned ssA)

What'’s this “pruned SSA” stuff?
* Minimal SSA still contains extraneous ¢-functions
* Inserts some ¢-functions where they are dead

* Would like to avoid inserting them

Two ideas
* Semi-pruned SSA: discard names used in only one block [50]

¢ Significant reduction in total number of ¢-functions

¢ Needs only local Live information (cheap to compute)
* Pruned SSA: only insert ¢-functions where their value is live 1

¢ Inserts even fewer ¢-functions, but costs more to do

¢ Requires computation of LIVE sets (more expensive)
In practice, both are simple modifications to step 1.

1].D. Choi, R. Cytron, & J. Ferrante, “Automatic construction of
sparse data flow evaluation graphs,” POPL 91, pages 55-66. 43

SSA Construction Algorithm

We can improve the stack management
®* Push at most one name per stack per block
* Thread names together by block

* To pop names for block b, use b’s thread

This is another good use for a scoped hash table
* Significant reductions in pops and pushes
* Makes a minor difference in SSA construction time

* Scoped table is a clean, clear way to handle the problem

COMP 512, Fall 2013

(save push & pop)

44

