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Dead Code Elimination

Three distinct problems
* Useless operations

¢ Any operation whose value is not used in some visible way

¢ Use the SSA-based mark/sweep algorithm (DEAD)

* Useless control flow
¢ Branches to branches, empty blocks
¢ Simple CFG-based algorithm (CLEAN)

* Unreachable blocks
¢ No path from n, to b = b cannot execute

¢ Simple graph reachability problem
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The “DEAD” Algorithm

Using SSA — Dead code elimination

Mark
for eachop i
clear i’s mark
if i is critical then
mark i
add i to WorkList

while (Worklist # @)

remove i from WorkList
(i has form “x<—y op z”)

if def(y) is not marked then
mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b € RDF(block(i))
mark the block-ending

branchinb
add it to WorkList
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Sweep
for eachop i

if i is not marked then

if i is a branch then
rewrite with a jump to i’s
nearest useful post-dominator

if i is not a jump then
delete i

Notes:
® Eliminates some branches

® Reconnects dead branches to the
remaining live code

® Find useful post-dominator by
walking post-dom tree
> Entry & exit nodes are always “usefu
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Eliminating Useless Control Flow

The Problem

* After optimization, the CFG can contain empty blocks

* “Empty” blocks still end with either a branch or a jump
® Produces jump to jump, which wastes time & space

* Need to simplify the CFG & eliminate these

We must distinguish
between branch & jump

The CLEAN Algorithm ® Branch is conditional
. : ° ) is absolut

* Use four distinct transformations HUMp 15 absolute
* Apply them in a carefully selected order

* |terate until done

Devised by Rob Shillingsburg (1992), documented by John Lu (1994)
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Eliminating Useless Control Flow

Transformations in CLEAN

() =

B,

Eliminating redundant branches

Branch, not a jump
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Both sides of branch target B,
® Neither block must be empty
® Replace it with a jump to B,

® Simple rewrite of last op in B,

How does this happen?
® Rewriting other branches
How do we find it?

® Check each branch




Eliminating Useless Control Flow

Transformations in CLEAN :
Merging an empty block

® Empty B, endsin a jump
\ ® Coalesce B, with B,

® Move B,’s incoming edges
empty

B, ® Eliminates extraneous jump

/ ‘ ® Faster, smaller code
BZ

B,

How does this happen?

® Eliminate operations in B,
Eliminating empty blocks
How do we find it?

® Test for empty block
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Eliminating Useless Control Flow

Transformations in CLEAN

mm) | BB

Combining non-empty blocks

B, and B, should be a
single basic block

If one executes, both
execute, in linear order.
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Coalescing blocks

® Neither block must be empty
® B, ends with a jump

® B, has 1 predecessor

® Combine the two blocks

® Eliminates a jump

How does this happen?
¢ Simplifying edges out of B;
How do we find it?

® Check target of jump | preds |




Eliminating Useless Control Flow

Transformations in CLEAN
Jump to a branch

® B, ends with jump, B, is empty

® Eliminates pointless jump

® Copy branch into end of B,

® Might make B, unreachable

How does this happen?

® Eliminating operations in B,

How do we find this?
Hoisting branches from

empty blocks ® Jump to empty block
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Eliminating Useless Control Flow

Putting the transformations together

* Process the blocks in postorder
¢ Clean up B/s successors before B,
¢ Simplifies implementation & understanding
* At each node, apply transformations in a fixed order

¢ Eliminate redundant branch _

~

o EliM creates a jump that
¢ Eliminate empty block <— Elim should be checked in

¢ Merge block with successor Elim the same pass

Handles |
¢ Hoist branch from empty successor jump — Addsan edge

* May need to iterate Montonicity is not obvious
¢ Postorder = unprocessed successors along back edges
¢ Can bound iterations, but a deriving tight bound is hard
¢ Must recompute postorder between iterations
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Eliminating Useless Control Flow

What about an empty loop?
* By itself, CLEAN cannot eliminate the loop
* Loop body branches to itself

¢ Branch is not redundant * B

¢ Doesn’t end with a jump

4 Hoisting does not help *

B

* Key is to eliminate self-loop Y
¢ Add a new transformation? =

¢ Then, B, merges with B, = B,

New transformation must recognize that B, is empty. Presumably, it has code
to test exit condition & (probably) increment an induction variable.

This requires looking at code inside B, and doing some sophisticated pattern
matching. This seems awfully complicated.
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Eliminating Useless Control Flow

What about an empty loop?
* How to eliminate <B,,B;>?
¢ Pattern matching ?

¢ Useless code elimination ?
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Eliminating Useless Control Flow

What about an empty loop?
* How to eliminate <B,,B;>?
¢ Pattern matching ?

¢ Useless code elimination ?

* What does DEAD do to B,?
¢ Remember, it is empty
¢ Contains only the branch
¢ B, has only one exit
¢ So, B, & RDF(B,)
¢ B, ’s branch is useless

¢ DEAD rewrites it as a jump to B2
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Using SSA — Dead code elimination

Mark
for eachop i
clear i’s mark
if i is critical then
mark i
add i to WorkList

while (Worklist # @)

remove i from WorkList
(i has form “x<—y op z”)

if def(y) is not marked then
mark def(y)
add def(y) to WorkList

if def(z) is not marked then
mark def(z)
add def(z) to WorkList

for each b € RDF(block(i))
mark the block-ending

branchinb
add it to WorkList
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Added to the algorithm by Shillingsburg k‘
e

i/’/
vl

Sweep

for eachop i
if i is not marked then

if i is a branch then
rewrite with a jump to i’s
nearest useful post-dominator

if i is not a jump then
delete i

Notes:
® Eliminates some branches

® Reconnects dead branches to the
remaining live code

® Find useful post-dominator by
walking post-dom tree
> Entry & exit nodes are always “usefu

IH
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Eliminating Useless Control Flow

What about an empty loop?
* How to eliminate <B;,B;>?
¢ Pattern matching ?

4 Useless code elimination ?

* What does DEAD do to B,?

Remember, it is empty 3 m
1
Contains only the branch

So, B, & RDF(B,)

¢

¢

¢ B, has only one exit
¢

¢ B,’s branch is useless
¢

DEAD rewrites it as a jump to B2

DEAD converts the empty loop to a form where CLEAN handles it !
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Eliminating Useless Control Flow

The Algorithm

CleanPass()
for each block i, in postorder

if i ends in a branch then
if both targets are identical then
rewrite with a jump

if iends in a jump toj then
if i is empty then
merge i with j
else if j has only one predecessor
merge i with j

else if jis empty & j has a branch then

rewrite i’s jump with j’s branch

Clean()
until CFG stops changing
compute postorder
CleanPass()
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Summary

® Simple, structural algorithm
® Limited transformation set
® Cooperates with DEAD

® |n practice, its quite fast

How many calls to CleanPass are
needed before CLEAN halts?

* Clearly a fixed point algorithm

* Answer is not obvious
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Eliminating Useless Control Flow

Putting the transformations together

* Process the blocks in postorder
¢ Clean up B,’s successors before B,

¢ Simplifies implementation & understanding

* At each node, apply transformations in a fixed order

¢ Eliminate redundant branch < Eliminates an edge
¢ Eliminate empty block <— Eliminates a node
¢ Merge block with successor <— Eliminates node & edge
¢ Hoist branch from empty successor <— Adds an edge
* May need to iterate Montonicity is not obvious

¢ Postorder = unprocessed successors along back edges
¢ Can bound iterations, but a deriving tight bound is hard
¢ Must recompute postorder between iterations
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Eliminating Unreachable Code

The Problem
* Block with no entering edge

* Situation created by other optimizations

The Cure

* Compute reachability & delete unreachable code

* Simple mark/sweep algorithm on CFG

* Mark during computation of postorder, reverse postorder ...
* |In MSCP, importing ILOC did this (every time)
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Dead Code Elimination

Summary
* Useless Computations = DEAD
* Useless Control-flow = CLEAN

* Unreachable Blocks = Simple housekeeping

Other Transformations that eliminate dead code
* Constant propagation can eliminate some branch targets

* Algebraic identities & redundancy elimination make some operations
useless or outright remove them (depends on implementation style)

Use of SSA Form
* DEAD used SSA form as a convenient way to get DEF-USE chains

* CLEAN operated on the CFG without much regard to contents of a block
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Constant Propagation

We have seen two formulations of constant propagation

Classical formulation as a global data-flow problem
¢ Annotate each node in the CFG (each block) with a CONSTANTS set
¢ Complicated transfer functions to model effect of single op

¢ Compose transfer function of individual ops to get function for entire block

— Resembles a symbolic interpretation

¢ Verdict: conceptually complex and (potentially) slow

Sparse formulation over the graph formed by DEF-USE chains

¢ Each value is treated separately — propagated along chain and used in a meet
operation with the values of other defs that reach the same use

¢ Algorithm is conceptually simple

¢ Argument for termination and speed are based on lattice height, not some
transfer function and the CFG structure (e.g., d(G) + 3 passes a la Kam-Ullman)

¢ Verdict: conceptually simpler and (arguably) faster
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Constant Propagation

Safety

* Proves that name always has known value at point p

* Specializes code around that value

¢ Moves some computations to compile time (= code motion)
¢ Exposes some unreachable blocks (= dead code)
Opportunity

* Value # 1 signifies an opportunity

Profitability
* Compile-time evaluation is cheaper than run-time evaluation

* Branch removal may lead to block coalescing (CLEAN)
¢ If not, it still avoids the test & makes branch predictable
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Constant Propagation over DEF-USE Chains

Worklist < @

For i <= 1 to number of operations

if in, of operation i is a constant ¢;
then Value(in,i) < c;
else Value(in,i) <= T

if in, of operation i is a constant c;
then Value(in,i) < c;
else Value(in,,i) <= T

if (Value(in, i) is a constant &
Value(in,,i) is a constant)
then Value(out,i ) < evaluate op i

Worklist <= Worklist U {i }

else Value(out,i) <= T

Initialization Step
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while ( Worklist # @)

remove a definition i from WorkList

for each j € USES(out,i)
set x so that out of i is in, of j
Value(in,,j ) <= Value(in,,j )
A Value(out,,i)
if (Value(in,j ) is a constant &
Value(in,,j ) is a constant)
then Value(out,j ) <— evaluate op j
Worklist <= Worklist U {j }
else if (Value(in,j)is L or
Value(in,,j)is 1)
then Value(out,j ) < L
Worklist <= Worklist U {j }

Propagation Step

21




Last time we saw constant propagation, we had this algorithm over DEF-USE chains ...

Constant Propagation over DEF-USE Chains

Worklist < @

for i < 1 to number of operations

if in, of operation i is a constant c;
then Value(in,i) < c;
else Value(in,i) <= T

if in, of operation / is a constant c;
then Value(in, i) < c;
else Value(in,,i) <= T

if (Value(in, i) is a constant &
Value(in,,i ) is a constant)
then Value(out,i ) < evaluate op i

Worklist <= Worklist U {i }

else Value(out,i) <= T

Initialization Step
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remove a definition i from WorkList

while ( Worklist # @)

for each j € USES(out,i )
let x be operand where j occurs
Value(in,,j ) < Value(in,,j )
A Value(out,i)
if (Value(in,j ) is a constant &
Value(in,,j ) is a constant)
then Value(out,j ) < evaluate op j
Worklist < Worklist U {j }
else if (Value(in,j)is L or
Value(in,,j)is 1)
then Value(out,j ) < L
Worklist <= Worklist U {j }

Propagation Step
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The same algorithm, formulated over SSA interpreted as a graph.

LIRS

Using SSA — Sparse Constant Propagation [W&z, 347] | \
Y expression, e Top if its value is unknown =
Value(e) ¢, ifitsvalueis known
WorkList <— @ BoT if its value is known to vary

V SSA edge s = <u,v>
if Value(u) # Top then
add s to WorkList i.e.,0is “a<==b op Vv’ or “a<vopb”

while (WorkList # @)
remove s = <u,v> from WorkList

Evaluating a @-function:
let o be the operation that uses v

B(X1,X5,X3, - X,) IS

if Value(o) # BoT then Value(x,) AValue(x,) A Value(x;)

t <= result of evaluating o

A ... A Value(x,)
if t # Value(o) then

where
V SSA edge <o,x>
add <o,x> to WorkList TOP A X =X Vx
C; ACi=C if ¢;=c;
Same result, fewer A operations ¢; A c;=BOT ifc#¢
Performs A only at @ nodes BOT A X=BOT VX
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Using SSA — Sparse Constant Propagation

How long does this algorithm take to halt?

* Initialization is two passes
¢ |ops| +2 x |ops| edges

* |In propagation, Value(x) can take on 3 values
¢ TOP, c, BOT
¢ Each use can be on WorkList twice
¢ 2x |args| =4 x |ops| evaluations, WorkList pushes & pops

This algorithm is much simpler than the DEF-USE version
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Constant Propagation over DEF-USE Chains

Optimism versus Pessimism

Clear that /
is always 12
at def of x

Optimism
® This version of the algorithm is
an optimistic formulation

® |nitializes values to

® Prior version used J_T (pessimism)

M.N. Wegman & F.K. Zadeck, “Constant Propagation With Conditional
Branches”, ACM TOPLAS, 13(2), April 1991, pages 181-210.

COMP 512, Rice University
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Constant Propagation over DEF-USE Chains

Optimism versus Pessimism

Optimism
Pessimistic ® This version of the algorithm is
initializations an optimistic formulation
® |nitializes valuesto T
Leads to e Dri : d .
i<12 Al=1 Prior version used L (pessimism)

M.N. Wegman & F.K. Zadeck, “Constant Propagation With Conditional
Branches”, ACM TOPLAS, 13(2), April 1991, pages 181-210.
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Constant Propagation over DEF-USE Chains

Optimism versus Pessimism
Optimistic
initializations

Leads to
<12 2AT=12

Optimism
® This version of the algorithm is
an optimistic formulation

® |nitializes valuesto T

® Prior version used L (pessimism)

In general
® Optimism helps inside loops

® Determined by the initial value

M.N. Wegman & F.K. Zadeck, “Constant Propagation With Conditional
Branches”, ACM TOPLAS, 13(2), April 1991, pages 181-210.

COMP 512, Rice University
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Sparse Constant Propagation

What happens when SCP propagates a value into a branch?
* TOP = we gain no knowledge .

 BOT => either path can execute | But, the algorithm does

not use this knowledge ...
* TRUE oOr FALSE = only one path can execute

Using this observation, we can add an element of refining feasible paths to the
algorithm that will take it beyond the standard limits of DFA

— Until a block can execute, treat it as unreachable
— Optimistic initializations allow analysis to proceed with unevaluated blocks

Result is an analysis that can use limited symbolic evaluation to combine constant
propagation with unreachable code elimination
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Sparse Conditional Constant Propagation

Can use constant-valued control
predicates to refine the CFG

By

1f (x> 9) * |f compiler knows the value of ¥, it

then case else case can eliminate either the then or
the else case
BZ

% ¢ (x>0)=yis17in B,

¢ (x>0) = B, is unreachable

y < 17 y<y+z

* This approach combines constant

propagation with CFG reachability

Bs analysis to produce better results
in each

* Example of Click’s notion of
“combining optimizations”
Classic DFA assumes that all paths can be ¢ Predated & motivated Click
taken at runtime, including (B, B,,B;)
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Aside on Combining Optimizations

Sometimes, combining two optimizations can produce solutions that
cannot be obtained by solving them independently.

* Requires bilateral interactions between optimizations

¢ C. Click and K.D. Cooper, “Combining Analyses, Combining Optimizations”,
TOPLAS 17(2), March 1995 [86]

Sparse Conditional Constant Propagation is an example
* Combines constant propagation and unreachable code elimination
* Achieves results that no combination of the two can reach independently

* In the paper, they also suggest combining inline substitution
¢ While that idea is nice, it does not achieve the kind of same synergy

¢ Inlining followed by SCCP would achieve the same results

Interdependence versus
a phase ordering problem
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Sparse Constant Propagation

To work simplification of conditionals into the algorithm, requires
several modifications:

* Use two worklists:

¢ SSAWorkList

— Holds edges in the SSA graph
— SSA worklist propagates changing values

¢ CFGWorkList

— Holds edges in the control-flow graph
— CFG worklist propagates information on reachability

* Do not evaluate operations until block is reachable

* When algorithm marks a block as reachable, must evaluate all operations in
the block and propagate their effects forward
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The statement of this algorithm in EaCle is mangled. It is fixed in EaC2e.

Sparse Conditional Constant Propagation

SSAWorkList <= @
CFGWorkList <— n,

Y block b
clear b’s mark

Y operationoin b
Value(o) < TOP

Initialization Step

To evaluate a branch
if arg is BOT then
put both targets on CFGWorklist
else if arg is TRUE then
put TRUE target on CFGWorkList
else if arg is FALSE then
put FALSE target on CFGWorkList

To evaluate a jump
place its target on CFGWorkList

COMP 512, Rice University

while ((CFGWorkList U SSAWorkList) # @)™

while(CFGWorkList # @)
remove b from CFGWorkList
mark b
evaluate each @-functionin b
evaluate each op oin b, in order
Y SSA edge <o,x>
if block(x) is marked
add <o,x> to SSAWorklist

while(SSAWorkList # @)

remove s = <u,v> from WorkList
let o be the operation that contains v
t < result of evaluating o
if t # Value(o) then

Value(o) <t

Y SSA edge <o,x>

if block(x) is marked, then
add <o,x> to SSAWorkList

Propagation Step 32




Sparse Conditional Constant Propagation

There are some subtle points
* Branch conditions should not be Top when evaluated

¢ Indicates an upwards-exposed use

¢ Hard to envision compiler producing such code

* |nitialize Value attribute for each operation to Top
¢ Block processing will fill in the non-top initial values

¢ Unreachable paths contribute TOP to @-functions

* Code shows CFG edges first, then SSA edges
¢ Canintermix them in arbitrary order

¢ Taking CFG edges first may help with speed
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(no initial value)

(correctness)

(minor effect )
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Sparse Conditional Constant Propagation

More subtle points
* TOP * BOT — TOP
¢ If TOP becomes 0, then 0 * BOT — 0
¢ This prevents non-monotonic behavior for the result value

¢ Uses of the result value might go irretrievably to BOT

¢ Similar effects with any operation that has a “zero”

* Some values reveal simplifications, rather than constants
¢ BOT * ¢; — BOT, but might turn into shifts & adds (c;=2, BoT 2 0)

— Multiply to shift removes commutativity (reassociation)

¢ BOT**2 — BOT * BOT (vs. series or call to library)

® cbr TRUE — L,L, becomes br — L,

¢ Method discovers this; it must rewrite the code, too!
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Sparse Conditional Constant

Unreachable Code

17 i< 17 Assume that
if (i > 0) then all paths

10 j, < 10 execute
else

20 j, <= 20

1 j3 < ¢(j1; Jz)

L k<j;*17
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Optimism
® |nitialization to TOP is still important
® Unreachable code keeps TOP

® A with TOP has desired result
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Sparse Conditional Constant

Unreachable Code

Optimism

17 1<=17 Initial values @ Injtialization to TOP is still important

if (i >0) then in SCC

. ® Unreachable code keeps TOP

TOP jp<= 10

else ® A with TOP has desired result
TOP J, <= 20
TP J3 <= ¢(j1; Jz)

k< j, * 17
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Sparse Conditional Constant

Unreachable Code

17 i<—17 After
17 if (i>0) then propagation
10 jp< 10
else<_
TOP j==<20

10 J3< ¢(j1; i)
170 k<j3*17
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Optimism
® |nitialization to TOP is still important
® Unreachable code keeps TOP

® A with TOP has desired result
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Sparse Conditional Constant

Unreachable Code

Optimism
17 1< 17 ® |nitialization to TOP is still important
17 if (i > 0) then
. ® Unreachable code keeps TOP
10 jy<= 10
&lse<— ® A with TOP has desired result
TOP =20
10 J3< By J) Cannot get this result with separate

170 k<j;*17 transformations

e DEAD cannot test (i > 0)

® DEAD marks j, as useful

In general, combining two optimizations can lead to answers that cannot be
produced by any combination of running them separately.

This algorithm is one example of that general principle.

Combining allocation & scheduling is another ...
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Sparse Conditional Constant Propagation

And one more thing ...
* Wegman and Zadeck proposed integrating inline substitution into SCCP

* They were aware of the difficulty of the decision problem for inlining

¢ The “einey, meiney, miney, moe” problem

They proposed a simple solution:
Inline during SCCP when known constants propagate into a call site

* Constant-valued parameters & globals are one important source of
improvement with inline substituion (see Ball [31])

* Compiler might inline for analysis and undo transformation if it did not find
significant opportunities for simplification — constant folding, loop
invariant code motion, redundancy expression

| know of no experimental evaluation of this idea.
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