Comp 512
Rice University
Spring 2015

Loop Invariant Code Motion

— A Simple Classical Approach —

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Background

Code in loops executes more often than code outside loops

* An expression is loop invariant if it computes the same value, independent
of the iteration in which it is computed

* Loop invariant code can often be moved to a spot before the loop
¢ Execute once and reuse the value multiple times

¢ Reduce the execution cost of the loop

Techniques seem to fall into two categories

* Ad-hoc graph-based algorithms

* Complete data-flow solutions

* Think of loop invariant as redundant across iterations

* Always lengthens live range

COMP 512, Rice University 2

Loop-invariant Code Motion

Example

®* x+vyisinvariantin the loop
X,y — ... ¢ Computed on each iteration

¢ Subexpressions don’t change

* Move evaluation out of loop

Xty
¢ Need block to hold it
¢ Use existing block or insert new
Relationship to redundancy
Neither x nory * x +yisredundant along back edge

change in loop * x +y is not redundant from loop entry

* If we add an evaluation on the entry
edge, x +y in the loop is redundant

COMP 512, Rice University 3

Loop-invariant Code Motion

Neither x nory Option 1 Option 2
change in loop Move x +y into Create a block
predecessor forx+y

What’s the difference?

COMP 512, Rice University 4

Loop-invariant Code Motion

XYy ...

zero-trip XY ... t—x+y
test

Xty

Speculative

In practice, many loops have a zero-trip test
* Determines whether to run the first iteration

* Moving x +y above zero-trip test is speculative

¢ Lengthens path around the loop
¢ LICM techniques often create a landing pad

COMP 512, Rice University

landing
pad

Conservative

Loop-invariant Code Motion

XY ... XY ...
XYy ...
t—x+y Z—X+y
Z& Xty
z—t
Move expression Move assignment

Another difference between methods

* Some methods move expression evaluation, but not assignment
¢ Easier safety conditions, easier to manage transformation
¢ Leaves a copy operation in the loop (may coalesce)

* Other methods move the entire assignment
¢ Eliminates copy from loop, as well

COMP 512, Rice University

Loop-invariant Code Motion

Control flow

* Another source of speculation
! ¢ Move it & lengthen other path
¢ Don’t move it

y!=0
while (...)
k///* {
A if (y != 0)
~_, then z = x/y
else z = x
}

* Divergence may be an issue

None of x, y, or z * Don’t want to move the op if doing so
change in loop introduces an exception

* |f that path is hot, theny =0 and we
might move it.
Note that y is invariant in this classic

example, so we could move the test, Would like to use branch probabilities
as well. See Cytron, Lowry, & Zadeck. 7

Loop-invariant Code Motion

Pedagogical Plan
1. A simple and direct algorithm (today)
2. Lazy code motion, a data-flow solution based on availability

3. Cytron, Lowry, & Zadeck’s -based approach ()

Which is best?
* The authors of 2 & 3 would each argue for their technique
* |In practice, each has strengths and weaknesses

* Taught 3 last year and had someone implement it in LLVM

¢ Surprising set of complications in SSA implementation
— Moving around all of those definitions proved problematic

— Creating new names, recreating SSA name space ... too much work for the benefits

¢ Cannot recommend CLZ in practice

COMP 512, Rice University 8

Loop Shape Is Important

Loops

* Evaluate condition before loop (if needed)

* Evaluate condition after loop
: Pre-test
* Branch back to the top (if needed) |
Merges test with last block of loop body Landing pad
v
Loop body
COMP 412 teaches this loop shape. It creates a
natural place to insert a landing pad. Post-test
while, for, do, & until all fit this basic model Next block ¢
v

For tail recursion, unroll the recursion once ...

Paper by Mueller & Whalley in SIGPLAN ‘92 PLDI
COMP 512, Rice University about converting arbitrary loops to this form.

Loop-invariant Code Motion

Preliminaries

* Need a list of loops, ordered inner to outer in each loop nest

¢ Define “natural loop” as one formed by a back edge with respect to DOM

— An edge (t,h) is a back edge if h DOM t
— h s the loop’s header and t is a tail of the loop

— The loop’s body includes all predecessors back to h

¢ Natural loops can nest

— Given two headers, h, and h, the loops are nested
if h, DOM h, or h, DOM h,

— Ifh, & h, are unrelated by DOM, loops are not nested

— Inner to outer order is defined by DOM

* Need a landing pad on each loop

¢ Insert above loop header & redirect inbound edges

COMP 512, Rice University

Given back edge (h,t)
body «— { h}
stack <— empty
push(t)
while (stack is nonempty) {
n < pop()
if n & body then {
body «— body U {n}
for each x € pred(n)
push(x)
}
}

Find the loop body formed by
a back edge (t,h)

10

Loop-invariant Code Motion

A Simple Algorithm

for each /| in LOOPLIST do
Factorlnvariants(/)

FactorIinvariants(/oop)
Marklnvariants(/oop)

foreachexpre&loop (x—y+2)
if x is marked invariant then
begin
allocate a new name t
replace o with x <t
insertt « e in landing pad
for loop
end

COMP 512, Rice University

MarklInvariants(/oop)
foreachopo&loop (x—y+2)

mark x as invariant

if y & LOOPDEF
then mark x as variant

if z& LOOPDEF
then mark x as variant

11

Example

Consider the following simple loop nest

Dimensions
doi<1t0100 addressed Multiplies
doj<1t0100
do k <1 to 100
a(i,j,k) <—i *j*k 3,000,000 2,000,000
end
end
end
Original Code

COMP 512, Rice University

12

Example

Consider the following simple loop nest

Dimensions
doi<1t0100 addressed Multiplies
doj<1t0100
t, < addr(a(i,j)) 20,000
t,—i™j 10,000
do k < 1to 100
t(k) < t,*k 1,000,000 1,000,000
end
end
end

After LICM on the Inner Loop

COMP 512, Rice University 13

Example

Consider the following simple loop nest

Dimensions
doi<1t0100 addressed Multiplies
t; — addr(a(i)) 100
doj< 110100
t, — addr(t;(j)) 10,000
t,—i*j 10,000
dok < 1to100
t,(k) < t,* k 1,000,000 1,000,000
end
end
end
After Doing Middle Loop

COMP 512, Rice University

14

Safety of Loop-invariant Code Motion

What happens if we move an expression that generates an exception?
* Maybe the fault happens at a different time in execution
* Maybe the original code would not have faulted

Ideally, the compiler should delay the fault until it would occur

Options
Mask fault & add a test to loop body

Replace value with one that causes fault when used

Block read access to the faulted value

Patch the executable with a bad opcode

Generate two copies of the loop and rerun with original code

Never move an evaluation that can fault

COMP 512, Rice University Applies to all the algorithms | 15

Profitability of Loop-invariant Code Motion

* Does the loop body always execute?
¢ Placement of the landing pad is crucial

* Lengthen any paths?
¢ Conservative code motion: not a problem
¢ Speculative code motion: might be an issue

— Rely on estimates of branch frequency?

* Register pressure?
Backus’

¢ Target of moved operation has longer live range dilemmna

¢ Might shorten live ranges of operands of moved op

COMP 512, Rice University Applies to all the algorithms | 16

Shortcomings of the Simple LICM Algorithm

* Moves code out of conditionals in a speculative fashion
¢ Ignores control flow inside the loop
¢ Canimagine a more sophisticated approach based on control-dependence
* Moves only evaluation, not assignment

¢ To move assignments would require a more complex approach to naming both
arguments and results (such as the SSA name space?)

® Only finds first order invariants

fori—1ton
forj—1tom

First order invariant
X—a*b /

E 3
‘Q— 1 H
ye=x-¢ Second order invariant

end
end

Need to iterate on a loop until it stabilizes, then move on

COMP 512, Rice University 17

