Comp 512
Rice University
Spring 2015

Lazy Code Motion

— The Data-Flow Approach to Code Motion —

J. Knoop, O. Ruthing, & B. Steffen, “Lazy Code Motion”, in Proceedings of the ACM SIGPLAN 92
Conference on Programming Language Design and Implementation, June 1992. [225]

K. Drechsler & M. Stadel, “A Variation of Knoop, Ruthing, and Steffen’s Lazy Code Motion,” SIGPLAN
Notices, 28(5), May 1993. [134]

§ 10.3.1 of EaC2e

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Announcements

* Next week is break

* Midterm exam
¢ Available today, in class
¢ Due back on Tuesday 3/10/2015 at 5 PM

¢ Three questions:

— Matching question through today’s lecture
— Question on data-flow analysis

— Question on the construction of SSA form

¢ Two-hours, closed-notes, closed-literature, take-home exam

* You should be working on your labs
¢ Three benchmarks available on CLEAR

¢ More to come

COMP 512, Spring 2013 2

Redundant Expression

An expression is redundant at point p if, on every path to p

1. Itis evaluated before reaching p, and

2. Non of its constituent values is redefined before p

Example
a<— b+c b+
d < b+C / ¢
\ Some occurrences of
a<—b+c b+c are redundant
a<—b+c b<— b+1
a<—b+c

COMP 512, Rice University

Partially Redundant Expression

An expression is partially redundant at p if it is redundant along some,
but not all, paths reaching p

Example
b<—b+1
b<—b+1 a<—b+c a<—b+c a<—b+c
a<—b+c a<—b+c

Inserting a copy of “a <— b + ¢” after the definition
of b can make it redundant fully redundant?

COMP 512, Rice University 4

Loop Invariant Expression

Another Example

X<—y*z

X<—vy*z a<—b*c
b+c is partially
redundant here

a<—b*c a<—b*c

Loop invariant expressions are partially redundant
* Partial redundancy elimination performs code motion

* Major part of the work is figuring out where to insert operations

COMP 512, Rice University

Lazy Code Motion

The Concept

* Solve data-flow problems that show opportunities & limits
¢ Availability & anticipability, then placement
®* Compute INSERT & DELETE sets from solutions

* Linear pass over the code to rewrite it (using INSERT & DELETE)

The History
* Partial redundancy elimination (PRE) [267] (Morel & Renvoise, CACM, 1979)

* Improvements by Drechsler & Stadel [133], Joshi & Dhamdhere [209], Chow
[81], Knoop, Ruthing & Steffen [225], Dhamdhere [130], Sorkin [321],
Hailperin [178], Kennedy, Lo, et al. [220] ...

* All versions of PRE optimize placement
¢ Guarantee that no path is lengthened

* LCM was published by Knoop et al. in PLDI 92
* Drechsler & Stadel simplified the equations

| PRE and its descendants are
conservative

Dhamdhere applied these same ideas to strength reduction [127, 131] and hoisting [129].
Others have followed this path, as well [209, 220, 226]. 6

: &

Lazy Code Motion / \g
£\
The Intuitions LCM operates on expressions

* Compute available expressions It moves expression
evaluations, not assignments

* Compute anticipable expressions

* From AVAIL & ANT, we can compute an earliest placement for each
expression

* Push expressions down the CFG until it changes behavior

Assumptions
* Uses a lexical notion of identity (not value identity)
* |Loc-style code with unlimited name space

* Consistent, disciplined use of names

: . : Avoids copies
¢ ldentical expressions define the same name - P

Result name serves as proxy

¢ No other expression defines that name

LCM operates on code that is not in SSA form.
Lexical identity conflicts with SSA’s notion of unique names. 7

Digression in Chapter 5 of EAC2e:
Lazy Code Motion “The impact of naming”

The Name Space
* r,+r—r,, always, with bothi<kandj<k (hash to find k)
¢ r is always set by r;+ r;or r; + r, and by no other expression
* We can refertor; +r, byr, (bit-vector sets)
* Variables must be set by copies
¢ No consistent definition for a variable

¢ Break the rule for this case, but require r .. < rectination

¢ To achieve this, assign register names to variables first

Without this name space
* LCM must insert copies to preserve redundant values
* LCM must compute its own map of expressions to unique ids

The restrictions on the name space in LCM goes all the way back to Morel & Renvoise [267].
It is mentioned as an assumption in the original paper.

Lazy Code Motion

Local Information (Computed for each block)
* DEEXPR(b) contains expressions defined in b that survive to the end of b
(downward exposed expressions)

e € DEEXPR(b) = evaluating e at the end of b produces the same value for e

* UEEXPR(b) contains expressions defined in b that have upward exposed
arguments (both args) (upward exposed expressions)

e € UEEXPR(b) = evaluating e at the start of b produces the same value for e
* EXPRKILL(b) contains those expressions that have one or more arguments

defined (killed) in b (killed expressions)
e & EXPRKILL(b) = evaluating e produces the same result at the start and end of b

COMP 512, Rice University 9

Lazy Code Motion

Availability

AVAILIN(n) = N, preqsm AVAILOUT(m), n # N,

AVAILOUT(m) = DEEXPR(m) U (AVAILIN(m) N EXPRKILL(m))

Initialize AVAILIN(n) to the set of all names, except at n,
Set AVAILIN(n,) to @

Interpreting AVAILOUT

®* e € AVAILOUT(b) < evaluating e at end of b produces the same value for e.
AVAILOUT tells the compiler how far forward e can move

* This interpretation differs from the way we talk about AVAILOUT in global
redundancy elimination; the equations, however, are unchanged.

COMP 512, Rice University 10

' Anticipability is identical
Lazy Code Motion to VeryBusy expressions

Anticipability

ANTOUT(n) = M, =5ucesn) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR (m) U (ANTOUT(m) N EXPRKILL(m))

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set AnTOuT(Nn) to @, for each exit block n

Interpreting ANTOUT

®* e & ANTIN(b) < evaluating e at start of b produces the same value for e.
ANTIN tells the compiler how far backward e can move

* This view shows that anticipability is, in some sense, the inverse of
availablilty (& explains the new interpretation of AVAIL)

COMP 512, Rice University 11

Lazy Code Motion

The Intuitions

Available expressions

®* e & AVAILOUT(b) = evaluating e at exit of b gives same result
* e © AVAILIn(b) = e is available from every predecessor of b

=> an evaluation at entry of b is redundant

Anticipable expressions

* e ANTIN(b) = evaluating e at entry of b gives same result
®* ¢ © ANTOUT(b) = e is anticipable from every successor of b

=> evaluation at exit of b would a later evaluation redundant,
on every path, so exit of b is a profitable place to insert e

COMP 512, Rice University 12

Lazy Code Motion

Earliest Placement On An Edge

— Can move e to head of j & it

EARLIEST(i,j) = ANTIN(j) N AVAILOUT(i) N is not redugggnt from i

(EXPRKILL(i) U ANTOUT'(i))\/ Either killed in i or would
not be busy at exit of i

EARLIEST(n,,j) = ANTIN(j) N AVAILOUT(n,) => insert e on the edge

EARLIEST is a predicate

* Computed for edges rather than nodes (placement)
* e € EARLIEST(ij) if

¢ It can move to head of j, (ANTIN(j))

4 Itis not available at the end of i and (AVAILOUT(i))

4 either it cannot move to the head of i or another edge leaving i prevents its
placementini (ANTOUT(i))

COMP 512, Rice University 13

Lazy Code Motion

Later (than earliest) Placement

LATERIN(}) = N;c peqq LATER(ij), j# N,

LATER(i,j) = EARLIEST(i,j) U (LATERIN(i) N UEEXPR(i))

Initialize LATERIN(n,) to @

X € LATERIN(k) < every path that reaches k has x € EARLIEST(i,j) for some
edge (i,j) leading to x, and the path from the entry of j to k is x-clear & does
not evaluate x

=> the compiler can move x through k without losing any benefit

X € LATER(i,j) < <i,j> is its earliest placement, or it can be moved forward
from i (LATER(i)) and placement at entry to i does not anticipate a use in i
(moving it across the edge exposes that use)

COMP 512, Rice University Propagate forward until a block kills it ~ (UEEXPR) 14

Lazy Code Motion

Rewriting the code e
' Can go on the edge but not inj

=> no later placement

INSERT(i,j) = LATER(i,j) N LATERIN(j)

DELETE(k) = UEEXPR(k) N LATERIN(k), k # n,

Upward exposed (so we will
- cover it) & not an evaluation
that might be used later

INSERT & DELETE are predicates

Compiler uses them to guide the rewrite step

* x € INSERT(i,j) = insert x at start of j, end of i, or new block
* x € DELETE(k) = delete first evaluation of x in k 1

LIf local redundancy elimination has already been performed, only one
copy of x exists. Otherwise, remove all upward exposed copies of x. 15

Lazy Code Motion

Edge placement
* x € INSERT(i,j)

_yBi Bi Bh Bi
X
/N AN
B; x| B B B B
J j k J k
|suces(i)| =1 |preds(j)| =1 |succs(i) >1 & |preds(j)| > 1

A “critical” edge
Three cases

* |succs(i)| =1 = insert x at end of i

* | succs(i)| > 1, but |preds(j)| = 1= insert x at start of

* | succs(i)| >1, & |preds(j)| > 1 = create new block in <i,j> for x

COMP 512, Rice University *

16

Lazy Code Motion

Example
Bl
31: rl <~ 1 DEEXPR rl,r2 rl,r4,r20
o< +@m @ UEEXPR rl,r2 rd,r20
2 0 NotKilled | r17,r18,r20 r2,r17,r18,r20
if r1< r, — B,,B; P
B,: ... B1 B2
rZO -— r17 * r18 @ AVAILIN r17,r18 rl,r2,r17,r18
AVAILOUT rl,r2,r17,r18 rl,r2,r4,r17,r18,r20
ANTIN {} r20
r,<—ry+1 ANTOUT {} {}
e (&)
if r < r,— B,,B; " 1,2 " 13 " 2,2 " 2,3
B ... EARLIEST || r20 | {} || {} [{3
Example is too small to show off LATER
Critical edge rule will create landing INSERT(1,2) = {r,, }
pad when needed, as on edge (B,,B,) DELETE(2) = { ry, }

See the papers for more detailed examples.

COMP 512, Rice University 17

Lazy Code Motion

Improving the Results

Simpson attacked the problem of LCM’s reliance on lexical identity

* Performed global value numbering, then rewrote the name space to
encode value identity into lexical identity

* In essence, his technique joined the code placement aspects of LCM with
the value-based equivalence detection of global value numbering

Briggs rearranged expressions to expose more lexical identities

* Used algebraic reassociation to rewrite expressions into a canonical form
¢ Associativity & commutativity, + distribution in some limited forms

* Preconditioning the code with reassociation exposed more opportunities

COMP 512, Rice University 18

