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Announcements

* Next week is break

* Midterm exam
¢ Available today, in class
¢ Due back on Tuesday 3/10/2015 at 5 PM

¢ Three questions:

— Matching question through today’s lecture
— Question on data-flow analysis

— Question on the construction of SSA form

¢ Two-hours, closed-notes, closed-literature, take-home exam

* You should be working on your labs
¢ Three benchmarks available on CLEAR

¢ More to come
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Redundant Expression

An expression is redundant at point p if, on every path to p

1. Itis evaluated before reaching p, and

2. Non of its constituent values is redefined before p

Example
a<— b+c b+
d < b+C / ¢
\ Some occurrences of
a<—b+c b+c are redundant
a<—b+c b<— b+1
a<—b+c
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Partially Redundant Expression

An expression is partially redundant at p if it is redundant along some,
but not all, paths reaching p

Example
b<—b+1
b<—b+1 a<—b+c a<—b+c a<—b+c
a<—b+c a<—b+c

Inserting a copy of “a <— b + ¢” after the definition
of b can make it redundant fully redundant?
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Loop Invariant Expression

Another Example

X<—y*z

X<—vy*z a<—b*c
b+c is partially
redundant here

a<—b*c a<—b*c

Loop invariant expressions are partially redundant
* Partial redundancy elimination performs code motion

* Major part of the work is figuring out where to insert operations
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Lazy Code Motion

The Concept

* Solve data-flow problems that show opportunities & limits
¢ Availability & anticipability, then placement
®* Compute INSERT & DELETE sets from solutions

* Linear pass over the code to rewrite it (using INSERT & DELETE)

The History
* Partial redundancy elimination (PRE) [267] (Morel & Renvoise, CACM, 1979)

* Improvements by Drechsler & Stadel [133], Joshi & Dhamdhere [209], Chow
[81], Knoop, Ruthing & Steffen [225], Dhamdhere [130], Sorkin [321],
Hailperin [178], Kennedy, Lo, et al. [220] ...

* All versions of PRE optimize placement
¢ Guarantee that no path is lengthened

* LCM was published by Knoop et al. in PLDI 92
* Drechsler & Stadel simplified the equations

| PRE and its descendants are
conservative

Dhamdhere applied these same ideas to strength reduction [127, 131] and hoisting [129].
Others have followed this path, as well [209, 220, 226]. 6
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Lazy Code Motion / \g
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The Intuitions LCM operates on expressions

* Compute available expressions It moves expression
evaluations, not assignments

* Compute anticipable expressions

* From AVAIL & ANT, we can compute an earliest placement for each
expression

* Push expressions down the CFG until it changes behavior

Assumptions
* Uses a lexical notion of identity (not value identity)
* |Loc-style code with unlimited name space

* Consistent, disciplined use of names

: . : Avoids copies
¢ ldentical expressions define the same name - P

Result name serves as proxy

¢ No other expression defines that name

LCM operates on code that is not in SSA form.
Lexical identity conflicts with SSA’s notion of unique names. 7




Digression in Chapter 5 of EAC2e:
Lazy Code Motion “The impact of naming”

The Name Space
* r,+r—r,, always, with bothi<kandj<k (hash to find k)
¢ r is always set by r;+ r;or r; + r, and by no other expression
* We can refertor; +r, byr, (bit-vector sets)
* Variables must be set by copies
¢ No consistent definition for a variable

¢ Break the rule for this case, but require r .. < rectination

¢ To achieve this, assign register names to variables first

Without this name space
* LCM must insert copies to preserve redundant values
* LCM must compute its own map of expressions to unique ids

The restrictions on the name space in LCM goes all the way back to Morel & Renvoise [267].
It is mentioned as an assumption in the original paper.




Lazy Code Motion

Local Information (Computed for each block)
* DEEXPR(b) contains expressions defined in b that survive to the end of b
(downward exposed expressions)

e € DEEXPR(b) = evaluating e at the end of b produces the same value for e

* UEEXPR(b) contains expressions defined in b that have upward exposed
arguments (both args) (upward exposed expressions)

e € UEEXPR(b) = evaluating e at the start of b produces the same value for e
* EXPRKILL(b) contains those expressions that have one or more arguments

defined (killed) in b (killed expressions)
e & EXPRKILL(b) = evaluating e produces the same result at the start and end of b

COMP 512, Rice University 9




Lazy Code Motion

Availability

AVAILIN(n) = N, preqsm AVAILOUT(m), n # N,

AVAILOUT(m) = DEEXPR(m) U (AVAILIN(m) N EXPRKILL(m))

Initialize AVAILIN(n) to the set of all names, except at n,
Set AVAILIN(n,) to @

Interpreting AVAILOUT

®* e € AVAILOUT(b) < evaluating e at end of b produces the same value for e.
AVAILOUT tells the compiler how far forward e can move

* This interpretation differs from the way we talk about AVAILOUT in global
redundancy elimination; the equations, however, are unchanged.
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' Anticipability is identical
Lazy Code Motion to VeryBusy expressions

Anticipability

ANTOUT(n) = M, =5ucesn) ANTIN(m), n not an exit block

ANTIN(m) = UEEXPR (m) U (ANTOUT(m) N EXPRKILL(m))

Initialize ANTOUT(n) to the set of all names, except at exit blocks
Set AnTOuT(Nn) to @, for each exit block n

Interpreting ANTOUT

®* e & ANTIN(b) < evaluating e at start of b produces the same value for e.
ANTIN tells the compiler how far backward e can move

* This view shows that anticipability is, in some sense, the inverse of
availablilty (& explains the new interpretation of AVAIL)
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Lazy Code Motion

The Intuitions

Available expressions

®* e & AVAILOUT(b) = evaluating e at exit of b gives same result
* e © AVAILIn(b) = e is available from every predecessor of b

=> an evaluation at entry of b is redundant

Anticipable expressions

* e ANTIN(b) = evaluating e at entry of b gives same result
®* ¢ © ANTOUT(b) = e is anticipable from every successor of b

=> evaluation at exit of b would a later evaluation redundant,
on every path, so exit of b is a profitable place to insert e
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Lazy Code Motion

Earliest Placement On An Edge

— Can move e to head of j & it

EARLIEST(i,j) = ANTIN(j) N AVAILOUT(i) N is not redugggnt from i

(EXPRKILL(i) U ANTOUT'(i))\/ Either killed in i or would
not be busy at exit of i

EARLIEST(n,,j) = ANTIN(j) N AVAILOUT(n,) => insert e on the edge

EARLIEST is a predicate

* Computed for edges rather than nodes (placement)
* e € EARLIEST(ij) if

¢ It can move to head of j, (ANTIN(j))

4 Itis not available at the end of i and (AVAILOUT(i))

4 either it cannot move to the head of i or another edge leaving i prevents its
placementini (ANTOUT(i))
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Lazy Code Motion

Later (than earliest) Placement

LATERIN(}) = N;c peqq LATER(ij),  j# N,

LATER(i,j) = EARLIEST(i,j) U (LATERIN(i) N UEEXPR(i))

Initialize LATERIN(n,) to @

X € LATERIN(k) < every path that reaches k has x € EARLIEST(i,j) for some
edge (i,j) leading to x, and the path from the entry of j to k is x-clear & does
not evaluate x

=> the compiler can move x through k without losing any benefit

X € LATER(i,j) < <i,j> is its earliest placement, or it can be moved forward
from i (LATER(i)) and placement at entry to i does not anticipate a use in i
(moving it across the edge exposes that use)
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Lazy Code Motion

Rewriting the code e
' Can go on the edge but not inj

=> no later placement

INSERT(i,j) = LATER(i,j) N LATERIN(j)

DELETE(k) = UEEXPR(k) N LATERIN(k), k # n,

Upward exposed (so we will
- cover it) & not an evaluation
that might be used later

INSERT & DELETE are predicates

Compiler uses them to guide the rewrite step

* x € INSERT(i,j) = insert x at start of j, end of i, or new block
* x € DELETE(k) = delete first evaluation of x in k 1

LIf local redundancy elimination has already been performed, only one
copy of x exists. Otherwise, remove all upward exposed copies of x. 15




Lazy Code Motion

Edge placement
* x € INSERT(i,j)

_yBi Bi Bh Bi
X
/N AN
B; x| B B B B
J j k J k
|suces(i)| =1 |preds(j)| =1 |succs(i) >1 & |preds(j)| > 1

A “critical” edge
Three cases

* |succs(i)| =1 = insert x at end of i

* | succs(i)| > 1, but |preds(j)| = 1= insert x at start of

* | succs(i)| >1, & |preds(j)| > 1 = create new block in <i,j> for x

COMP 512, Rice University *

16




Lazy Code Motion

Example
Bl
31: rl <~ 1 DEEXPR rl,r2 rl,r4,r20
o< +@m @ UEEXPR rl,r2 rd,r20
2 0 NotKilled | r17,r18,r20 r2,r17,r18,r20
if r1< r, — B,,B; P
B,: ... B1 B2
rZO -— r17 * r18 @ AVAILIN r17,r18 rl,r2,r17,r18
AVAILOUT rl,r2,r17,r18 rl,r2,r4,r17,r18,r20
ANTIN {} r20
r,<—ry+1 ANTOUT {} {}
e (&)
if r < r,— B,,B; " 1,2 " 13 " 2,2 " 2,3
B ... EARLIEST || r20 | {} || {} [ {3
Example is too small to show off LATER
Critical edge rule will create landing INSERT(1,2) = {r,, }
pad when needed, as on edge (B,,B,) DELETE(2) = { ry, }

See the papers for more detailed examples.
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Lazy Code Motion

Improving the Results

Simpson attacked the problem of LCM’s reliance on lexical identity

* Performed global value numbering, then rewrote the name space to
encode value identity into lexical identity

* In essence, his technique joined the code placement aspects of LCM with
the value-based equivalence detection of global value numbering

Briggs rearranged expressions to expose more lexical identities

* Used algebraic reassociation to rewrite expressions into a canonical form
¢ Associativity & commutativity, + distribution in some limited forms

* Preconditioning the code with reassociation exposed more opportunities
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