Comp 512
Rice University
Spring 2015

Translation Out of SSA Form

Benoit Boissinot, Alain Darte, Benoit Dupont de Dinechin, Christophe Guillon, and Fabrice Rastello,
“Revisiting Out-of-SSA Translation for Correctness, Code Quality, and Efficiency,” CGO 2009.

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

SSA Deconstruction

At some point, we need executable code

* Do machines implement ¢-operations?
* Need to fix up the flow of values \ /

X7 < e (X10:X11)
e e X17

Original idea [CFRWZ, 110]

* Replace ¢-function with copies in
predecessor blocks

* Simple algorithm

¢ Works in most cases

* Adds lots of copies X17 < X0 Xi7 < Xy

¢ Most of them coalesce away \ /
¢ Copy-coalescing is well understood

< Xyq7

— See, for example, Chaitin-Briggs GCRA [75,56]

COMP 512, Rice University 2

Translation Out of SSA Form

Two “classic” problems arise in SSA deconstruction
* Lost-copy problem

* Swap problem

In each case, simple copy insertion produces incorrect code

Critical Observation

* Both “problems” are caused by transformations that rewrite the code
and move definitions and uses

* Some of the complication arises from the shift between the parallel
semantics of the @-functions and the sequential semantics of copy

These problems were identified by Cliff Click and first published by Briggs et al. in 1997 [BCH&S, 50]. They
presented ad-hoc ways of solving the problems.

This lecture is based on the work of Boissinot et al. and presents a more systematic approach to solving the
problems inherent in translation out of SSA form. See “Revisiting Out-of-SSA Translation for Correctness, Code

Quality, and Efficiency,” by Benoit Boissinot, Alain Darte, Benoit Dupont de Dinechin, Christophe Guillon, and
Fabrice Rastello in CGO 2009.

TRANSLATION OUT OF SSA FORM

The Lost Copy Problem

1«1 i, <« 1

y < 1i i, « d)(ioriz)
i« 1i+1 Yo «— i
i, «< i, + 1

d <y + . Zy, <— Yo t .

Original code In SSA form

problem. Other transformations
can have the same effect.

i, <« <b(iorj-z)
i, « i, + 1

Z, «— 1; t+ ..

With copies folded

Copy folding is a simple W
transformation that creates the

Copies naively inserted

critical
edge

The assignment to z now
receives the wrong value.

To fix this problem, the compiler needs to create a temporary name to hold the

penultimate value of i.

Copy folding can only produce
this code because of the parallel

Translation Out of SSA Form semantics of ®-functions
The Swap Problem l
l l X, < .. lgnored the parallel
Yo < semantics of the @
X — . Xy < o X X, < X%, functions
Yy <. Yo < - Yo Y1 < Yo
t X X, — P(xg,X,) X, — DP(%4,Y,) XZ< N
X <Y Y, < ¢(Y01Y2) Y1 < ¢(Y0lx1) Y, < %Xy
y <« t t, <« X,
X < Y.
Y, < &
v v
. — X - — X, - — X - — X
.=y .- — Y, 2 . — Y
Original code In SSA Form Copies folded Copies naively inserted

Code is incorrect

This problem arises when a @-function argument is defined by a @-function in the
same block. To generate correct code, the compiler will need to insert one or more
additonal copy operations and temporary names. *

Translation Out of SSA Form

The Big Picture

* Swap problem & lost-copy problem arise from messing with @-function
parameters

¢ Renaming @®-function parameters, moving them, ...

¢ Underlying issue is the parallel semantics of @-function evaluation

* One way to simplify out-of-SSA translation is to separate the parallelism
from the @-functions and tackle it directly

¢ Convert to a form of SSA where eliminating the subscripts produces correct code
¢ We call that form “Conventional SSA” or CSSA

COMP 512, Spring 2013

Translation Out of SSA Form

The Big Picture

Insert parallel copies to convert SSA to conventional SSA
¢ In CSSA, we can just drop the subscripts on SSA name

¢ Introduces a new set of names

Rename out of CSSA by replacing introduced names
Eliminate @ functions as in original paper

¢ Insert copies at end of the predecessor blocks

Sequentialize parallel copies (may introduce new temporaries)

Aggressive copy coalescing to remove copies
¢ Can coalesce copies before renaming or after we are done

¢ Coalescing parallel copies requires some care

¢ May be easier, and clearer, to coalesce after sequentialization

2N
\\

Moves the issues created
by parallel @ function

semantics back into pred.
blocks (in parallel copies).

e.g., Budimlic et. al. PLDI
2002, or unrestricted

coalescing [75,56]

Sketch of ideas from “Revisiting Out-of-SSA Translation for Correctness, Efficiency, and Speed”, Boissinot,
Darte, de Dinechin, Guillon, and Rastello, Proceedings of CGO 2009.

COMP 512, Rice University

The Individual Steps

Convert SSA to CSSA

For a ¢-function a,<— ¢(a,a,, .., a,):
1.Insert a parallel copy a, < a, at the end of the block corresponding to a,
2.Replace a,«<— @(a,a,, ..., a,) witha, — @(a,,a,, ..., a,)

3.Insert a parallel copy a, < a, after the ¢-function

Rename Out Of CSSA

7

Y primed name, i/, drop the subscripts and replace each i/ with a new name

Remove @ Functions

* Replace @-functions with copies in predecessor blocks as in CFRWZ paper

¢ Use parallel copies for good measure

Sequentialize The Parallel Copies

* Build a dependence graph and break cycles with a new name

Copies inserted for different @-functions in the same block form a “parallel copy group”.

Sequentializing Parallel Copies

A parallel copy group forms a graph

a<—,b; b«,c; c—,a; d«—,a

b
Parallel copies Corresponding graph
Graph is either a tree or a cycle
* Schedule a tree, bottom up from the leaves d«—a
* Must break each cycle with an extra copy E::
¢ May require a new name c—d
¢ Other copies may avoid the extra name Serialized copies

— If possible, break on the value preserved in a non-cycle copy

Subscripts on the copies indicate parallel copy group membership.

COMP 512, Rice University

Reminder from earlier slide

TRANSLATION OUT OF SSA FORM

The Lost Copy Problem

d <y + . Zg <— Yo Tt . Z, «— 1; + ..
Original code In SSA form With copies folded Copies naively inserted
Copy folding is a simple The assignment to z now
transformation that creates the receives the wrong value.

problem. Other transformations
can have the same effect.

To fix this problem, the compiler needs to create a temporary name to hold the
penultimate value of i. 10

TRANSLATION OUT OF SSA FORM

The Lost Copy Problem via CSSA l
i, <« 1
| 1 o

i«—1 i, « 1
i, «< i, + 1

zZ — y + . Z, «— 1, + . Zp «— 1; + . Z, «— 1; + .
Original code In SSA with copies folded Insert parallel copies to Rename out of CSSA
create CSSA
With only one @, Each use of i’ replaced
parallel is a singleton. with x. Use of i; to
compute z, is correct.

COMP 512, Rice University 11

TRANSLATION OUT OF SSA FORM

The Lost Copy Problem via CSSA

l l l

X «— i, X «— i,
X «— X
1«1
i, « X
y < 1

Zp «— 1; + ..

Zg «— 1; + .. Zg «— Yy t ..

Z, «— 1; t+ ..

From previous slide Replace @’s with copies After coalescing The original code

Copies look rather stupid
because it is a simple case,
but it is correct.

COMP 512, Rice University 12

Reminder from earlier slide

Translation Out of SSA Form

The Swap Problem

l

Y —

<
[
ot

Original code

X, — P(xy,%;)
Y1 < ¢(Y01Y2)
th & x4
X, & Y:

Y, <

(_
. — Yy

In SSA Form

X, «— DP(%4,Y,)
Y1 < ¢(Y0lx1)

v
o« & X

. — Yy

Copies folded

XO — ..

yO — ..

Y1

T

v
“w — X
— Y

Copies naively inserted

Code is incorrect

This problem arises when a @-function argument is defined by a @-function in the
same block. To generate correct code, the compiler will need to insert one or more
additonal copy operations and temporary names.

TRANSLATION OUT OF SSA FORM

The Swap Problem

Xo < - Xy < o

Yo < = Yo < o
l Xo" 1 X a «; X,
- Yo' <1 Yo b «—; ¥y,
—

X" — D(x,",¥,")
y.' ‘_d)(Yo’rxll)
X) < Xy
Yi <2 Y1
X'
v’

«—, a

Yy, < b

X1
b «—; vy,

v

“w «— X w — X w — X
. — Yy w — Y “w — Y
Starting Point Convert to CSSA Rename primed variables

(code in SSA form)

COMP 512, Rice University

a«— @P(a,b)
b — @(b,a)

a <1 X

a <, a
b «, b

X
Y, <2 b
a <3 X
b «—; vy,
a <3 b
b «—; a

o — X

Eliminate @ functions

(used parallel copies)

Subscript on < indicates a parallel copy group 14

TRANSLATION OUT OF SSA FORM

The Swap Problem

l

XO <«

b «—; vy,

Yo < o /V'
a < %X,

a‘_4aWb<—b

b «, b

Y1 <2 b

b‘_3Y1~ Z a ¥ x
a < b

b «; a

. — X

Result from previous slide

Parallel copy groups 1, 2, 3, & 4 have
acyclic dependence graphs. They can
be scheduled in either order.

COMP 512, Rice University

a «— X,
b «— vy,
a < a
b «< b

. — X

Groups 1, 2, 3, & 4 sequentialized

15

TRANSLATION OUT OF SSA FORM

The Swap Problem

l

Xg < o
Yo < o
a «— X,
b <« vy,
a <« a
b «< b

y1 < b

These copies Yo < -
coalesce away a < X,
h . b «— y,
These copies Egr——

are useless

These copies
are LIVE

These copies
are useless

=,
=,
=,
=,

b — vy,
a «g b
b <5 a

a/\b
"

Cyclic dependence graph for
parallel copy group 5

. — X

Must break this cycle with an
L — Yy

extra copy & a new name.

Groups 1, 2, 3, & 4 sequentialized

COMP 512, Rice University

=z .

All copies are now sequential

16

Translation Out of SSA Form

To recap, the algorithm is

Insert parallel copies to convert SSA to conventional SSA

¢ In CSSA, we can just drop the subscripts on SSA name

¢ Introduces a new set of names

Rename out of CSSA by replacing introduced names

Eliminate @ functions by inserting parallel copies in prior blocks
¢ May look redundant, but is necessary to handle the swap problem

Sequentialize parallel copies (may introduce new temporaries)

Aggressive copy coalescing to remove copies e.g., Chaitin-Briggs
. . unrestricted coalescing or
¢ Can coalesce copies before renaming or after we are done Budimlic et. al. PLDI 2002.

¢ Coalescing parallel copies requires some care

¢ May be easier, and clearer, to coalesce after sequentialization

COMP 512, Rice University 17

Using SSA Form in a Compiler

Need to translate source or IR into SSA form
* Algorithm from earlier lecture [110,50]

* IR needs to represent both @-functions and ®-argument to CFG edge
correspondance

Working with SSA Form

* The SSA name space makes some kinds of transformations harder
¢ Code motion past @-functions is problematic

* SSA provides a useful sparse representation that can lead to efficiency
¢ Wegman-Zadeck SCP and SCCP as examples [347]

Need to translate out of SSA form
* Algorithms from this lecture

* LLVM comes out of SSA in code generator (selection, allocation, scheduling)

COMP 512, Spring 2015 18

