} X Comp 512
% Rice University

Spring 2015

Operator Strength Reduction

— Generalities and the Cocke-Kennedy Algorithm —

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Operator Strength Reduction

Consider the following simple loop

loadl 0 = ym
loadl 1 =,
loadl 100 =y

sum=0

. loop: subl r,1 =,
doi=1to 100 | ‘ multl r,4 =r, b address
sum = sum + a(i) of a(i)

addl r,,@a =1,

end do
load =T,
add r4'rsum = r-sum
addl r,1 =T
cmp_LT r,rip0 =15
cbr r. — loop, exit

exit: ...

What’s wrong with this picture?
* Takes 3 operations to compute the address of a(i)

* On some machines, integer multiply is slow

COMP 512, Spring 2015 2

Operator Strength Reduction

Consider the value sequences taken on by the various registers

loadl 0 = ym

loadl 1 =, Feum = L

loadl 100 =1y rr={1,273,4,..}
loop: subl r,1 =r, 00 =1100 }

multl r,4 =, r,={0,1,2,3,..}

addl r, @a =, r,={0,4,8,12, ..}

load ry =T, r; ={ @a, @a+4, @a+8, @a+12, ... }

add r-4'rsum = r-sum r-4 =1

addl r,1 =,

cmp_LT r,rig0 =1rs re=1

cbr r. — loop,exit

exit: ...

r, ry, ry, and r; take on predictable sequences of values
* r,andr, are intermediate values, while r; and r, play important roles

* We can compute them cheaply & directly

COMP 512, Spring 2015 3

Operator Strength Reduction

Computing r; directly yields the following code

load| 0 = fum
load 1 — i address of a(i)
load| 100 =y,
load| @a =y
loop: load ry =T,
addl r;, 4 =, r; = { @a, @a+4, @a+8, @a+12, ... }
add r4'rsum = rsum
addl r,1 =,
cmp_LT r,rig0 =15
cbr rc — |oop,exit
exit: ... Still, we can do better ...

* From 8 operations in the loop to 6 operations

* No expensive multiply, just cheap adds

COMP 512, Spring 2015 * 4

Operator Strength Reduction

Shifting the loop’s exit test from r; to r; yields

loop:

exit: ...

* Address computation went from -,+,* to +
* Exit test went from +, cmp to cmp

* Loop body went from 8 operations to 5 operations
¢ Got rid of that expensive multiply, too

load|
load|
addl
load
addl
add

0
@a
r;,396
rs
ry;, 4

r.4' rsum

cmp_LT rg,r,

cbr

Iy

COMP 512, Spring 2015

= rsum

= r3

= rIim

= r4

e r3

= rsum

= r5

— loop, exit

ry ={ @a, @a+4, @a+8, @a+12, ... }

Pretty good speedup on
most machines

37.5% of ops in the loop,
even if mult takes one
cycle

Not redundant or invariant

Operator Strength Reduction

And, as an aside, unrolling also helps

load|
loadl
addl
loop: load
addl
add
load
addl
add

0

@a
r;,396
rs
ry;, 4
rgf
!
ry;, 4
rgf

sum

sum

cmp_LT rg,r,

cbr
exit: ...

Iy

= rsum
= r3
= rIim
= r4
= rsum
= r4

]

= rsum
e r5
— loop, exit

]

I

Copy # 1 of loop body

Copy # 2 of loop body

Shared test & branch

Now, 8 operations for 2 iterations, or 50% of the operations and a smaller
percentage of the cycles (due to elimination of multiplies)

COMP 512, Spring 2015

Opportunities

Operator Strength Reduction

do60j=1,n2 do60j=1,n2
do50i=1tonl nextra = mod(n1,4)
v(i) = y(i) + x(j) * m(i,j) if (nextra .ge. 1) then
50 continue do 49, nextra, 1
60 continue v(i) = y(i) + x(j) * m(i,j)
Critical loop nest from 49 continue

dmxpy in the Linpack library
do 50i = nextra+1, nl1, 4
y(i) =y(i) +x() * m(i,j)
+ x(j+1) * m(i,j+1)

* Transformed code has lots of
address arithmetic

* With wrong shape, it has 9 or + x(j+2) * m(i,j+2)
10 induction variables, each + x(j+3) * m(i,j+3)
needing a register 50 continue

* Another version of this loop has 60 continue

33 or more potential induction variables
One of several hand-optimized

versions of the loop

COMP 512, Spring 2015 7

Opportunities = \\
£\

Operator Strength Reduction

subroutine dmxpy (n1’ Y; n2’ ldm, X, m) The largest version of the hand-
double precision y(*), x(*), m(ldm,*) optimized loop in dmxpy.
jmin = j+16
do 60 j = jmin, n2, 16
do50i=1,n1
y(i) = (CCCCCCCCCCCCC Cy (i) -
+ X(j-15)*m(i,j-15)) + x(j-14)*m(i,j-14)) + x(j-13)*m(i,j-13))
+ X(j-12)*m(i,j-12)) + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10)) 33 distinct
+ X(j- 9)*m(i,j- 9)) + x(j- 8)*m(i,j- 8)) + x(j- 7)*m(i,j- 7)) | addresses
+ X(j- 6)"m(ij- 6)) + X(- 5)*'m(ij- 5)) + X(- 4)*'m(ij- 4)) &)
+ X(j- 3)"'m(i,j- 3)) + x(- 2)*m(i,j- 2)) + x(j- 1)*'m(i,j- 1))
+ X(j) *m(i,j) _
50 continue
60 continue

end

COMP 512, Spring 2015 8

Opportunities

Operator Strength Reduction

COMP 512, Spring 2015

A reference, such as VIJi], translates into an address expression

@V, + (i-low) * w

A loop with references to V[i], V[i+1], & V[i-1] generates

@V, + (i-low) * w Assumptions:
) V is declared V[low:high].
@V, + (i-(low-1)) * w Elements are w bytes wide.

Constants have been folded.

@V, + (i-(low+1) * w

OSR may create distinct induction variables for these expressions, or it may
create one common induction variable
¢ Matter of code shape in the expression

¢ Difference between 33 induction variables in the dmxpy loop and one or two

Situation gets more complex with multi-dimensional arrays

Operator Strength Reduction

Definition

Operator Strength Reduction is a transformation that replaces a strong
(expensive) operator with a weaker (cheaper) operator

Strong form

* Replace series of multiplies with adds
See, for example, Lefevre’s paper on

the class web site.
Weak form /
* Replace single multiply with shifts and/or adds

The Problem
* |ts easy to see the transformation
* |ts somewhat harder to automate the process

COMP 512, Spring 2015 10

Operator Strength Reduction

The Cocke-Kennedy Algorithm

To explain strength reduction, we will begin with the multi-pass Cocke-
Kennedy algorithm.

Assumptions

* Intermediate representation is low-level, ILoc-like code

* Have already built a control-flow graph (cFG)

* Have found either “natural loops” or “strongly connected regions” (SCRs)
* Have added a landing pad to each region

Definitions
* A region constant (RC) is a variable whose value is unchanged in the SCR

* Aninduction variable (IV) is a variable whose value changes in the SCR only
by operations that increment or decrement it by an RC or an IV.

J. Cocke and K. Kennedy, “An Algorithm for Reduction of Operator Strength,”
COMP 512, Spring 2015 Communications f the ACM 20(11), Nov. 1977, pages 850 — 856. 11

Operator Strength Reduction

The Cocke-Kennedy Algorithm

The Problem .. j—.
* Easy to apply transformation by hand *
* Difficult to automate the process X < ixj
Before
The Big Picture
* Find induction variables and their uses
* Introduce a new induction variable tailored to each use
¢ Requires both an initialization & appropriate updates

* Shift remaining uses from original induction variables to new ones

* Eliminate the original induction variables from the code

COMP 512, Spring 2015 12

Operator Strength Reduction

The Cocke-Kennedy Algorithm

The Problem t,-xj?l"'xj tig —ix]
* Easy to apply transformation by hand
* Difficult to automate the process X — t

The Big Picture

* Find induction variables and their uses

* Introduce a new induction variable tailored to each use
¢ Requires both an initialization & appropriate updates

* Shift remaining uses from original induction variables to new ones

* Eliminate the original induction variables from the code

COMP 512, Spring 2015 13

Operator Strength Reduction

The Cocke-Kennedy Algorithm

The Problem
* Easy to apply transformation by hand
* Difficult to automate the process

. . A large number of
The Algorithmic Plan passes over the IR

Find loops in the control-flow graph

Find region constants for those loops

Find induction variables

Find operations that are candidates to be reduced

Find all the values that affect the uses in candidate operations
Perform the actual replacement

Rewrite end-of-loop tests onto newly introduced induction variables

© N O U B wN R

Dead-code elimination

“Linear function

test replacement”
COMP 512, Spring 2015 14

Operator Strength Reduction

The Cocke-Kennedy Algorithm

Step 1:

Step 2:

Find loops in the CFG as SCRs
Apply Tarjan’s strongly-connected region finder to the CFG

See R.E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal of Computing, 1(2), 1972 pages 146 - 160

— This algorithm is also the basis for next lecture, on the Vick-Simpson OSR
algorithm, so you should read the paper if you haven’t already done so

Find region constants in the loops
Assume that we have performed loop-invariant code motion first.?
Any value that is used in the SCR and not defined in the SCRis in RC

For each SCR, build a set of names that are defined (DEF) and a set of
names that are used (USE). (linear pass over blocks in the SCR)

Then, RC is just (USE - DEF) or (USE N NOT(DEF))

L1f not, the test for region constant must also consider a variable that is assigned the same value along
different paths through the SCR. In practice, it is easier to perform something like LCM first. 15

An induction variable is only updated by an % E
. add, subtract, copy, or negation involving "X
Operator Strength Reduction

induction variables and region constants \
The Cocke-Kennedy Algorithm K

Step 3: Find Induction Variables
Assumes SCRs and RCs

IV<—0@

for each op o (t <=0, op 0,) in the SCR do
if op € { ADD, SUB, NEG, COPY}
IV<—IvU{t}

changed < true
while (changed)
changed < false

for each operation o where t € IV
ifo, ¢ (IVURC) oro, ¢ (IVURC)
remove tfrom IV Simple fixed-point algorithm

changed < true Applied to each SCR

COMP 512, Spring 2015 16

For exposition, a candidate is a

Operator Strength Reduction multiply than can be reduced.

The Cocke-Kennedy Algorithm

Step 4: Find operations that are candidates to be reduced
Assumes SCRs, IV, and RC

CANDIDATES <— @

for each op o (t <=0, op 02) do
if op is @ MuULTIPLY then
if (0, € IVand o, € RC) or (0, € RCand o, € IV) Applied to
then CANDIDATES <— CANDIDATES U {0} each SCR

CANDIDATES contains all multiplies that involve exactly one RC and one IV
To expand the algorithm to other reductions, expand the test for candidates

COMP 512, Spring 2015 17

Operator Strength Reduction

The Cocke-Kennedy Algorithm
Naming

* Create a new name for each unique candidate expression (hash them)

* Insert an initialization for each new name in the appropriate landing pad

* After each assignment to i € IV, insert an update to the affected new
names

Reducing a<—ixc

Assignment Operation to Insert
i k e We tested for these four
I tIXC thc ..

ops on admission to IV
i<-k tixce B thc
i <_-/ +k tixc < tjxc + thc
i ej - k tixc < tjxc B thc

To deal with all of these cases, we build, for i € IV, a set AFFECT(/) that
contains every j € IV U RC that can affect the value of i.

COMP 512, Spring 2015 18

Operator Strength Reduction

The Cocke-Kennedy Algorithm

Step 5: Computing AFFECT Sets
Assumes SCRs and IV are already available

foreachielv
AFFECT(/) < {i}

for each op o (t <=0, op 0,) where t eIV do
AFFECT(t) <— AFFECT(t) U {0,,0,}

changed < true
while (changed)
changed < false
foreachielv
NEW <= U _ aerecriiy v AFFECT(0)
if AFFECT(i) N NEW # @
then changed = true

AFFECT(i) < AFFECT(/) U NEW

e Transitive
closure

COMP 512, Spring 2015

Applied to
each SCR

19

Operator Strength Reduction

The Cocke-Kennedy Algorithm ~

Step 6: Replacement

Assumes all the sets from
steps 1 through 5

This step is the heart of
the transformation.

CLIST(y) is the set of
constant multipliers for y

Recall that each
CANDIDATE has the form

(t<—ixc i€V, ceRC)

COMP 512, Spring 2015

/* build up a set of multipliers for each variable */
for each x € IV U RC
CLIST(x) < @

for each op p € CANDIDATES (t <— ix ¢, i €1V, c € RC) do
for each y € AFFECT(t)
CLIST(y) < cLIST(y) U {c}

for each y € (Iv U RC) with CLIST(y) # @ do
for each c e CLIST(y) /* initialize reduced IV */
T(y,c) <= a new temporary name
insert “T(y,c) <= y x ¢”in landing pad

/* insert updates for each reduced IV */
for each op p (t <= 0, op 0,) with t € IV and CLIST(t) # @
for each c € CLIST(t)
insert after p “T(t,c) < T(o,,c) op T(0,,c)”

/* replace the-candidate operations */
for each operation p € CANDIDATES do Applied to
replace p with the operation t <— T(x,c) | eachScRr

Operator Strength Reduction

The Cocke-Kennedy Algorithm

Step 7: Linear function-test replacement

for each operation o in an SCR
if 0 is a conditional branch (iop k = label) with i€ IV & k € RC
then

select some c € CLIST(i) /* t;, . already exists, from Step 6 */

if neither t,, . or t_,, exist then
insert t_ , into the hash table of names
insertt., < cx k in the landing pad

replace the conditional branch with Applied to

opt., ., = label each SCR

tixc cxk

COMP 512, Spring 2015

21

Operator Strength Reduction

The Cocke-Kennedy Algorithm

Step 8: Dead Code Elimination
* This algorithm leaves behind a mess

4 Original induction variables and their updates are still in the code

¢ Shotgun approach to creating reduced induction variables leaves more behind

— Not all of the t, , are actually used

* For the result to be an improvement, it needs some clean up

* Apply a standard dead-code elimination technique
¢ DEAD followed by CLEAN will do the job

¢ Other algorithms work, too

COMP 512, Spring 2015 22

Operator Strength Reduction

The Cocke-Kennedy Algorithm

The Problem
* Easy to apply transformation by hand
* Difficult to automate the process

The Algorithmic Plan

Find loops in the control-flow graph Entire CFG

Find region constants for those loops # ops

Find induction variables # ops

Find operations that are candidates to be reduced #ops

Find all the values that affect the uses in candidate operations # values®
Perform the actual replacement # candidates
Rewrite end-of-loop tests onto newly introduced induction variables # ops

© N O U B wN R

Dead-code elimination

COMP 512, Spring 2015 23

Operator Strength Reduction

Next class
* Vick-Simpson OSR algorithm

¢ See K. Cooper, L.T. Simpson, and C. Vick, “Operator Strength Reduction,” ACM
Transactions on Programming Languages and Systems (TOPLAS) 23(5), Sept 2001,
pages 603-625.

* Operates over static single assignment form rather than the CFG and
individual ops

* Properties of SSA let us simplify the algorithm and reduce its costs

COMP 512, Spring 2015 24

