Comp 512
Rice University
Spring 2015

Operator Strength Reduction

— the Vick-Simpson algorithm —

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Operator Strength Reduction

The Algorithmic Plan
* Capitalize on the properties of SSA form

* Find SCCs in the SSA graph
¢ Each non-trivial SCC might be an IV

— Test the SCC as it is discovered, so we need a cheap test

— Discover RCs relative to the SCC with a cheap test

¢ Reduce operations on the fly
— Recognize candidates for reduction with a cheap test

— Use structural information (e.g., DOM) to place new computations
¢ Accumulate information for linear function test replacement
® Use results of prior transformations
¢ Assume constant propagation and code motion

¢ Use DOM information from SSA construction

COMP 512, Spring 2015 Cheap means O(1) if possible 2

Operator Strength Reduction Review from last lecture

Consider the following simple loop

loadl 0 = ym
loadl 1 =,
loadl 100 =y

sum=0

. loop: subl r,1 =,
doi=1to 100 | ‘ multl r,4 =r, b address
sum = sum + a(i) of a(i)

addl r,,@a =1,

end do
load =T,
add r4'rsum = rsum
addl r,1 =T
cmp_LT r,rip0 =15
cbr r. — loop, exit

exit: ...

What’s wrong with this picture?
* Takes 3 operations to compute the address of a(i)

* On some machines, integer multiply is slow This lecture works from the
same example as the lecture
on Cocke-Kennedy, so we will

COMP 512, Spring 2015 quickly review the example.

Operator Strength Reduction

Review from last lecture

Consider the value sequences taken on by the various registers

load| 0
load| 1
loadl 100
loop: subl r,1
multl r,4
addl r,,@a
load ry
add r,ro
addl r,1
cmp_LT r,rio0
cbr r.
exit: ...

= rsum

= T100

f— rl

= r2

= r4

= r-sum

— |loop, exit

rsum = J_
rr={1,234,..)
100 = {100}

r,={0,1,2,3,..}
r,={0,4,8,12,..}

r; ={ @a, @a+4, @a+8, @a+12, ... }

r, ry, ry, and r; take on predictable sequences of values

* r,andr, are intermediate values, while r; and r, play important roles

* We can compute them cheaply & directly

COMP 512, Spring 2015

Operator Strength Reduction Review from last lecture

Computing r; directly yields the following code

load| 0 = fum
load 1 — i address of a(i)
load| 100 =y,
load| @a =y
loop: load ry =T,
addl r;, 4 =, r; = { @a, @a+4, @a+8, @a+12, ... }
add r4'rsum = rsum
addl r,1 =,
cmp_LT r,rig0 =15
cbr rc — |oop,exit
exit: ... Still, we can do better ...

* From 8 operations in the loop to 6 operations

* No expensive multiply, just cheap adds

COMP 512, Spring 2015 * 5

Operator Strength Reduction

Shifting the loop’s exit test from r; to r; yields

loop:

exit: ...

* Address computation went from -,+,* to +
* Exit test went from +, cmp to cmp

* Loop body went from 8 operations to 5 operations
¢ Got rid of that expensive multiply, too

load|
load|
addl
load
addl
add

0
@a
r;,396
rs
ry;, 4

r.4' rsum

cmp_LT rg,r,

cbr

Iy

COMP 512, Spring 2015

= rsum

= r3

= rIim

= r4

e r3

= rsum

= r5

— loop, exit

Review from last lecture

ry ={ @a, @a+4, @a+8, @a+12, ... }

Pretty good speedup on
most machines

37.5% of ops in the loop,
even if mult takes one
cycle

Not redundant or invariant

Operator Strength Reduction

And, as an aside, unrolling also helps

load|
loadl
addl
loop: load
addl
add
load
addl
add

0

@a
r;,396
rs
ry;, 4
rgf
!
ry;, 4
rgf

sum

sum

cmp_LT rg,r,

cbr
exit: ...

Iy

= rsum
= r3
= rIim
= r4
= rsum
= r4

]

= rsum
e r5
— loop, exit

]

I

Copy # 1 of loop body

Copy # 2 of loop body

Shared test & branch

Now, 8 operations for 2 iterations, or 50% of the operations and a smaller
percentage of the cycles (due to elimination of multiplies)

COMP 512, Spring 2015

, S
Operator Strength Reduction New material! | \
R\

Also important for CK & ACK

Assumptions for the OSR Algorithm
* Low-level IR, such as ILOC, converted into SSA form

* Constant propagation and loop-invariant code motion have been applied

Terminology

* A strongly connected component (scc) of a directed graph is a region where
a path exists from each node to every other node

* A region constant (Rc) of an sccis an scc-invariant value

* An induction variable (iv) of an scc is one whose value only changes in the
scCc when operations increment it by an RC or an Iv, or when it is the
destination of a copy from another Iv

* A candidate for reduction is an operation “x <=y * z” where
y,zEIVURCand eitheryEIVorzE v

Intuitively, we are interested in induction variables that are updated in a cyclic fashion. The self-dependence
creates the pattern of repetition from which the strong form of strength reduction derives its benefits.

The classic papers, e.g., Cocke-Kennedy, and Allen-Cocke-Kennedy, define Ivs this way. The OSR algorithm only
finds IVs that form a cycle in the SSA graph. The practical results are equivalent.

Operator Strength Reduction

Our example in semi-pruned SSA Form

0

load|
loadl
loadl
phi

phi

subl
multl
addl
load
add
addl
cmp_LT
cbr r.
exit: ...

loop:

Short-lived
temporary
values

COMP 512, Spring 2015

1

100
r.sO' r52
Mo Ti2

r,l

r,4
r,@a
rs
Fa:Fs1
r,1

Fi2:T100

= rsO
= I
= T100
= r51
= r,
=1,
=T,
= Iy
=T,
= rsZ
=T,
= I
— |oop, exit

?

Operator Strength Reduction

Fio o

2NN S, 2
()

»

Fiq Fsq

COMP 512, Spring 2015

SSA form as a graph
® EachIVis an SCC
® Not every SCCis an IV

® X & RCif xis a constant or its
definition is in a block that
dominates the entry of the SCC

® Compute DOM & RPO numbers for
the SSA graph

Using SSA as a graph simplifies OSR
® Find IVs with SCC finder
® Test operations in SCC
® Constant time test for RC
> Constant or test with DOM

Prior algorithms used multiple passes

over the IR, inner loop to outer loop..
10

Operator Strength Reduction

Finding sccs

® Use Tarjan’s algorithm

* Well-understood method
* Takes O(N+E) time

Useful property

* SCC popped only after all its
external operands have
been popped

* Reduce the SCCs as popped
¢ |scc| >1=ifitsan IV, markit
¢ |scc| =1 = trytoreduceit

® We only need to add one line

COMP 512, Spring 2015

DFS(n)
Nn.DFSnum <— nextDFSnum++
n.visited < true
n.low <= n.DFSnum
push(n)
for each o € { operands of n}
if o.visited = false then
DFS(o)
n.low <= min(n.low, o.low)
if o.DFSnum < n.DFSnum and
o € stack then
n.low <= min(n.low, 0.DFSnum)
if n.low = n.DFSnum then
scc<—{}
until x= ndo
X <= pop()
scc<—sccU {x}
Process(scc)

1

Operator Strength Reduction

What should Process(r) do?
* If ris one node, try to reduce it

* |f ris a collection of nodes
¢ Check toseeifitisaniv
¢ If so, reduce it & any ops that use it

¢ If not, try to reduce the opsinr

Process(r)
if r has only one member, n then

if n has the form x < IVXRC, x < RC X IV,
X < IV 2 RC, or X < RC + IV then

Replace(n,IV,RC)
else n.header <— NULL

else ClassifylV(r)
Let’s tackle the easier

problem first — ClassifylV()

COMP 512, Spring 2015 12

SRS

Operator Strength Reduction | \
e\
ClassifylV(r) ’
header <— first(r)
rind scc | [for eachnodener

headerby 4 if header—=RPOnum > n.block =RPOnum then Rcon(o, header)
CFG RPO # | header < n.block if 0.0p is loadl /* constant */
~for each noden €r then return true
if n.op is not one of { @, +, -, copy } then else f c;hbgscri::r:ii‘j:r
Climinate r is not an induction variable else return false

sccsasivs] €lse 4
for each o € { operands of n }

if o & r and not RCon(o,header) then

- r is not an induction variable

" if ris an induction variable then >> means “strictly dominates” |~
Mark Sl(\:/C.. for eachnodener
e n.header <— header

“else

~ foreachnodené&r
t::jeugzs_ if n has the form x < IVXRC, x < RC X IV, x < IV + RC, or X < RC + IV then

Replace(n,IV,RC)
else n.header <— NuLL 13

sgarch and add deal &\ gt‘

with the hash table

Operator Strength Reduction k\

/* replace n with a COPY */
Replace(n,iv,rc)
result <— Reduce(n.op,iv,rc)
Replace n with copy from result
n.header <— iv.header

Replace rewrites op n with a COPY
operation from its reduced
counterpart. It calls Reduce to create
that counterpart, if necessary.

/* create new IV & return its name */

Reduce(op,iv,rc) , | Returns name of op
result <— search(op,iv,rc) : :
: _ applied to ivand rc
if result is not found then -

result < a new name

add(op,iv,rc,result)
newDef <— copyDef(iv,result) e

Clones the definition

for each operand o of newDef
if o.header = iv.header then
replace o with Reduce(op,0,rc)
else if (opcode = x or newDef.op = @) then
replace o with Apply(op,0,rc) +—— | Args defined outside SCC = initial

return result value or the increment
» 14

Operator Strength Reduction

/* replace n with a COPY */
Replace(n,iv,rc)
result <— Reduce(n.op,iv,rc)
Replace n with copy from result
n.header <— iv.header

/* create new IV & return its name */
Reduce(op,iv,rc)
result <— search(op,iv,rc)
if result is not found then
result < a new name
add(op,iv,rc,result)
newDef <— copyDef(iv,result)
for each operand o of newDef

if o.header = iv.header then
replace o with Reduce(op,0,rc)

The Big Picture

® Reduce() creates a new IV, with
appropriate range & increment

® |n the example, r; would range from
@a to @a+396, with an increment of 4

® Replace takes a candidate operation

and rewrites it with a copy from the
new Iv. It uses Reduce to create the .

Net effect: replace (i-1)*4+@a with a
copyY from some new IV that runs from
@a to @a+396 & increments by 4 on
each iteration

else if (opcode = x or newDef.op = @) then

replace o with Apply(op,o,rc)

return result

15

Operator Strength Reduction

/* insert a new operation */
Apply(op,argl,arg2)
result <— search(op,argl,arg2)
if result is not found then

if (argl.header # NnuLL /* €IV */
& RCon(arg2,argl.header) then
result <— Reduce(op,argl,arg2)

else if arg2.header # NuLL /* €IV */
& RCon(argl,arg2.header) then
result <— Reduce(op,arg2,argl)

else
result <= a new name
add(op,argl,arg2,result)
Choose a location to insert op
Try constant folding
Create newOp at the location
newOp.header <— NULL

return result

The Big Picture

® Apply takes an op & 2 args and
inserts the corresponding
operation into the code

(if it isn’t already there).

® Uses>>onargl & arg2 to find a
location

— does not use landing pad
— may insert farther away

® Tries to reduce the operation

® Tries to simplify the operation

16

COMP 512, Spring 2015

And, most of this is dead ...

The transformation to perform this simplification is called linear
Exam ple function test replacement.

This would be dead, except for the comparison
& branch. Need to reformulate them onr_g

COMP 512, Spring 2015 18

Linear Function Test Replacement

Each time a new, reduced IV is created

* Add an LFTR edge from old IV to new IV

* Label edge with the opcode and RC of the reduction

* Walk the LFTR edges to accumulate the transformation

* Use transformation to rewrite the test

COMP 512, Spring 2015

19

COMP 512, Spring 2015

Follow the edges to find the right IV and
to accumulate the transformation

(100-1) x4 +@a =396 + @a

20

Example

(CoPY

rs

(4)
396+@a
(Ccbr>

Now, this code

is dead.

Not dead!

COMP 512, Spring 2015

raG rSO

M1
@ loadl o = rym
loadl @a =r,
addl r3,396 =,
load =r,
addl 3,4 =r,

r add s = Fsum
4

CMP_LT r3,r,,, =I5

396+@3 cbr s — loop, exit
exit: ...

sum

And, we’re done ..

COMP 512, Spring 2015 22

Complexity

What does OSR + LFTR cost?

* LFTR takes time proportional to the length of the LFTR edge chain that it
follows

* What about OSR?
¢ Each cycle it creates clones every node in the cycle
¢ How bad can that get?

COMP 512, Spring 2015

23

Worst-case Example

i<—0; ;< 0, t,<0;..;t, <0

n

i<=0 while(P,)
while(Py) if (P,) then
if (P,) then t,<—t+tcpt, <=t +c,, .t <t +C,
i—i+1 =i+l

k<—ixc, ‘ k<1,
. if (P,) then
if (P,) then bt +2xcpt, <t +2XxCy

I i+2 t et +2xC i< i+2
k<—ixc, k—t,
if (P,) then if (P,) then
: t,<—t,+nxc,;i<-i+n
k<—ixc, kn n n
end G
end

This code requires a quadratic number of updates

COMP 512, Spring 2015 24

Complexity

What does OSR + LFTR cost?

* LFTR takes time proportional to the length of the LFTR edge chain that it
follows

* What about OSR?
¢ Each cycle it creates clones every node in the cycle
¢ How bad can that get?

¢ In the worst case, OSR must insert a number of updates that is quadratic in the
size of the original code

¢ Any strength reduction algorithm must insert the same set of updates, if it is to
reduce the computation
— |If it doesn’t, it misses the opportunity

¢ Complexity is part of the problem, not part of the solution

* OSR s as fast (asymptotically) as others

¢ Constant factor faster than Cocke-Kennedy or Allen-Cocke-Kennedy

COMP 512, Spring 2015 25

