

COMP 512
Rice University
Spring 2015

# **Operator Strength Reduction**

— the Vick-Simpson algorithm —

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes, provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

#### The Algorithmic Plan

- Capitalize on the properties of SSA form
- Find **SCC**s in the **SSA** graph
  - ◆ Each non-trivial **SCC** might be an **IV** 
    - → Test the **scc** as it is discovered, so we need a cheap test
    - → Discover **RC**s relative to the **SCC** with a cheap test
  - ♦ Reduce operations on the fly
    - → Recognize candidates for reduction with a cheap test
    - → Use structural information (e.g., **DOM**) to place new computations
  - ◆ Accumulate information for linear function test replacement
- Use results of prior transformations
  - ◆ Assume constant propagation and code motion
  - ♦ Use **DOM** information from **SSA** construction

#### **Review from last lecture**



#### **Consider the following simple loop**



#### What's wrong with this picture?

- Takes 3 operations to compute the address of a(i)
- On some machines, integer multiply is slow

This lecture works from the same example as the lecture on Cocke-Kennedy, so we will quickly review the example.

COMP 512, Spring 2015

# **Operator Strength Reduction**Review from last lecture



#### Consider the value sequences taken on by the various registers

```
loadI
                            \Rightarrow r_{sum}
        loadl 1 \Rightarrow r_i
                                                     r_{sum} = \bot
        loadl 100 \Rightarrow r_{100}
                                                     \mathbf{r}_{i} = \{ 1, 2, 3, 4, ... \}
loop: subl r_{i}, 1 \Rightarrow r_{1}
                                   r_{100} = \{ 100 \}
        multi r_1,4 \Rightarrow r_2 r_1 = \{0, 1, 2, 3, ...\}
        addl r_2,@a \Rightarrow r_3 r_2 = \{0, 4, 8, 12, ...\}
        load r_3 \Rightarrow r_4 \qquad r_3 = \{ @a, @a+4, @a+8, @a+12, ... \}
        add r_4, r_{sum} \Rightarrow r_{sum}
                                                    r_{1} = \bot
        addl r_i, 1 \Rightarrow r_i
        cmp_LT r_i, r_{100} \Rightarrow r_5
                                                   r_{5} = \bot
        cbr r_5 \rightarrow loop, exit
exit: ...
```

## $r_i$ , $r_1$ , $r_2$ , and $r_3$ take on predictable sequences of values

- $r_1$  and  $r_2$  are intermediate values, while  $r_3$  and  $r_i$  play important roles
- We can compute them cheaply & directly

# Operator Strength Reduction Review from last lecture



#### Computing r<sub>3</sub> directly yields the following code

```
loadI
                              \Rightarrow r_{sum}
         loadI 1
                              \Rightarrow r_i
                                                             address of a(i)
         loadI 100 \Rightarrow r_{100}
         loadl @a \Rightarrow r<sub>3</sub>
        load r_3 \Rightarrow r_4
loop:
         addl r_3, 4 \Rightarrow r_3
                                                         r_3 = \{ @a, @a+4, @a+8, @a+12, ... \}
         add r_4, r_{sum} \Rightarrow r_{sum}
         addl r_i, 1 \Rightarrow r_i
         cmp_LT r_i, r_{100} \Rightarrow r_5
         cbr r_5 \rightarrow loop, exit
                                                         Still, we can do better ...
exit: ...
```

- From 8 operations in the loop to 6 operations
- No expensive multiply, just cheap adds

# **Operator Strength Reduction**Review from last lecture



### Shifting the loop's exit test from $r_i$ to $r_3$ yields

```
loadI
                 0 \Rightarrow r_{sum}
        loadI @a
        addl r_3,396
                            \Rightarrow r_{lim}
        load r_3 \Rightarrow r_4
loop:
                                                       r_3 = \{ @a, @a+4, @a+8, @a+12, ... \}
        addl r_3, 4 \Rightarrow r_3
        add
               r_4, r_{sum} \Rightarrow r_{sum}
        cmp_LT r_3,r_{lim} \Rightarrow r_5
               r_5 \rightarrow loop, exit
        cbr
exit: ...
```

- Address computation went from -,+,\* to +
- Exit test went from +, cmp to cmp
- Loop body went from 8 operations to 5 operations
  - ♦ Got rid of that expensive multiply, too

Pretty good speedup on most machines

37.5% of ops in the loop, even if mult takes one cycle

Not redundant or invariant



#### And, as an aside, unrolling also helps

Now, 8 operations for 2 iterations, or 50% of the operations and a smaller percentage of the cycles (due to elimination of multiplies)

#### **New material!**



Also important for CK & ACK

#### **Assumptions for the OSR Algorithm**

- Low-level IR, such as ILOC, converted into SSA form
- Constant propagation and loop-invariant code motion have been applied

#### **Terminology**

- A <u>strongly connected component</u> (**scc**) of a directed graph is a region where a path exists from each node to every other node
- A <u>region constant</u> (RC) of an SCC is an SCC-invariant value
- An <u>induction variable</u> (IV) of an **scc** is one whose value only changes in the **scc** when operations increment it by an **rc** or an IV, or when it is the destination of a **copy** from another IV
- A <u>candidate</u> for reduction is an operation " $x \leftarrow y * z$ " where  $y, z \in IV \cup RC$  and either  $y \in IV$  or  $z \in IV$

Intuitively, we are interested in induction variables that are updated in a cyclic fashion. The self-dependence creates the pattern of repetition from which the *strong form* of strength reduction derives its benefits.

The classic papers, e.g., Cocke-Kennedy, and Allen-Cocke-Kennedy, define IVs this way. The OSR algorithm only finds IVs that form a cycle in the SSA graph. The practical results are equivalent.



#### Our example in semi-pruned SSA Form



#### SSA Form as a Graph







#### SSA form as a graph

- Each IV is an SCC
- Not every SCC is an IV
- x ∈ RC if x is a constant or its definition is in a block that dominates the entry of the SCC
- Compute DOM & RPO numbers for the SSA graph

#### Using SSA as a graph simplifies OSR

- Find IVs with SCC finder
- Test operations in **SCC**
- Constant time test for RC
  - > Constant or test with **DOM**

Prior algorithms used multiple passes over the IR, inner loop to outer loop..

#### **Finding sccs**

- Use Tarjan's algorithm
- Well-understood method
- Takes **O**(*N*+*E* ) time

#### **Useful property**

- SCC popped only after all its external operands have been popped
- Reduce the SCCs as popped
  - ♦  $|SCC| > 1 \Rightarrow \text{if its an IV, mark it}$
  - ♦  $|SCC| = 1 \Rightarrow \text{try to reduce it}$
- We only need to add one line

```
DFS(n)
   n.DFSnum ← nextDFSnum++
   n.visited \leftarrow true
   n.low \leftarrow n.DFSnum
   push(n)
   for each o \in \{ \text{ operands of } n \}
      if o.visited = false then
         DFS(o)
         n.low \leftarrow min(n.low, o.low)
     if o.DFSnum < n.DFSnum and
         o \in stack then
         n.low \leftarrow min(n.low, o.DFSnum)
   if n.low = n.DFSnum then
     SCC \leftarrow \{ \}
      until x = n do
        x \leftarrow pop()
         scc \leftarrow scc \cup \{x\}
        Process(scc)
```

# 益益

#### What should Process(r) do?

- If *r* is one node, try to reduce it
- If r is a collection of nodes
  - ♦ Check to see if it is an IV
  - ♦ If so, reduce it & any ops that use it
  - ♦ If not, try to reduce the ops in *r*

```
Process(r)
if r has only one member, n then

if n has the form x \leftarrow IV \times RC, x \leftarrow RC \times IV,
x \leftarrow IV \pm RC, or x \leftarrow RC + IV then
Replace(n,IV,RC)
else n.header \leftarrow NULL
else ClassifyIV(r)
```

Let's tackle the easier problem first – ClassifyIV()

```
ClassifyIV(r)
               header \leftarrow first(r)
             for each node n \in r
Find SCC
                 if header→RPOnum > n.block →RPOnum then
header by •
                                                                                 Rcon(o,header)
CFG RPO#
                    header ← n.block
                                                                                    if o.op is load! /* constant */
                                                                                      then return true
              for each node n \in r
                                                                                      else if o.block >> header
                 if n.op is not one of \{\emptyset, +, -, \mathbf{copy}\} then
                                                                                            then return true
                    r is not an induction variable
                                                                                            else return false
 Eliminate
                 else
SCCs as IVs
                    for each o \in \{ \text{ operands of n } \}
                       if o ∉ r and not RCon(o,header) then
                          r is not an induction variable
                                                                         >> means "strictly dominates"
             if r is an induction variable then
 Mark SCC
                 for each node n \in r
  as an IV
                    n.header ← header
              else
                 for each node n \in r
  Reduce
                    if n has the form x \leftarrow IV \times RC, x \leftarrow RC \times IV, x \leftarrow IV \pm RC, or x \leftarrow RC + IV then
 these ops
                       Replace(n,IV,RC)
                    else n.header ← NULL
                                                                                                              L3
```

**search** and **add** deal with the hash table



```
/* replace n with a COPY */
                                                      Replace rewrites op n with a COPY
Replace(n,iv,rc)
                                                      operation from its reduced
  result \leftarrow Reduce(n.op,iv,rc)
                                                      counterpart. It calls Reduce to create
  Replace n with copy from result
                                                      that counterpart, if necessary.
  n.header ← iv.header
/* create new IV & return its name */
Reduce(op,iv,rc)
                                         Returns name of op
  result ← search(op,iv,rc)
                                         applied to iv and rc
  if result is not found then
     result ← a new name
     add(op,iv,rc,result)
                                             Clones the definition
     newDef ← copyDef(iv,result)
     for each operand o of newDef
       if o.header = iv.header then
          replace o with Reduce(op,o,rc)
       else if (opcode = x or newDef.op = \emptyset) then
          replace o with Apply(op,o,rc)
                                                   Args defined outside SCC \Rightarrow initial
                                                    value or the increment
  return result
```



```
/* replace n with a COPY */
Replace(n,iv,rc)
  result ← Reduce(n.op,iv,rc)
  Replace n with copy from result
  n.header ← iv.header
/* create new IV & return its name */
Reduce(op,iv,rc)
  result ← search(op,iv,rc)
  if result is not found then
     result ← a new name
     add(op,iv,rc,result)
     newDef \leftarrow copyDef(iv,result)
     for each operand o of newDef
       if o.header = iv.header then
          replace o with Reduce(op,o,rc)
       else if (opcode = x or newDef.op = \emptyset) then
          replace o with Apply(op,o,rc)
  return result
```

#### The Big Picture

- Reduce() creates a new IV, with appropriate range & increment
- In the example, r<sub>3</sub> would range from @a to @a+396, with an increment of 4
- Replace takes a candidate operation and rewrites it with a copy from the new IV. It uses Reduce to create the IV.

Net effect: replace (i-1)\*4+@a with a copy from some new IV that runs from @a to @a+396 & increments by 4 on each iteration



```
/* insert a new operation */
Apply(op,arg1,arg2)
  result \leftarrow search(op,arg1,arg2)
  if result is not found then
     if (arg1.header \neq NULL /* \in IV */
        & RCon(arg2,arg1.header) then
        result \leftarrow Reduce(op,arg1,arg2)
     else if arg2.header \neq NULL /* \in \mathbb{N}^*/
        & RCon(arg1,arg2.header) then
        result \leftarrow Reduce(op,arg2,arg1)
     else
        result ← a new name
        add(op,arg1,arg2,result)
        Choose a location to insert op
        Try constant folding
        Create newOp at the location
        newOp.header ← NULL
  return result
```

#### **The Big Picture**

- Apply takes an op & 2 args and inserts the corresponding operation into the code (if it isn't already there).
- Uses >> on arg1 & arg2 to find a location
  - does not use landing pad
  - may insert farther away
- Tries to reduce the operation
- Tries to simplify the operation





And, most of this is dead ...

cbr

 $r_5$ 

The transformation to perform this simplification is called *linear* function test replacement.







This would be dead, except for the comparison & branch. Need to reformulate them on  $r_{a8}$ 

# **Linear Function Test Replacement**



#### Each time a new, reduced IV is created

- Add an LFTR edge from old IV to new IV
- Label edge with the opcode and RC of the reduction
- Walk the **LFTR** edges to accumulate the transformation
- Use transformation to rewrite the test





Follow the edges to find the right IV and to accumulate the transformation

 $(100 - 1) \times 4 + @a = 396 + @a$ 

COMP 512, Spring 2015

cbr







And, we're done ..

# **Complexity**



#### What does OSR + LFTR cost?

- LFTR takes time proportional to the length of the LFTR edge chain that it follows
- What about OSR?
  - ♦ Each cycle it creates clones every node in the cycle
  - ♦ How bad can that get?

## **Worst-case Example**



```
i \leftarrow 0

while(P_0)

if (P_1) then

i \leftarrow i + 1

k \leftarrow i \times c_1

if (P_2) then

i \leftarrow i + 2

k \leftarrow i \times c_2

...

if (P_n) then

i \leftarrow i + n

k \leftarrow i \times c_n

end
```



```
i \leftarrow 0; t_1 \leftarrow 0; t_2 \leftarrow 0; ...; t_n \leftarrow 0
while(P<sub>0</sub>)
    if (P₁) then
      t_1 \leftarrow t_1 + c_1; t_2 \leftarrow t_2 + c_2; ...; t_n \leftarrow t_n + c_n
       i ← i + 1
       k \leftarrow t_{1:}
    if (P<sub>2</sub>) then
      t_1 \leftarrow t_1 + 2x c_1; t_2 \leftarrow t_2 + 2 x c_2; ...;
       t_n \leftarrow t_n + 2 \times c_n; i \leftarrow i + 2
        k \leftarrow t_2
    if (P<sub>n</sub>) then
      t_1 \leftarrow t_1 + n \times c_1; t_2 \leftarrow t_2 + n \times c_2; ...;
       t_n \leftarrow t_n + n \times c_n; i \leftarrow i + n
        k \leftarrow t_n
     end
```

#### This code requires a quadratic number of updates

## **Complexity**



#### What does OSR + LFTR cost?

- LFTR takes time proportional to the length of the LFTR edge chain that it follows
- What about osr?
  - ♦ Each cycle it creates clones every node in the cycle
  - ♦ How bad can that get?
  - ◆ In the worst case, **OSR** must insert a number of updates that is quadratic in the size of the original code
  - ◆ Any strength reduction algorithm must insert the same set of updates, if it is to reduce the computation
    - → If it doesn't, it misses the opportunity
  - ◆ Complexity is **part of the problem**, not part of the solution
- OSR is as fast (asymptotically) as others
  - ◆ Constant factor faster than Cocke-Kennedy or Allen-Cocke-Kennedy