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One Big Question

One of the critical design decisions in the lab is choice of optimizations

* Intent was for you to get started early and experiment

¢
¢

Selection driven by problem areas in the benchmark codes ...

Too late for that idea ...

* We have seen several transformations that might be relevant

¢
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Value Numbering (LVN, SVN, DVNT)

GCSE via AVAIL information

Constant propagation: Kildall’s algorithm, SCP, and SCCP

DEAD and CLEAN

Loop-invariant code motion: both naive algorithm from lecture 11 and LCM
Loop-unrolling

Strength reduction: both Cocke-Kennedy technique and OSR

Some opts cannot help on the lab, such as profile-guided code positioning or inline substitution.




Second Big Question

Some of those techniques require SSA form

* Transforming the code into SSA is a major undertaking
¢ Game theory: which way do you spend your time?
¢ Early in semester, | would have said “build SSA”

¢ Late in semester, | would say “build something that works”

What effects are important in the execution model?

* Reducing the overall operation count

¢ Redundancy elimination, constant propagation, useless and unreachable code
elimination, code motion

* Replacing expensive operations with less expensive ones
¢ Constant propagation and strength reduction (both weak form & strong form)
* Hiding latency

¢ Instruction scheduling
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Second Big Question

What would | do (at this point in the semester)?

* Reducing the overall operation count

¢ Redundancy elimination (LVN or SVN, DVNT really needs SSA form)
— Wouldn’t use GCSE with AVAIL because | want constant folding & algebraic simplification

¢ Constant propagation (I would count on LVN or SVN here)
— The easy to implement algorithms require SSA

¢ Useless and unreachable code elimination (DEAD and CLEAN)
¢ Code motion: | would try one of the simple algorithms
¢ Loop Unrolling: Easy to do, not sure how much it will help

* Replacing expensive operations with less expensive ones

¢ Strength reduction
— With SSA, | would do OSR

— Without SSA, | would try an ad-hoc approach to weak strength reduction, maybe
working it into LVN

* Hiding latency

¢ Instruction scheduling
The tradeoffs will depend on what code is in the benchmarks.
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