Comp 512
Rice University
Spring 2015

Algebraic Reassociation of Expressions

— With Application To Lazy Code Motion —

P. Briggs & K.D. Cooper, “Effective Partial Redundancy Elimination,” Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implementation, June 1994.

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.




The Problem

Compiler front end generates expressions in arbitrary order

* Some orders (or shapes) may cost less to evaluate

* Sometimes “better” is a local property

* Sometimes “better” is a non-local property

Compiler should reorder expressions to fit their context

Old Problem
* Recognized in 1961 by Floyd

® Scarborough & Kolsky did it
manually in Fortran H Enhanced

* PL.8 and HP compilers claimed
to solve it, without publishing

Need an efficient & effective way
to rearrange expressions

COMP 512, Rice University

RESTRICTIONS

In the last example, the symbolic coding gencrated is at
least comparable to the results of hand coding. Other ex-
amples, however, could disclose the limitations of the
algorithm. Its inability to apply the associative laws may:
result in unnecessary mode conversions and storage of
partial results in computing sums or products of quantities
of unlike modes. In justification, it may be said that float:
ing-point arithmetic is only approximately associative. Its
inability to recognize equivalent subexpressions containing
subscripted variables is a more serious drawback, and more
nearly intrinsie to the algorithm. Finaily, no provision has
been made to recognize integral constant exponents. Most
existing compilers waste time extravagantly by using

exp (2 X In (x)) to compute x T 2. It is possible to rewrite.

such expressions to be evaluated by a small number of
multiplications. For example, y T 9 may be written

(((y X y) X Xy X Uy Xy) X Xy X ()

Floyd, 1961

2




Opportunities

Common Subexpression Elimination & Constant Propagation

X+y+z X+y—t1 X+2z—t] y+2z—t1

t1+z—12 t1+y —12 t1+z — 12

+ /+\ + /+\ /+\
ANAY AT A

* Best shape for CP (probably) moves constants together

X

¢ Which operands are constant? x&y, x&z, or x &y Local issue
* Best shape for CSE is context dependent
¢ Which expressions appear elsewhere? x+y, x+z, or x+y? Non-local issue

Assume that x, y, & z are integers & that

COMP 512, Rice University addition is commutative. 3




Opportunities

Code Motion

* In a loop nest, want to move loop-invariant code into the outermost loop
where it does not vary

a«— .... b ...
A<« ... b .. t1%a+b
, doi...
doi ... - d ;
de - Ce— ..., A« ...
g(_ ‘ t, «— c+d
0j... t, — b+,
...atb ... ,
might ty—t+1,
... d+b+c ... b :
ecome doj...
... atctb+d... t
- 1...
..t3.
St

°* Ina+b+c, the operands may vary in different loops

* Need two or more operations in a subexpression to make distribution over
two levels of loops profitable

Briggs & Cooper proposed a ranking to address this problem

“Best” ranking might assign different ranks to “x” in different loop nests. (= SSA names?) 4




Opportunities

Operator Strength Reduction

subroutine dmxpy (n1’ Y; n2’ ldm, X, m) The largest version of the hand-
double precision y(*), x(*), m(ldm,*) optimized loop in dmxpy.
jmin = j+16

do 60 j = jmin, n2, 16

do50i=1,n1
y(i) = (CCCCCCCCCCCCCC (y(i))

+ x(j-15)*m(i,j-15)) + x(j-14)*m(i,j-14)) + x(j-13)*m(i,j-13))

+ x(j-12)*'m(i,j-12)) + x(j-11)*m(i,j-11)) + x(j-10)*m(i,j-10))

33 distinct
+ x(- 9" m(ij- 9)) + x(- 8)*m(i,j- 8)) + x(j- 7)*m(i,j- 7)) adaresses
+ X(j- 6)'m(i,j- 6)) + X(j- 5)*m(i,j- 5)) + x(j- 4)*m(i,j- 4)) e
+ x(J- 3)'m(i,j- 3)) + x(- 2)"'m(i,j- 2)) + x(j- 1)"m(i,j- 1))
+ x(j) *m(i,j)
50 continue
60 continue Done poorly, this loop can easily generate 33 or more distinct
induction variables.
end With some care (and reassocation of the address expressions),
the compiler might get that down to two or three.
COMP 512, Rice University 6




Opportunities

Operator Strength Reduction
* Areference, such as V[i], translates into an address expression
@V, + (i-low) * w
A loop with references to V[i], V[i+1], & V[i-1] generates
@V, + (i-low) * w
V is declared V[low:high].

@V, + (i-(low-1)) * w Elements are w bytes wide.
@V, + (i-(low+1) * w Constants have been folded.
o+ (i-

* OSR may create distinct induction variables for these expressions, or it may
create one common induction variable

¢ Matter of code shape in the expression

¢ Difference between 33 induction variables in the dmxpy loop and one or two

Situation gets more complex with multi-dimensional arrays

COMP 512, Rice University 7




Opportunities

Operator Strength Reduction

Consider references to A[i,j], B[i+1,j], and C[3*I,j-1]

¢ @A+ (i *lenA+j) *w :
- _ Assume A, B, & C may have different
¢ @B, + ((i+1) *len®+j) * w bounds but all have element width w.

¢ @C,+((3*%) *len,A+j) * w Row major order.

The diversity of address expressions may increase likelihood of generating
too many induction variables in OSR

Want to canonicalize their shape in a way that minimizes the number of
induction variables.

Problem has been known for a long time. See, for example, Markstein,
Markstein & Zadeck.

P. Markstein, V. Markstein, & F.K. Zadeck, “Strength Reduction,” Chapter 9 in
Optimization in Compilers (F.E. Allen, B.K. Rosen, & F.K. Zadeck, editors). The

COMP 512, Rice University book was not published, but the draft chapter bears a 1992 ACM Copyright.




Challenges

Expressions are small (in real code)

* In IR from human-written code, many expressions are small

¢ Frequent assignment to variables breaks up computation

— May be cognitive reasons for this style of code

¢ More operations and operands means more opportunity for reassociation

* May want to transform code to build larger expressions

Complexity grows with number of operands

* Pairwise commutativity is easy to handle (think LVN)
* With 5, 6, ... operands, the number of orders is large

* Suggests a “rank & sort” methodology (Briggs)

¢ Need to derive a rank scheme that achieves desired result

Any algorithmic approach to reassociation must cope with these challenges

COMP 512, Rice University




The Running Example

FUNCTION foo(y, z)
s =0
X =y +t z
DO i = x, 100

s=1+8s8 +x

ENDDO
RETURN s

END foo

Fortran 90 Source Code

Rice University, COMP 512

(from [BC 94])

enter(ry,r,)
re <0

Ty =Ty +7.
T < Ty

if r; > 100 branch

|

ri<re+1 <
Ts < T1+ Ty
ri<—ri+1

if r; < 100 branch

N

Y

Intermediate Code

~ return 7y

10




Briggs-Cooper Approach

To improve results out of LCM

1. Reassociation
¢ Discover facts about global code shape
¢ Reorder subexpressions based on that knowledge

2. Renaming
¢ Use redundancy elimination to find equivalences

¢ Rename virtual registers to reflect equivalences, and to conform to the code
shape constraints for LCM

¢ Encode value equality into the name space

3. LCM
¢ Run LCM unchanged on the result
¢ Performs code placement, partial redundancy elimination
¢ Run it anywhere, anytime, on any code

This lecture focuses on reassociation & renaming

COMP 512, Rice University 11




Reassociation

Simple Idea
* Use algebraic properties to rearrange expressions

* Hard part is to choose one shape quickly

The Approach
1. Compute a rank for each expression
2. Propagate expressions forward to their uses

3. Reorder by sorting operands into rank order

The algorithm needs a guiding principle

® Order subscripts to improve code motion & constant propagation

COMP 512, Rice University 12




1. Compute Ranks

The Intuitions

® Each expression & subexpression assigned a rank
® Loop-invariant’s rank < loop-variant’s rank

® Deeper nesting = higher rank

® |nvariantin 2 loops < invariant in 1 loop

All constants assigned the same rank

Constants should sort together /+\
/+\ Z inner loop

+ .
/ Y middle loop
I

/\ X outer loop
¢, &

constants 15t

COMP 512, Rice University 13




1. Compute Ranks

The Algorithm
1. Build pruned SSA form & fold copies into ¢p-functions

2. Traverse CFG in reverse postorder (RPO)
a. Assign each block a rank number as visited
b. Each expression in block is ranked
i. xisconstant = rank(x)is O
ii. result of ¢-function has block’s RPO number

iii. x<op>y has rank max(rank(x),rank(y))

This numbering produces the “right” intuitive properties

Recall that pruned SSA form only inserts phi-functions
that are LIVE — that is, whose results are actually used.

COMP 512, Rice University 14




enter(rg, 1)

ry 0
rg<—rg+nrt

if r3 > 100 branch

|

ri < o(r3,138)

rs < @(ra, 7)

ré < rs + 1

T 16+ 13

T’§ —ryg+1

if r¢ < 100 branch

N

Y

ry < o(r7,73)
return 7yg

Pruned SSA Form, With Computed Ranks

Example

The example is shown in
pruned SSA form

* Use @ functions to
compute ranks

* Name space of SSA
form is important

Rank computation:

* @s rank & parameter
rank is RPO number of
its block

®* Constant’srankis O

* Rank(xopy)is
max(rank(x),rank(y))

15




2. Propagate Expressions Forward to Their Uses

The Intuition
® Copy expressions forward to their uses

® Build up large expression trees from small ones

_ . . ingl
The Implementation Split them here, not during ranking

* Split critical edges to create appropriate predecessors
* Replace ¢-functions with copies in predecessor blocks’

* Trace back from copy to build expression tree

Notes

* Forward propagation does not improve the code

* Addresses a subtle limitation in PRE and LCM (expr live across > 1 block)

* Eliminates some partially-dead expressions

COMP 512, Rice University ¥ Based on Briggs et al.’s algorithm for out-of-ssA translation [50]. | 16




enter(rg, 1)
reo < 0
r3<— 1o+ 71

if r3 > 100 branch

|

Ty < T3
Ts < T'9

__

Example

Ty <— T8 |« \
Ts <— T7

re < 15+ 1

T7 <= Tg+ T3

re <— 14+ 1

if rg < 100 branch

|

Tg < T7

L

I PRE/LCM operate on the
code in conventional (non-
SSA) form

* Split critical edges

* Use any out-of-SSA
translation technique

* Chain of copies
preserves name space
for forward propagation

Tg < 19

|

Translate Out of SSA Form

- return rg

17




enter(rg, r1)
R Example
if r3 > 100 branch ™~
| Replace uses with the
roy < 0 re e 14147 + 75 — defining expressions
r3 &= To T rs <1yt * Move immediate values
Ty < T3 Ty < T8
5 <= T2 s <— T7 ® Builds up larger

Crg eyt 1 ) . Removgs partially dead
if r¢ < 100 branch expressions

| * Technical issue with PRE
— expr live across >1 block

k | expressions

re4<1+rg+ry+r;s ro < 0
Tg < T7 Tg < T9

|
L ~ return g

After Forward Propagation 18




3. Reorder Operands

The Intuition
* Rank shows how far LCM can move an expression
* Sort subexpressions into ascending rank order

* Allows LCM to move subexpression each as far as possible

The Implementation
®* Rewrite x-y+zasx+(-y)+z [Frailey 1970]
* Sort operands of associative ops by rank

* Distribute operations where both legal & profitable

Distribution Room for more work on this issue

* Sometimes pays off, sometimes does not

* We explored one strategy: low rank x over high-rank +

COMP 512, Rice University

19




enter(rg, r1)
r3 <— 1o+ 11
if r3 > 100 branch

7“2%0
T3 4<—1To+ 1]
Ty < T3
Ts < 79

L

After Reordering

re < 7o+ 1

Ty < Toq + 71
r7 < Tp+ 715
7“8%7“44—1
Ty <— T3
Ts <— T'7

l

s %7”44—1
if r¢ < 100 branch

l

re <19+ 1
Tqg$— T+ 171
T7 <= Tq+ 75
Tg < T7

N

_

ro < 0
Tg < T9

|

- return rq

Example

Rewrite the code

Rank expressions

Sort operands of
associative operations
by their rank

Convert back to binary
operators

In example, r, was already
in sorted order.

Name = Rank | Name  Rank
o 1 rs 2
r 1 re 2
r, 0 ry 2
rs 1 rg 2
ry 2 o 3




Making It Work with Lazy Code Motion

What have we done to the code, so far?

* Rewritten every expression based on global ranks
¢ and local concerns of constant propagation ...

* Tailored order of evaluation for LCM

* Broken the name space that LCM needs

4 so, we cannot possibly run LCM

Undoing the damage
* Must systematically rename values to create LCM name space
* Can improve on the original name space, if we try

¢ Choose names in a way that encodes values

* Need a global renaming phase

COMP 512, Rice University

21




Renaming

The intuition

* Use Alpern et al.’s partitioning method

* Rename every value to expose congruences found by Awz

The implementation
* X, y € same congruence class = use same name

] Reconstruct the 4
* Use hash table to regenerate consistent names magic naming rules

* Reserve variable names & insert copies

Notes
* Clever implementation might eliminate some stores

* Variables become obvious from conflicting definitions

Any renaming scheme that builds the right name space will work.
We will see AWZ in a couple of lectures. 22




enter(rg, r1)
r3<— 10+ 11
if r3 > 100 branch

7“2%0
r3 <19+ 1]
Ty < T3
Ts < T9

N

After Renaming

re < 1o+ 1
T < T+ T
rg < T7+ Ty
rg <— 1y + 1
T4 < T9
Ts < T8

l

rg<— 14+ 1
if r9 < 100 branch

l

re < 1o+ 1
T7 <= T+ 11
rs <= 17+ Ty
10 < T8

N

_

Example
\
Now, reconstruct the PRE
name space
* Use some global value
numbering technique
(AWZ, Simpson)
* Encode value identity in
lexical identity
After renaming, compiler
can run PRE/LCM
T9 <— 0
10 < T2
- return ryg

23




Results

What do we gain from all this manipulation?
* Can run LcM (or PRE) at any point in the optimizer

¢ Can reconstruct the name space

¢ Makes results independent of choices made in front end

* More effective redundancy elimination

¢ Measured with PRE (not LCM)
¢ Reductions of up to 40% in total operations (over PRE)

* Sometimes, code runs more slowly
¢ Forward propagation moves code into loop

Stronger methods can remove them,
¢ PRE cannot move it back out of the loop but this is a minor effect and ...

COMP 512, Rice University 24




enter(rg, 1)
r3 <— 1o+ 11
if r3 > 100 branch

l

T2<—O
Ty <— T3
Ts < T9
7“6%’]“04—1
T7 <= T+ 11

.

After PRE

rg &= Tr7+1r5 ——
Ty < T9g

Ts < T8

|

g <— 14+ 1
if r9 < 100 branch

|

rs < T7+Tp
10 < T8

N

_/

T2<—0
10 < T2

- return ryg

Example

PRE/LCM move code out of
the loop

* Landing pad grows
* Loop body shrinks
— In this case, the split
block in the back edge
Role of PRE is placement

Name space trick makes
redundancy aspect more
effective, too.

* Example does not
highlight that effect

25




enter(rg, r1)
ry<— 1o+ 11

if r4, > 100 branch

l

T5%O
Tﬁ%?“()—i—l
r7 < Tg+ 11

N

s <— 7+ Ty

l

After coalescing

- ry 14+ 1
if r4, < 100 branch

l

T10 < 77+ Ty

N

10 < 0

|

- return ryg

Example

Chaitin-Briggs coalescing
cleans up the copies

* Note the clean, small
loop body

* Of course, Briggs &
Cooper recommend
aggressive coalescing

— Despite what other
authors say

* Result is code that you
might write yourself

26




Other Issues

Code Size
* Forward propagation has the potential for exponential growth in size

* Measured results
¢ Average was 1.27x; maximum was 2.488; 1 of 50 was > 2

* Stronger LCM methods avoid this problem by cloning, so ...

Distribution
* Can destroy common subexpressions

* Has choice of shapes & can pick less profitable one

Interaction with other transformations
* Shouldn’t turn multiplies into shifts until later
®* Reassociation should let OSR find fewer induction variables

COMP 512, Rice University 27




Issues Related to Lazy Code Motion

Lazy code motion makes significant improvements
* Sometimes, it misses opportunities
* Can only find textual subexpressions

* Array subscripts are a particular concern

LCM has its limitations

* Requires strict naming scheme
¢ Canonly run it once, early in optimization

¢ Other optimizations will destroy name space

* Relies on lexical identity (not value identity )

Would like version of LCM that fixes these problems
Should be fast, easy to implement, & simple to teach ...

=> And, as long as | am wishing, it should operate directly on SSA

COMP 512, Rice University 28




What is Left in Reassociation?

This approach works well for code motion, but ...

* The Briggs scheme may not extend well to other problems

¢ For example, it maximizes code motion but may eliminate some redundancies

¢ Simple rank order is not enough; need consistent orders

* Not clear how to extend it for strength reduction

¢ Want to reorganize in a way that minimizes the number of induction variables
(demand for registers) and updates (arithmetic operations)

¢ May need to solve an offline problem to choose best shape

* Eckhardt took a more general approach

¢ Reassociation to help scalar replacement & cross-iteration redundancies
¢ Much more involved approach

¢ We will see this algorithm in the next lecture

COMP 512, Rice University 29




