Comp 512
Rice University
Spring 2015

Algebraic Reassociation, Revisited

Moving Beyond Rank-Ordering Schemes

K. Cooper, J. Eckhardt, & K. Kennedy, “Redundancy Elimination Revisited”, PACT 08, pages 12-21.

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Background

Last Lecture
* Looked at Briggs’ technique to reorder expressions for PRE/LCM
* Three step algorithm

1. Compute a rank for each expression

2. Forward substitute to flatten & broaden expression trees

3. Sort operands, where allowed, into rank order

* Because PRE/LCM needs a specific name space, the authors then rebuilt the
name space using AWZ before applying PRE/LCM."

Expressions are reordered to improve loop-invariant code motion

=> Chosen order provides limited help with exposing redundancy or, for that
matter, any other property of the code

"The name space that they built both encoded value identity so that provably
equal values had the same name, and handled a subtle correctness issue in PRE.

Motivating Example

Consider value numbering applied to the following expression:

(+ (* X (+ ac i_h b)) . Eckhardt named this
(*y (+abidcefgacib)) example “Diabolic”
(*z (+fdegdefg)))

Imagine applying local value numbering (LVN) to Diabolic

* LVN would start hashing
¢ Might use (+ ac), then (+ (+ac)i), then (+ (+ (+ac)i) h), then ..
¢ Mightuse(+acihb)
¢ Neither approach finds redundancies

* The expression must be rearranged to expose redundancies

COMP 512, Spring 2015

Motivating Example

Consider value numbering applied to the following expression:

(+ (* X (+ ac i_h b)) _ Eckhardt named this
(*y (+abidcefgacib)) example “Diabolic”
(*z (+fdegdefg)))

Careful examination reveals two major redundant subexpressions
®* (+abci)occursthree times

* (+defg)occurs three times

We would like to rewrite the expression as

(+ (*x (+ (+abci)h))
(*y (+ (+abci)(+abci)(+defg)))
(*z (+ (+defg)(+defg))))

In this form, any competent technique should find the redundancies

COMP 512, Spring 2015

Relating Briggs’ Technique to “Diabolic”

Some parts of the Briggs-Cooper algorithm are still relevant
* Need to reorder operands

* Forward substitution to build large, flat, n-ary expressions exposes more
opportunities to reorder expressions

* The rank & sort paradigm is too weak to do well on “Diabolic”

As a researcher, how do you attack this problem?

* Work lots of examples
4 Jason sent me an example every day or two for about a month

¢ Some from practice, some devised to elicit difficult points
* | worked the examples and sent them back

* We tried to extract common principles behind the solutions

Classic progression of harder questions & more obscure answers

COMP 512, Spring 2015 5

Back to Diabolic

Diabolic highlights the problems with rank-ordering schemes

(+ (*x (+acihb))
(*y (+abidcefgacib))
(*z (+fdegdefg)))

Can you devise a ranking scheme that groups (+abci) and(+defg)?
* Canonical order based on name (or some other attribute)?

¢ Commutativity in local value numbering
* Ranking based on placement of definition?

¢ Briggs’ approach for loop-invariant code motion

* We tried a fair number of rank-order schemes

* Each rank-order scheme that we devised had a bad counter example

COMP 512, Spring 2015 6

Affinity

After careful thought, we arrived at the notion of “affinity”

* (a,b) have an affinity if they occur in the same term

¢ Term is defined as an eligible operator and all of its operands in the flattened tree
(after forward substitution & flattening)

* |f distinct instances of (a,b) occur k times, we assign (a,b) an affinity of k

While the affinity matrix clearly
captures some aspect of the property g -
h

that we want, it is not obvious how to
tease the information out of it.

(+ (*x (+acihb)) B ODEORE
(*y (+abidcefgacib)) X YR
(*z (+fdegdefg))) i NI EEEEE

Diabolic d -1 3131311
e -1 31311

f - 13|11

1| 1

1

Diabolic’s Affinity Matrix
COMP 512, Spring 2015 7

Affinity

We had the right information in the wrong form

* View the affinity matrix as defining a graph with weighted edges
* Edge weight of 2 or more defines a redundancy

* Build the graph, excluding trivial (non-redundant or weight one) edges

Affinity Graph, excluding trivial edges

The redundant subexpressions form cliques in the graph
* Maximal cliques yield the largest subexpressions

* Minimum edge weight in a clique indicates multiplicity in the code

Cligue = a subgraph where every pair of edges are adjacent.

Expressions with Nested Cliques

Expressions may have more complex structures
* Large terms with multiple occurrences

* Number of occurrences is more important than number of terms

Second Example

(+ (* x (+ abcdab))
(* vy (+ abcdef))
(* 2 (+abgh)))

It is easy to envision a scheme that requires an arithmetic tradeoff between
expression size (# of operands) and multiplicity of the expression

* (+abcd)occurs twice
* (+ab)occurs four times
There is an easier way to capture this tradeoff

COMP 512, Spring 2015 9

Expressions with Nested Cliques

Second Example

(+ (* x (+ abcdab))
(* vy (+ abcdef))
(* z(+abgh)))

a'b c/ d|je| f gl h
a|l - |4|2|2|111])1]1
b -l121211]1111]11
c -1211111111
d -1 111111
e -1 1111
f -1 111
g -1 1
h -

COMP 512, Spring 2015

10

Expressions with Nested Cliques

Second Example

(+ (* x (+ abcdab))
(* vy (+ abcdef))
(* z(+abgh)))

a'b c/ d|je| f gl h
a|l - |4|2|2|1)11]1]1
b -l121211]1111]11
c -1211111111
d -1 111111
e -1 1111
f -1 111
g -1 1
h -

COMP 512, Spring 2015

Affinity Graph, excluding trivial edges

If the implementation can find the nested
cligue, it will produce

(+ (* x (+ (+(+ ab)cd)(+ ab)))
(*y (+ (+(+ ab)cd)ef))
(* z (+ (+ ab)gh)))

11

The Algorithm (High-Level Sketch)

Build large subexpressions with forward substitution
Flatten those expressions to create large terms
Build the affinity graph for those terms, excluding trivial edges

From largest weight to two, find maximal cliques at each weight

A S

Rewrite the code to place each clique in a distinct subterm

Maximal clique finding is NP Complete. Eckhardt used an O(n?)
COMP 512, Spring 2015 greedy heuristic that did well, in practice. (n is # nodes.) 12

The Plan

Apply the algorithm

1. Build large subexpressions with forward substitution

2. Flatten those expressions to create large terms

3. Build the affinity graph for those terms, excluding trivial edges
4. From largest weight to two, find maximal cliques at each weight
5

Rewrite the code to place each clique in a distinct subterm

On Diabolic, this approach yields

(+ (*x (+ (+abci)h))
(*y (+ (+abci)(+abci)(+defg)))
(*z (+ (+defg)(+defg))))

We can perform this transformation as a prelude to value numbering

— Value numbering will “do the right thing”

COMP 512, Spring 2015 13

The Plan

Apply the algorithm

1. Build large subexpressions with forward substitution

2. Flatten those expressions to create large terms

3. Build the affinity graph for those terms, excluding trivial edges
4. From largest weight to two, find maximal cliques at each weight
5

Rewrite the code to place each clique in a distinct subterm

On our second example, this approach yields

(+ (* x (+ (+(+ ab)cd)(+ ab)))
(*y (+ (+(+ ab)cd)ef))
(* z (+ (+ ab)gh)))

We can perform this transformation as a prelude to value numbering

— Value numbering will “do the right thing”

COMP 512, Spring 2015 14

Handling More Complex Subexpressions

Consider an expression such as:

(* a(cos b) c(cosb)ac) (cos b) is a function call, but one with no
side effects & therefore redundant

We want to find
(* (*ac(cos b)) (*ac(cosb)))

We need abstract names for the subexpressions
* (* a s;c s,ac), wheres,is asymbolic name

* Names should reflect values; same name implies same value

¢ (cos b) = (cos b), so expression would be (*as, cs;ac)

How can we construct these symbolic names?
* Classic answer is to use value numbering

® Leads to a circularity in the algorithm

Another example of Click’s theory
COMP 512, Spring 2015 of combining optimizations? 15

Combining Value Numbering With Reassociation

To combine value numbering with reassociation, Eckhardt reasoned
that they needed a common paradigm

* He reformulated LVN into a treewalk, rather than a linear sweep on the IR
¢ Algorithm is reminiscent of DAG finding algorithm in Aho, Sethi, & Uliman
¢ Visit the nodes in postorder & apply the LVN step at each operator

— Postorder visits children before their parent
* LVN step must recognize redundancy & assign value numbers
¢ Use a hash table with keys from operation & its operands
¢ Use arbitrary arity operations
¢ Rewrite subtrees on the fly
* Finally, he reformulated it as a worklist algorithm
¢ Algorithm makes one pass over the tree — no notion of a fixed point

¢ | don’t think that this aspect of the algorithm is fundamental

— Could reformulate it in a deterministic and obvious order

COMP 512, Spring 2015 16

One More Point About LVN

For the “reassociation-enabled” LVN to work well, it needs large
commutative expressions
* Need to perform forward substitution of expressions to their uses
¢ Just asin [Briggs 94]
¢ Incorporate Frailey’s trick with unary minus

— x—y+2z becomes x + (-y) +z

* Need to flatten commutative operation trees from multiple operators to
single operators

— x +(-y) +z becomes (+x (-y) z)

* Need a framework where forward substitution does not break subtle rules
in the name space

COMP 512, Spring 2015 17

%

&

This version of LVN retains its linear-
time expected case behavior.

Worklist Version of LVN

for each node, n
if n is a leaf, add it to worklist
if n has k children, set ready(n) to k

while (worklist is not empty)
remove a node n with parent p from worklist

if n is an leaf
hash n and assign n a value number

else
hash n’s operands
construct a hash key from n & its operands’ value numbers
if key already has a value number v then
mark n as equivalent to v and replace n with the node for v

let p be n’s parent
decrement p’s ‘“ready counter”
if p is ready, add it to worklist

The worklist structure ensures that
subexpressions are evaluated before
parents — effectively, RPO

COMP 512, Spring 2015 18

Adding Reassociation to LVN

for each node, n

if n is a leaf, add it to worklist

if n has k children, set ready(n) to k
deferred < empty list

while (worklist is not empty)
remove a node n with parent p from worklist

if n is an leaf
hash n and assign n a value number

else
hash n’s operands
construct a hash key from n & its operands’ value numbers
if key already has a value number v then
mark n as equivalent to v and replace n with the node for v

—

decrement p’s “ready counter”

if p is ready, add it to deferred
When all of p’s children have

= been processed, rearrange its
operands before processing it

if worklist is empty
reorder the nodes on deferred
worklist — deferred
deferred < empty list

1

COMP 512, Spring 2015 19

Combining Value Numbering with Reassociation

Algorithm was implemented in the Open 64 Compiler
* Implemented as part of extended strength reduction
¢ Algorithm captures inter-iteration reuse under different names
¢ Value numbering is the building block of that algorithm
* Experimental results on some performance-critical loop nests

¢ Break out improvements due to different factors

4 Reassociation sometimes helps, sometimes does not

— Cannot capture improvement when conditions are not present
¢ Reduces arithmetic operations (integer + and *)

¢ Finds duplicate calls to intrinsic operations (cos(x))

COMP 512, Spring 2015 20

Lessons

* “Rank & sort” works when the role of context is simple
* Complex context requires more complex choice of orders

* Can afford a more expensive technique than Briggs’ preorder rank
computation

* Will run into combinatorial explosions

¢ Deal with them using effective heuristics

COMP 512, Spring 2015 21

This slide is speculative and describes ideas on an open problem.

What About Orders for Other Transformations

Reassociation for strength reduction looks profitable

* Simple five point stencil

doi ...
doj...
a(i,j) < (a(i,j) + a(i-1,j) + a(i+1,j) + a(i,j-1) + a(i,j+1)) / 5
end do
end do

Would like one or two reduced induction variables, not five

* Markstein, Markstein, & Zadeck suggest a sum of products form
On the readings

¢ Hope to reduce the product terms page

¢ Hope to implement the addition terms with address arithmetic

* Give induction variables large weights and redistribute to obtain 3 parts ?

¢ Induction variable term, varying term, & constant term

COMP 512, Spring 2015 22

