Comp 512
Rice University
Spring 2015

Global Register Allocation via Graph Coloring

The Chaitin-Briggs Approach

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Register Allocation

Part of the compiler’s back end

m register m register

asm asm)
Instruction Instruction Register k register

Selection Scheduling Allocation asm]

A 4

> Errors

Critical properties

* Produce correct code that uses k (or fewer) registers
* Minimize added loads and stores

* Minimize space used to hold spilled values

* QOperate efficiently
O(n), O(n log,n), maybe O(n?), but not O(2")

Comp 512, Spring 2015 2

Register Allocation

Early approaches to register allocation

* Frequency counts

¢ FORTRAN | built a CFG and used a Markov Model to assign frequency counts so
that it could determine the tradeoffs between different uses of scarce registers.

¢ Freiburghouse formalized the use of frequency counts in a 1974 CACM paper.

* Local allocation
¢ Best devised a near-optimal algorithm for basic blocks in the 1950s (FORTRAN 1).
¢ It has been reinvented many times (the decade algorithm).

* Loop-based

¢ Several compilers tried local (or regional) allocation in inner loops, moving to
outer loops (FORTRAN H, Knobe & Zadeck, Koblenz & Callahan ...).

¢ They tried different ideas for that regional allocation

Lavrov (& Ershov) described (& built) coloring storage allocators in the 60’s.
Chaitin built the first coloring register allocator in the late 70s/early 80s.

Comp 512, Spring 2015 3

Local Allocation: Best’s Algorithm ;YB B

Best’s algorithm takes a simple approach: allocate registers until you run™>
out; when you need more, spill the value used farthest in the future

fori—O0ton
if (OP[i].OP1.PR is invalid)
get a PR, say x, load OP[i].OP1.VR into x, and set OP[i]. OP1.PR + x
if (OP[i].OP2.PR is invalid)
get a PR, say y, load OP[i].OP2.VR into y, and set OP[i].OP2.PR «y

if either OP1 or OP2 is a last use
free the corresponding PR

Get a PR, say z, and set OP[i].OP3.PR «z

The action “get a PR” is the heart of the algorithm. PR = physical register
* IfaPRis free, “get a PR” is easy

* If noPRis free, choose the occupied PR used farthest in the future, spill its
contents to memory*, and return that register

Comp 512, Spring 2015 * Necessitates a reload on the next use of the spilled value.

What Makes Global Register Allocation Hard?

‘ storerd4d =x ‘

This is an assignment problem,
not an allocation problem !

A 4

‘ loadx=rl ‘

What’s harder across multiple blocks?

* Could replace the load with a move (r4 = ri)

* Good assignment would obviate the move

* Must build a control-flow graph to understand inter-block flow

* Can spend an inordinate amount of time adjusting the allocation

Comp 512, Spring 2015 5

What Makes Global Register Allocation Hard?

‘ storer4d = x ‘ storer5=x

What if one block has x in a
register, but not the other?

‘ loadx=rl ‘

A more complex scenario
* Block with multiple predecessors in the control-flow graph
* Must get the “right” values in the “right” registers in each predecessor

¢ Can break edge to create a place for the copy

¢ Gets into the issue of “critical edges”, as in out-of-SSA translation
* In aloop, a block can be its own predecessor

This issue complicates matters

Comp 512, Spring 2015

Global Register Allocation

The Big Picture

Optimal global allocation is
NP-Complete, under almost
any assumptions.

m register | Register k register

code Allocator code

At each point in the code

1. Determine which values will reside in registers

2. Select a register for each such value

The goal is an allocation that “minimizes” running time

Most modern, global allocators use a graph-coloring paradigm
* Build a “conflict graph” or “interference graph”

* Find a k-coloring for the graph, where k is the number of available registers,
or change the code to a nearby problem that it can k-color
— “change the code” means move some values from registers to memory

Comp 512, Spring 2015 7

Global Register Allocation

Taking a global approach
* Abandon the distinction between local & global
* Make systematic use of registers or memory

* Adopt a general scheme to approximate a good allocation

Graph coloring paradigm (Lavrov & (later) Chaitin)

1 Build an interference graph G, for the procedure
¢ Computing LIVE is harder than in the local case
¢ G,is not an interval graph
2 (try to) construct a k-coloring
¢ Minimal coloring is NP-Complete
¢ Spill placement becomes a critical issue

3 Map colors onto physical registers

Comp 512, Spring 2015 8

Graph Coloring (A Background Digression)

The problem

A graph G is said to be k-colorable iff the nodes can be labeled with integers 1 ... k
so that no edge in G connects two nodes with the same label

Examples

2-colorable 3-colorable

Each color can be mapped to a distinct physical register

Comp 512, Spring 2015 9

Global Register Allocation

High Level View of Chaitin’s Algorithm
1 Build an interference graph G, for the procedure
¢ Computing LIVEOUT sets, then walk blocks backwards for local LIVE information

¢ Two values that are live at some point p cannot share a register — they interfere

2 (try to) construct a k-coloring

¢ For general graphs, finding a minimal coloring is NP-Complete
— Use an approximate coloring algorithm
¢ Most interesting programs have a chromatic number > k

III

— Allocator must “spill” some values to memory

— Spill placement becomes a critical issue

3 Map colors onto physical registers

This description is the roadmap for today’s lecture.

Comp 512, Spring 2015 10

Building the Interference Graph

What is an “interference” ? (or conflict)

* Two values interfere if there exists an operation where both are
simultaneously live

* If xandy interfere, they cannot occupy the same register

Interference graph construction relies on LIVE information

The interference graph, G,=(N,, E,)
* Nodes in G, represent values, or live ranges

* Edgesin G, represent individual interferences
¢ Forx,yEN,, <x,y>€E E;iff xandy interfere
* A k-coloring of G, can be mapped into an allocation to k registers

Comp 512, Spring 2015 11

Building the Interference Graph

To build the interference graph

1 Discover live ranges
> Construct the SSA form of the procedure
> Assign each SSA name its own set
> At each @-function, take the union of the arguments
> Rename to reflect these new “live ranges”

2 Compute LIVE sets over live ranges for each block
> Solve equations for LIVE over domain of live range names
> Use a simple iterative data-flow solver (of course)

3 Iterate over each block, from bottom to top
> Construct LIVENOW at each point in the block, in a backward traversal

> At each operation, add appropriate edges to the graph & update LIVENOW
— Add an edge from result to each value in LIVE

— Remove result from LIVE
— Add each operand to LIVE Update the LIVENOW set

Comp 512, Spring 2015 12

Building the Interference Graph %
0

To build the interference graph

1 Discover live ranges
> Construct the SSA form of the procedure
> Assign each SSA name its own set
> At each @-function, take the union of the arguments
> Rename to reflect these new “live ranges”

2 Compute LIVE sets over live ranges for each block
> Solve equations for LIVE over domain of live range names
> Use a simple iterative data-flow solver (of course)

3 lterate over each block, from bottom to top
> Construct LIVENOW at each point in the block, in a backward traversal

> At each operation, add appropriate edges to the graph & update LIVENOW
— Add an edge from result to each value in LIVE

— Remove result from LIVE
— Add each operand to LIVE Update the LIVENOW set

Comp 512, Spring 2015 13

Live Ranges

In the multi-block case, live ranges are
more complex than in the local case.

* Considerx,y, &z in the code to the
right

Comp 512, Spring 2015

14

Live Ranges

In the multi-block case, live ranges are By 4 —

more complex than in the local case. $.

* Considerx,y, &z in the code to the \v
right y\

¢ x has 2 distinct live ranges

Comp 512, Spring 2015 15

Live Ranges

In the multi-block case, live ranges are
more complex than in the local case.

* Considerx,y, & zin the code to the
right

¢ x has 2 distinct live ranges

¢ y has 2 distinct live ranges

Comp 512, Spring 2015 16

Live Ranges

In the multi-block case, live ranges are B,
more complex than in the local case. z

* Considerx,y, &z in the code to the

\
right By y\(
¢ x has 2 distinct live ranges , gi
¢ vy has 2 distinct live ranges 2 x «y B 2
¢ z hasjust 1 live range X — ..
— zis never live in B, > i

* Finding live ranges takes some work

Comp 512, Spring 2015 17

Finding Live Ranges

We can use SSA form to find live ranges in a simple way
Build static single assignment form (SSA form)
Consider each SSA name a set

At each phi-function, union together the sets of the phi-function arguments

Each remaining set is a live range

A S

Rename into live ranges

This idea was undoubtedly discovered by multiple different groups of people. | first saw this idea
in @ meeting with Briggs, Hopkins, Chaitin, Torczon, and a couple of others from IBM and Rice.

Comp 512, Spring 2015 18

Live Ranges

Example in (Pruned) SSA Form

®* Each name is defined in exactly one
operation

® Each use refers to one name
* Live ranges are

¢ (X,%,,%x3) and (x,)

¢+ (vo) and (y,,y,,y3)

¢ (20,2,,2,)

as predicted several slides ago

Comp 512, Spring 2015 19

Live Ranges

Rename Into Live Ranges By .o -
* Go back to original (non-SSA code) 20 < ..
& name each live range l,

* Live ranges are

¢ (X,%,,%x3) and (x,) /\

¢ (yo) and (yy,Y.y5) B: x1eyo B Ly
yl <—x1 y, <120
¢ (20,2,,2,) x0 < ...
as predicted several slides ago
B, _
z0 <
Note: a copy operation, such as x <—y l
does not create an interference Bs < x0+yl+ 20

between x and y because they can,
from that operation’s perspective,
occupy the same register.

Comp 512, Spring 2015 20

Building the Interference Graph

To build the interference graph

1 Discover live ranges
> Construct the SSA form of the procedure
> Assign each SSA name its own set
> At each @-function, take the union of the arguments

> Rename to reflect these new “live ranges”
In 512, you have seen

enough DFA that | will skip

2 Compute LIVE sets over live ranges for each block)
the details.

> Solve equations for LIVE over domain of live range names
> Use a simple iterative data-flow solver (of course)

3 lterate over each block, from bottom to top
> Construct LIVENOW at each point in the block, in a backward traversal

> At each operation, add appropriate edges to the graph & update LIVENOW
— Add an edge from result to each value in LIVE

— Remove result from LIVE
— Add each operand to LIVE Update the LIVENOW set

Comp 512, Spring 2015 21

i
Building the Interference Graph
@

To build the interference graph

1 Discover live ranges
> Construct the SSA form of the procedure
> Assign each SSA name its own set
> At each @-function, take the union of the arguments

> Rename to reflect these new “live ranges”
In 512, you have seen

enough DFA that | will skip

2 Compute LIVE sets over live ranges for each block)
the details.

> Solve equations for LIVE over domain of live range names
> Use a simple iterative data-flow solver (of course)

3 lterate over each block, from bottom to top
> Construct LIVENOW at each point in the block, in a backward traversal

> At each operation, add appropriate edges to the graph & update LIVENOW
— Add an edge from result to each value in LIVE

— Remove result from LIVE
— Add each operand to LIVE Update the LIVENOW set

Comp 512, Spring 2015 22

How do we color a graph: Chaitin’s approximation

* Suppose you have k registers—the allocator should look for a k coloring

* Any vertex n that has fewer than k neighbors in the interference graph can
always be colored! We denote this as n° < k.
4 Pick any color not used by its neighbors — there must be one

* Chaitin’s algorithm computes an order in which the graph can be colored,
then uses that order to assign colors to individual node

* |deas behind Chaitin’s algorithm:
¢ Pick any vertex n such that n°< k and put it on the stack

¢ Remove that vertex and all edges incident from the interference graph
— This may make additional nodes have fewer than k neighbors
¢ At the end, if some vertex n still has k or more neighbors, then spill the live range
associated with n

¢ Otherwise successively pop vertices off the stack and color them in the lowest
color not used by some neighbor

Comp 512, Spring 2015 23

Chaitin’s Algorithm (Smallest-last coloring)

1. While J vertices with < k neighbors in G,
Lowers degree of
> Pick any vertex n such that n°< k and put it on the stack | n’s neighbors
> Remove that vertex and all edges incident to it from G,

2.1f G,is non-empty (all vertices have k or more neighbors) then:
> Pick a vertex n (using some heuristic) and spill the live range associated with n
> Remove vertex n from G,, along with all edges incident to it and put it on the
“spill list”

> If this causes some vertex in G, to have fewer than k neighbors, then go to
step 1; otherwise, repeat step 2

3. If the spill list is not empty, insert spill code, then rebuild the interference
graph and try to allocate, again

4. Otherwise, successively pop vertices off the stack and color them in the
lowest color not used by some neighbor

While this algorithm is colloquially referred to as Chaitin’s algorithm, the first paper lists Chaitin, Auslander,
Chandra, Cocke, Hopkins, and P. Markstein as authors. The second paper, which contains the current spill
algorithm, is a single author paper by Chaitin.

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

1 is the only node with degree <3

25

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

Now, 2 & 3 have degree <3

26

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

Now all nodes have degree <3

27

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

28

Chaitin’s Algorithm in Practice

3 Registers

= N H OO

Stack

Comp 512, Spring 2015

Colors:
1: '
2: O

29

Chaitin’s Algorithm in Practice

3 Registers

= N b ®

Stack

Comp 512, Spring 2015

Colors:
1: '
2: O

30

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

Colors:
1: '
2: O

31

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

Colors:
1: '
2: O

32

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

Colors:
1: '
2: O

33

Chaitin’s Algorithm in Practice

3 Registers

Stack

Comp 512, Spring 2015

Colors:
1: '
2: O

34

Improvement in Coloring Scheme

Optimistic Coloring
* |f Chaitin’s algorithm reaches a state where every node has k or more
neighbors, it chooses a node to spill.
* Briggs said, take that same node and push it on the stack
¢ When you pop it off, a color might be available for it!

2 Registers: Chaitin’s algorithm
immediately spills one of
these nodes

¢ For example, a node n might have k+2 neighbors, but those neighbors might
only use 3 (<k) colors

— Degree is a loose upper bound on colorability

Comp 512, Spring 2015 Briggs, Cooper, Kennedy, & Torczon | 35

Improvement in Coloring Scheme

Optimistic Coloring
* If Chaitin’s algorithm reaches a state where every node has k or more
neighbors, it chooses a node to spill.
* Briggs said, take that same node and push it on the stack
¢ When you pop it off, a color might be available for it!

2 Registers: Briggs’ algorithm finds

an available color
2-Colorable

¢ For example, a node n might have k+2 neighbors, but those neighbors might
only use just one color (or any number < k)

— Degree is a loose upper bound on colorability

36

Comp 512, Spring 2015

Chaitin-Briggs Algorithm

1. While J vertices with < k neighbors in G,
> Pick any vertex n such that n°< k and put it on the stack
> Remove that vertex and all edges incident to it from G,

— This action often creates vertices with fewer than k neighbors

2.1f G, is non-empty (all vertices have k or more neighbors) then:

> Pick a vertex n (using some heuristic condition), push n on the stack and
remove n from G,, along with all edges incident to it

> If this causes some vertex in G, to have fewer than k neighbors, then go to
step 1; otherwise, repeat step 2

3. Successively pop vertices off the stack and color them in the lowest color
not used by some neighbor

> If some vertex cannot be colored, then pick an uncolored vertex to spill, spill
it, and restart at step 1

Comp 512, Spring 2015 37

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

No node has degree < 2
* Chaitin would spill a node
* Briggs picks the same node & stacks it

38

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Pick a node, say 1

39

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Pick a node, say 1

40

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Now, both 2 & 3 have degree < 2
Pick one, say 3

41

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Both 2 & 4 have degree < 2.
Take them in order 2, then 4.

42

Chaitin-Briggs in Practice

2 Registers

W N

Stack

Comp 512, Spring 2015

43

Chaitin-Briggs in Practice

2 Registers

= WN H

Stack

Now, rebuild the graph

Comp 512, Spring 2015 44

Chaitin-Briggs in Practice

2 Registers

W N

Stack

Comp 512, Spring 2015

Colors:

1:O
Z:O

45

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Colors:

1:O
Z:O

46

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Colors:

1:O
Z:O

47

Chaitin-Briggs in Practice

2 Registers

Stack

Comp 512, Spring 2015

Colors:

1:O
Z:O

48

Chaitin’s Allocator

I

renumber

v v

build

v

coalesce

3

spill costs

v

simplify

v

select

(Bottom-up Coloring, ‘82 Spill method)

Build SSA, build live ranges, rename
Build the interference graph

Fold unneeded copies
LR,— LR, and <LR,LR > €& G, => combine LR & LR,

Estimate cost for spilling
each live range

while N is non-empty
if 3 n with n°< k then
push n onto stack
else pick n to spill
mark n for spill pass
remove n from G,

Remove nodes from the graph

While stack is non-empty
pop n, insert ninto G, & try to color it

\ 4

spill

Spill uncolored definitions & uses

Comp 512, Spring 2015

Chaitin’s algorithm
49

Chaitin-Briggs Allocator (Optimistic Coloring)

I

renumber

v v

build

v

coalesce

3

spill costs

v

simplify

v

select

Build SSA, build live ranges, rename
Build the interference graph

Fold unneeded copies
LR,— LR, and <LR,LR > €& G, => combine LR & LR,

Estimate cost for spilling
each live range

while N is non-empty
if 3 n with n°< k then
push n onto stack
else pick n to spill
push n onto stack
remove n from G,

Remove nodes from the graph

While stack is non-empty
pop n, insert ninto G, & try to color it

\ 4

spill ?

Spill uncolored definitions & uses

Comp 512, Spring 2015

Briggs’ algorithm
50

Chaitin-Briggs Allocator (Optimistic Coloring)

l‘ _ This simple change improves the allocation
renumber ® x has high 2, but x’s neighbors use few colors (= colors
I are available for x)
v
_ . ® Makes the allocation optimistic —assume it will work out
build L and fix things if it does not
v It was, in truth, a little hard to explain to a patent examiner
coalesce i how moving one end of the arrow changed the algorithm
! /and the results!
spill costs | Estimate cost for spilling while N is non-empty
i ' each live range if 3 n with n°< k then
\ push n onto stack
simplify i Remove nodes from the graph else pick n to spill
T i push n onto stack
select While stack is non-empty remove n from G,
_______ pop n, insert ninto G, & try to color it

» spill ? Spill uncolored definitions & uses

Briggs’ algorithm
Comp 512, Spring 2015 51

How do these allocators do?

Results are “pretty good”
* Simple procedures allocate without spills

* There is some room for improvement
¢ Long blocks, regions of high pressure

¢ Many implementation issues

* Many people have looked at improving Chaitin-Briggs

Better allocations Better implementations

® Better coloring * Faster graph construction

® Softer coalescing * Faster coalescing

® Better spilling Different approximate graphs
® Spilling partial live ranges * Linear Scan allocation

* SSA-based allocation

Comp 512, Spring 2015 52

