Comp 512
Rice University
Spring 2015

Register Allocation via Graph Coloring

Beyond Chaitin Briggs

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

From Last Lecture
Chaitin-Briggs Allocator (Optimistic Coloring)

I

renumber

v v

build

v

coalesce

3

spill costs

v

simplify

v

select

Build SSA, build live ranges, rename
Build the interference graph

Fold unneeded copies
LR,— LR, and <LR,LR > €& G, => combine LR & LR,

Estimate cost for spilling
each live range

while N is non-empty
if 3 n with n°< k then
push n onto stack
else pick n to spill
push n onto stack
remove n from G,

Remove nodes from the graph

While stack is non-empty
pop n, insert ninto G, & try to color it

\ 4

spill ?

Spill uncolored definitions & uses

Comp 512, Spring 2015

Briggs’ algorithm

How do these allocators do?

Results are “pretty good”
* Simple procedures allocate without spills

* There is some room for improvement
¢ Long blocks, regions of high pressure

¢ Many implementation issues

* Many people have looked at improving Chaitin-Briggs

Better allocations Better implementations

® Better coloring * Faster graph construction

® Softer coalescing * Faster coalescing

® Better spilling Different approximate graphs
® Spilling partial live ranges * Linear Scan allocation

* SSA-based allocation

* Koblenz-Callahan

Comp 512, Spring 2015 3

Roadmap for Today’s Lecture

More Detail
* Building the interference graph

* Coalescing, biased coloring, & limited lookahead

Improvements
* Better coloring

* Better spilling, including live-range splitting, partial live-range spilling, and
rematerialization

Different Approximations
* Linear scan allocators
* SSA-based allocators

* Koblenz-Callahan Hierarchical Allocator

Comp 512, Spring 2015 4

Building the Interference Graph

Need two representations

* Bit matrix
¢ Fast test for specific interference
¢ Need upper (lower) diagonal submatrix
¢ Takes fair amount of space & time
* Adjacency lists
¢ Fast iteration over neighbors
¢ Needed to find colors, count degree

¢ Must tightly bound space to make it practical

Both Chaitin & Briggs recommend two passes [73,74,75,49,51,52,56]
* First pass builds bit matrix and sizes adjacency vectors
* Second pass builds adjacency vectors into perfect-sized arrays

Comp 512, Spring 2015 5

Building the Interference Graph

Split the graph into disjoint register classes [101]

* Separate GPRs from FPRs ol [l [l [l

¢ Others may make sense (CCs, predicates) High overhead, space & time

* Graph is still n?, but n is smaller

@ »

Clique separators [175]

Sweet spot between time & space
Build adjacency lists in a single pass [101]

* Block allocate adjacency lists (30 edges per block)
®* Reduce amount of wasted space & pointer overhead

* Simple time-space tradeoff Significance:
® 75% of space (Chaitin-Briggs) with
one fewer pass [101]

® 70% of time (Chaitin-Briggs) for
Comp 512, Spring 2015 whole allocation [101]

Building the Interference Graph

Hash table implementation [75, 158]
* If graph is sparse, replace bit-matrix with hash table

¢ Chaitin tried it and discarded the idea
¢ George & Appel claim it beat the bit matrix in space & time

Our experience [101]

* Finding a good hash function takes care
¢ Universal hash function from Cormen, Leiserson, & Rivest
¢ Multiplicative hash function from Knuth

* Takes graphs with many thousands of LRs to overtake split bit-matrix
implementation

Significance:
® 199% to 656% space versus
Chaitin-Briggs [101]

® 124% to 4500% allocation time
Comp 512, Spring 2015 versus Chaitin-Briggs [101]

Coalescing

A Little More Detail On Coalescing In Chaitin-Briggs (See § 13.4.6 in EaC2e
* Build the interference graph, /
¢ Foracopy, LR,— LR, add edges from LR, to each node in LIVENOW except LR,

* If LR — LR, and <LR,LR > ¢ I, then allocator can combine LR, & Lr, and
delete the copy operation

¢ Briggs showed examples where coalescing eliminated 1/3 of the live ranges

* Need to update /
¢ In general, LR, interferes with the all of LR, and LR/’s conflicts

¢ To get best results, need a precise update, so we iterate build-coalesce

The dominant cost in a Chaitin-Briggs allocator is graph building [51]

* Circular problem: coalescing reduces number of live ranges, number of live
ranges determines cost of building graph, coalescing needs graph, ...

* See later slides on speeding up the allocator 15t interference
graph is the biggest

Comp 512, Spring 2015 8

.] Conservative coalescing avoids
Conservative Coalescmg making the graph harder to color

Chaitin’s scheme coalesces every copy that it can

® Coalescingiandjcan createij®>max(/°,j°)
¢ May make jj harder to color

¢ In some contexts, this is important Might retrofit this more

o _ _ expensive test into Simplify ...
* We can limit coalescing to conservative cases [55, 56]

¢ ldea: Only create jj if it will get a color
¢ Tempting to say that we need ijj ° <k, so jj is trivially colored

¢ In fact, we need that jj has fewer than k neighbors of significant degree

* We can also bias the color selection [55,56]
¢ Ifiandj are connected by a copy, try to pick the same color
¢ If the other one is not yet colored, pick a color still open for it
¢ Generalize to multiple copies (but only immediate neighbors)

¢ “biased coloring with limited lookahead”

Comp 512, Spring 2015 Briggs, Cooper, & Torczon 9

Building on Conservative Coalescing

Iterated Coalescing [158]

* Use conservative coalescing, always

* If no trivially colored node remains, coalesce again
* Coalescing reduces degree in the graph

* Makes sense only if allocator uses conservative coalescing

Invented for Standard ML of New Jersey

* Long parameter lists, passed in registers

* Code shape adds many additional edges

* | think that they hit the known bug in “NeedLoad()” [Harvey, PhD thesis]

* |terated coalescing cured their problem

Comp 512, Spring 2015 George & Appel = 10

Editorial Opinion

Conservative coalescing is oversold
* Designed to remove unproductive splits

I”

¢ Insert “special” copies & coalesce ones that don’t help

¢ Worked pretty well for that purpose

* Looks great on paper
¢ Why coalesce if things get worse?
¢ Conservative coalescing never makes things worse

In practice, Chaitin gets most coalesced LRs
* Briggs should get even more

* Don’t be afraid to coalesce aggressively
¢ With passive splitting & IR spilling, might even be better

See Max Hailperin, “Comparing conservative coalescing
criteria,” ACM TOPLAS 27(3), May 2005, pages 571-582.

11

Support for Editorial Opinion

Donghua Liu built a coloring allocator where he could adjust the value of
* Roughly, a Chaitin-Briggs allocator in LLVM
* Distinguished between k in conservative coalescing & in coloring

* Distinguished between k in integer registers & floating-point registers

¢ Gave him 4 distinct values of k to tune

Holding k for coloring fixed, found the best value of k for coalescing was
around 39 to 42 on an Intel Nehalem processor (nominal 32 registers)

Donghua Liu, MS Thesis, Rice CS Dept. 12

Better Coloring

Several Authors Have Tried To Improve The Quality of Coloring

* Optimal coloring [Wilken] _

¢ Use backtracking to find minimal chromatic number
¢ Took lots of compile-time

¢ Found (some) better allocations

* Random-walk coloring

¢ Rather than spill, color remaining nodes in a
random walk over the remaining graph

¢ Did rather well on random graphs

—

[Dietz] _

Done in GCC

— with a Chow

allocator

No real basis
= to believe
that it helps

—

Neither of these ideas has been widely used (beyond the original authors)

Unfortunately, some codes need more than k registers

¢ Better coloring will not help these codes

¢ Only helps when better coloring eliminates spills —a narrow range of codes

Comp 512, Spring 2015

13

One Last Coalescing Idea: Faster Coalescing

The bit matrix requires an n? data structure

* We reduce n by including in the interference graph only IRs involved in
copy operations

¢ An analog of Briggs’ semi-pruned SSA idea
¢ Only include in the analysis things that can matter

¢ Only works with “reckless” coalescing (i.e., non conservative)

Experience

* Informally, it runs in about 66% of the time of the coalescing with the
full graph

Comp 512, Spring 2015 14

Better Spilling

The Actual Performance Degradation Comes From Spilling
* Strongly suggests that we should look at better ways to spill

* |f you want to reduce costs, you have to look where they are incurred

— Register allocation version of Dillinger’s observation

What is wrong with Chaitin’s spill methodology?
* |t chooses values to spill based on the graph rather than the code

— Value that minimizes (Spill Cost/Degree) may not be live in region of high pressure

* Once it picks a value to spill, it spills that value everywhere
— Could limit spilling to regions where demand for registers is greater than supply

— Could break spilled live ranges into pieces and try again (live-range splitting)

Comp 512, Spring 2015 15

Better Spilling

Some Proposed Improvements

Clean spilling [38]
4 Spill value once per block, if possible

¢ Avoids redundant loads & stores

Best of three spilling [38]
¢ Simplify/Select is cheap relative to Build/Coalesce

¢ Try it with several different heuristics

Rematerialization [55]
¢ Recognize values that are cheaper to recreate

¢ Rather than spill them, rematerialize them

Spill partial live ranges

Each of these helps

Comp 512, Spring 2015

16

Better Spill Choice Heuristics

* Clean spilling
¢ Minor computations during spill insertion

¢ Mostly a matter of paying attention to details

* Best of three spilling
¢ Just repeat Simplify/Select with different heuristics
4 Gets at random parts of the algorithm (nvp-noise)

¢ Might get some of it by renumbering — min of seven

* Rematerialization
¢ Tag each value with c;, BOT, or TOP
¢ Propagate, performing meet at @-functions

¢ Modify spill cost computation & spill insertion

Comp 512, Spring 2015

Every one
should do it

20% idea

20% idea

17

Rematerialization

Never-killed values can be rematerialized (rather than spilled)

Definition of “never-killed”
i.e., loadl, offset + FP

®* Operands are always available
* Computed in a single operation

Cheaper to recompute than to store & reload (the classic spill)

Allocator must
* Discover & mark never-killed LRs
* Reflect rematerialization in spill costs

* Use all this knowledge to generate right spills

Chaitin rematerialized LRs that were entirely never-killed
¢ We can do partial LRs

Comp 512, Spring 2015 18

Rematerialization

Big Picture

Use SSA to break LR into component values
P Top defined by COPY or @

Tag each component with a value inst never-killed op (ptr)
Use Wegman & Zadeck SCCP to propagate tags BOT defined by other op
Split off never-killed parts from rest of LR

III

¢ Use a “special” copy operation

¢ Special copies get coalesced with conservative coalescing

Use tags to compute spill costs & to insert spill code

Rely on conservative coalescing and biased coloring to remove
unproductive splits (as before)

Comp 512, Spring 2015 19

Spilling Partial Live Ranges

* Bottom-up splitting [81,82]
¢ Break uncolored live range into basic blocks

¢ Recombine them when it does not increase degree

* Aggressive splitting [49]
¢ Split aggressively based on the CFG
¢ Undo non-productive splits

* Interference region spilling [37]
¢ Spill just region that conflicts with colored nodes

¢ Run in competition with default spilling

* Passive splitting [106, 98]
¢ Use directed interference graph to identify splits

¢ Run in competition with default spilling

Comp 512, Spring 2015

|

No data on how
this does with
Chaitin-Briggs

Improvements
ran from + 4x to
- 4x spill ops

Improvements
of ~¥36% in spill
ops vs. Briggs

Sometimes wins
big vs. Bergner,
sometimes loses

20

Interference Region Spilling

Simple idea:
* Find region where i & j are both live

* Spill i around this interference region (IR)

® Can reduce total cost of spilling i

* Fits entirely in “Insert Spills” phase of a Briggs allocator

The implementation

* Take colored subgraph and list of uncolored nodes

* For each uncolored LR, find subranges that can be colored
¢ Restof LRisits IR

* Compare cost of spilling IR versus cost of spilling entire LR

¢ Take cheaper alternative

Comp 512, Spring 2015 21

Passive Splitting

Key observation

X< ... X< ... X< ...
y<— ... y<— .. y<— ...
< X
<X <y vy
<y —X —x
spilling x does not spilling x helps spilling x does not
help with y with y help with y

The containment graph captures this effect
It is just a directed analog of the interference graph

0 <) 0 0 <= 0 0 <) 0
X y X y X y

Comp 512, Spring 2015 22

Passive Splitting

X <— y and not y < x suggests splitting X around y

To split x around y
® store x before each definition of y
® Joad x after each death of y

What does it cost?
® one memory op at each border of the overlap region

® may (or may not) be cheaper than spilling x everywhere

This is the base case

In practice, we may need to split around several live ranges

Comp 512, Spring 2015 23

Approximate Global Allocation

Linear Scan Allocation

Coloring allocators are often viewed as too expensive for use in JIT
environments, where compile time occurs at runtime

Linear scan allocators use an approximate interference graph and a version of
the bottom-up local algorithm [Poletto & Sarkar]

o !
* Interference graph is an interval graph ! ’
¢ Optimal coloring (without spilling) in linear time ! ’
¢ Spilling handled well by bottom-up local allocator ! .
. : H “uy: ” ‘
* Algorithm does allocation in a “linear sl
scan of the graph o
* Linear scan produces faster, albeit less IO
precise, allocations Live Ranges in LS
])]] Interference graph of a set
Linear scan allocators hit a different point of intervals is an interval

on the curve of cost versus performance graph.

Cops It Spetsgraersompiler uses a complete Chaitin-Briggs allocator [279]. 24

Linear Scan Allocation

Building the Interval Graph
* Consider the procedure as a linear list of operations

* Alive range for some name is an interval (x,y)
¢ xandy are the indices of two operations in the list, with x <y
¢ Every operation where name is live falls between x & vy, inclusive
— Precision of live computation can vary with cost

¢ Interval graph overestimates interference

The Algorithm
* Use Best’s algorithm — bottom-up local
* Distance to next use is well defined

* Algorithm is fast & produces reasonable allocations

Variations have been proposed that build on this scheme

Comp 512, Spring 2015

25

Global Coloring from SSA Form

Observation: The interference graph of a program in SSA form is a
chordal graph.

Observation: Chordal graphs can be colored

in O(N) time.
These two facts suggest allocation using an Chordal Graph
interference graph built from SSA Form Every cycle of length > 3

has a chord

* Chaitin-Briggs works from live ranges that
gre a coalesced version of SSA names

* SSA allocators use raw SSA names as live ranges

* Allocate live ranges, then insert copies for ¢p-functions

SSA-based allocation has created a lot of excitement in the last couple of
years.

See Hack, Grund, and Goos, “Register allocation for programs in SSA-form,” 15t
International Conference on Compiler Construction (CC ‘06}, 2006, pages 247-262. 26

Global Coloring from SSA Form

Coloring from SSA Names has its advantages

* |f graph is k-colorable, it finds the coloring

¢ (Opinion) An SSA-based allocator will find more k-colorable graphs than a live-
range based allocator because SSA names are shorter and, thus, have fewer
interferences.

* Allocator should be faster than a live-range allocator

¢ Cost of live analysis folded into SSA construction, where it is amortized over other
passes

¢ Biggest expense in Chaitin-Briggs is the Build-Coalesce phase, which SSA allocator
avoids, as it destroys the chordal graph

Comp 512, Spring 2015 27

Global Coloring from SSA Form

Coloring from SSA Names has its disadvantages

® Coloringis rarely the problem

¢ Most non-trivial codes spill; on trivial codes, both SSA allocator and classic
Chaitin-Briggs are overkill. (Try linear scan?)

* SSA form provides no obvious help on spilling

¢ Shorter live ranges will produce local spilling (good & bad)

¢ May increase spills inside loops Loop-carried value cannot spill
i before the loop, since its name
* After allocation, code is still in SSA form is only live inside the loop and

after the loop.

¢ Need out-of-SSA translation
¢ Introduce copies after allocation, which may create need to spill
* Need a post-allocation coalescing phase

¢ Algorithms exist that do not use an interference graph
¢ They are not as powerful as the Chaitin-Briggs coalescing phase

TAANSTAAFL: The problem is still NP-Complete. Changing the definition of live range
does not make it solvable to optimality in polynomial time.

What About A Hybrid Approach ?

How can the compiler attain both speed and precision?

Observation: lots of procedures are small & do not spill

Observation: some procedures are hard to allocate

Possible solution:

* Try different algorithms

* First, try linear scan
¢ Itis cheap and it may work

* If linear scan fails, try heavyweight allocator of choice
¢ Might be Chaitin-Briggs, SSA, or some other algorithm

¢ Use expensive allocator only when cheap one spills

This approach would not help with the speed of a complex compilation, but it
might compensate on simple compilations

Comp 512, Spring 2015 29

An Even Stronger Global Allocator % §5

2\
Hierarchical Register Allocation (Koblenz & Callahan) K

® Analyze control-flow graph to find hierarchy of tiles

® Perform allocation on individual tiles, innermost to outermost

® Use summary of tile to allocate surrounding tile

® |Insert compensation code at tile boundaries (LRX%LRy)

Strengths Weaknesses
— Decisions are largely local — Decisions are made on local
— Use specialized methods on information

individual tiles — May insert too many copies
— Allocator runs in parallel Still, a promising idea

® Anecdotes suggest it is fairly effective

® Target machine is multi-threaded multiprocessor (Tera MTA)

Eckhardt’s MS (Rice, 2005) shows that K&C produces
Comp 512, Spring 2015 better allocations than C&B, but is much slower 30

Partial Bibliography

* Briggs, Cooper, & Torczon, “Improvements to Graph Coloring Register
Allocation,” ACM TOPLAS 16(3), May, 1994,

* Bernstein, Goldin, Golumbic, Krawczyk, Mansour, Nashon, & Pinter, “Spill Code
Minimization Techniques for Optimizing Compilers,” Proceedings of PLDI 89,
SIGPLAN Notices 24(7), July 1989.

* George & Appel, “Iterated Register Coalescing,” ACM TOPLAS 18(3), May,
1996.

* Bergner, Dahl, Engebretsen, & O’Keefe, “Spill Code Minimization via
Interference Region Spilling,” Proceedings of PLDI 97, SIGPLAN Notices 32(6),
June 1997.

* Cooper, Harvey, & Torczon, “How to Build an Interference Graph,” Software—
Practice and Experience, 28(4), April, 1998

* Cooper & Simpson, “Live-range splitting in a graph coloring register allocator,”
Proceedings of the 1998 International Conference on Compiler Construction,
LNCS 1381 (Springer), March/April 1998.

Comp 512, Spring 2015 31

