Comp 512
Rice University
Spring 2015

Lessons from Fifteen Years of Adaptive Compilation

Keith Cooper, Tim Harvey, Devika Subramanian, and Linda Torczon, with
Phil Schielke, Alex Grossman, Todd Waterman, and others

Funding from DOE, Microsoft, Tl, and DARPA.

This lecture differs from the others given this semester in that it is explicitly a history of the
work done at Rice between 1995 and 2010.

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Thesis

Compilers that adapt their optimization strategies to new applications and
new targets should produce better code than any single-strategy compiler

* This idea was novel when we first stated it in 1997

* |tis now accepted as (almost dogmatically) true

¢ For scalar optimizations, difference is 20 to 40%

* We spent a decade working on schemes that let the compiler adapt its
behavior to specific applications

¢ Search space characterization & algorithm development

¢ Parameterization & control of optimizations

* This talk will try to distill some of that experience & insight

COMP 512, Rice University 2

Let’s Make Optimization Cost Much More

We noticed that, paradoxically, (1) Moore’s law made cycles cheaper, and *
(2) compiler writers were focused on the asymptotic complexity of
algorithms and compilers

* Given more cycles, compiler would declare victory & quit

* Fraction of peak performance was fal‘lﬁg’\ Retired ops

¢ 51to 10% is considered good on commodity processors second

* In some contexts, customers will pay for performance
¢ High-performance scientific computation (e.g., ATLAS)

¢ Embedded systems
¢ Reconfigurable devices & application-specific hardware

* The key is to spend those extra cycles profitably

¢ Slower algorithms are obviously the wrong answer

COMP 512, Rice University 3

History

In the beginning, compilers used a single, predetermined strategy to
compile every application

_,| Front R Index R Code | Flow Register | || Final
End Optimiz'n Merge Analysis Alloc’n Assembly
bookkeeping
Front End Optimizer Back End

Fortran Automatic Coding System, IBM, 1957

* Compiler writers chose strategy when they designed the compiler

* Better compilers offered compile-time flags to modify behavior
* State of the art, 1957 to 1989

COMP 512, Rice University

History

In the beginning, compilers used a single, predetermined strategy to
compile every application

Front | Index R Code R Flow | Register | _ Final
= g S i | Merge [. > > —
End Optimiz'n g Analysis Alloc’n Assembly
bookkeeping
Front End Optimizer Back End
Fortran Automatic Coding System, IBM, 1957
To Recap:

* Compiler designers decided how to optimize your application years before you
wrote it!

* Doesn’t that seem a bit like fortune telling? y o)
Modern compilers have the

same basic structure ...

COMP 512, Rice University

History

First steps toward adaptive behavior in compilers

* Run multiple heuristics and keep the best result
¢ Bernstein et al. with spill-choice heuristics
¢ PGI i860 compiler ran forward & backward schedulers
¢ Bergner, Simpson, & others followed ...
* Randomization & restart
¢ Briggs duplicated Bernstein’s results by renaming
¢ Schielke studied instruction scheduling & allocation
— Large scale studies with iterative repair
— Grosul’s thesis has >200,000,000 runs behind it ...
* Automatic derivation of compiler heuristics
¢ Palem, Motwani, Sarkar, & Reyen used a-f3 tuning
¢ Amarasinghe et al. used genetic programming

¢ Waterman used search over space of heuristics

COMP 512, Rice University

(1989)
(1991)

(1991)

(1995)
(2005)

(1995)
(2003)
(2005)

History

Our work to date

Finding good application-specific optimization sequences

Design & evaluation of search strategies

¢ Large-scale studies of search-space structure & algorithm effectiveness (hundreds
of thousands of trials)

¢ Genetic algorithms, hill climbers, greedy constructive algorithm, GNE, pattern-
based direct search

Discovering optimization parameters for good performance

Adaptation within transformations
¢ Inline substitution, register coalescing

¢ Loop fusion, tiling, unrolling

Design of effective parameter schemes

¢ Waterman’s work on inline substitution

COMP 512, Rice University 7

Roadmap

* Problems we have attacked

Search space characterization

Search algorithms

Parameterization is important

Lessons we have learned

Future work

COMP 512, Rice University

Some Sample Adaptive Compilation Problems

We have worked on a number of problems in this area

* Finding good optimization sequences

¢ Program-specific or procedure specific

Finding good optimization parameters

¢ Block sizes for tiling, loop unrolling factors

Loop fusion & tiling

¢ Choosing loops to fuse and tiling them

Inline substitution

¢ Deriving good program-specific inlining heuristics

Adaptive coalescing of register-to-register copies

¢ Unifying multiple heuristics in an adaptive framework

COMP 512, Rice University

Finding Optimization Sequences

Prototype adaptive compiler (1997 to 2007)

4)

Executable

Vary parameters

Steering
Algorithm

A

Objective
function

* Treat set of optimizations as a pool

* Use feedback-driven search to choose a good sequence
* Performance-based feedback drives selection

¢ Performance might mean speed, space, energy, ...

COMP 512, Rice University 10

Our Approach

We took an academic’s approach to the problem
* Experimental characterization of subset search spaces
* Use properties we discover to derive effective searches

* Validate the characterization by running the new search algorithms in the
full space

COMP 512, Rice University 11

Our Approach Applied to Sequence Finding

We took an academic’s approach to the problem

* Experimental characterization of subset search spaces
¢ Full space was 16 opts, strings of length 10 (1,099,511,627,776 strings)
¢ Enumerated space of 5 opts, strings of length 10 (9,765,625 strings)

¢ Compiled and ran some small codes with each sequence

COMP 512, Rice University 12

What Have We Learned About Search Spaces?

We confirmed some obvious points adpcm-coder, 5% space, plosn

These spaces are:

®* Not convex, smooth, or Millions
differentiable 2

® |ittered with local minima at
different fitness values

W
® program dependent 15 7

10

p: peeling

|: PRE

o: logical peephole

s: reg. coalescing

n: useless CF elimination

Characterizing the Spaces
COMP 512, Rice University 13

What Have We Learned About Search Spaces?

L L] . 1 4
We confirmed some obvious points fmin, 5% space, plosn

These spaces are:

®* Not convex, smooth, or
differentiable

® |ittered with local minima at
different fitness values

® program dependent

p: peeling

|: PRE

o: logical peephole

s: reg. coalescing

n: useless CF elimination

COMP 512, Rice University

1800
1700
1600
1500
1400
1300 4
1200
1100

1000

Characterizing the Spaces

14

What About Presentation Order?

Clearly, order might affect the picture ...

Millions
25

i il‘gmﬁ‘é
fi "\Yy "' -..:,?;;nw

“:']’y M h

20

15

’——-"‘_

COMP 512, Rice University

Millions

25

20

15

10

adpcm-coder, 54 space, plosn

Both Programs & Optimizations Shape the Space

Two programs, same set of optimizations

Distribution relative to the best value

zeroin+plosn —— fmin+plosn
8.00% .
p: peeling
7.00% |: PRE
o: logical peephole
6.00% s: reg. coalescing
- n: useless CF elimination
£
E 4.00%
. => Range is 0 to 70%
¢ 3.00%
=> Can approximate distribution
2.00% with 1,000 probes
1.00% M
0.00% L, A M I,
o o o S o Y S S @
distance from the best value Big Hint: 1,000 probes should

find a good solution

Characterizing the Spaces

COMP 512, Rice University 16

Both Programs &

Same two programs,

Optimizations Shape the Space

another set of optimizations

Distribution relative to the best value

zeroin+pdxnt — fmin+pdxnt
8.00% .
p: peeling
7.00% d: dead code elimination
n: useless CF elimination
6.00% x: dominator value num’g
0% t: strength reduction
g
E 4.00%
I o => Range is compressed (0-40%)
=> Best is 20% worse than best
2.00% in uplosnn
1.00%
0.00% JM\J
oF o7 9 ¥ oY 6V Y 0¥ o8 0¥ 6% &% oY @ oY 6°

COMP 512, Rice University

distance from the best value

Characterizing the Spaces

17

What Have We Learned About Search Spaces?

Many local minima are “good”

Local minima distribution for fmin+plosn Many local minima
. 258 strict
W strict .
non-strict 27,315 non-strict
10000
(of 9,765,625)
1000

Lots of chances for a
100 search to get stuck
in a local minima

Frequency (logarithmic scale)

10

1
0.00% 240% 479% 7.19% 9.58% 11.98% 1437% 16.77% 19.16% 21.56% 23.95%

Distance from global minimum

Characterizing the Spaces
COMP 512, Rice University 18

What Have We Learned About Search Spaces?

Distance to a local minimum is small

Distribution of the # of steps to local minima for fmin+plosn Downhill walk halts
2000000 quickly
1500000 Best-of-k walks

should find a good
minimum, for big
1000000 enough k

Frequency

500000

Characterizing the Spaces

COMP 512, Rice University 19

Our Approach Applied to Sequence Finding

We took an academic’s approach to the problem

* Experimental characterization of subset search spaces
¢ Full space was 16 opts, strings of 10 (1,099,511,627,776 strings)
¢ Enumerated space of 5 opts, strings of 10 (9,765,625 strings)
¢ Compiled and ran code with each sequence

* Use properties we discover to derive effective searches
¢ These search spaces are ugly
¢ Many good solutions, steep downhill slopes
¢ Derived impatient HC, better GAs, greedy algorithms, GNE

* Validate by running the new search algorithms in the full space
¢ Large scale experiments reported in Grosul’s thesis
¢ Reduced 20,000 probes (1997) to a couple hundred (now)

¢ 20% to 40% improvement in runtime speed
7_' 10% for space

8% for bit transitions

COMP 512, Rice University 20

Roadmap

Problems we have attacked

Search space characterization

Search algorithms

Parameterization is important

Lessons we have learned

Future work

COMP 512, Rice University

21

Search Algorithms: Genetic Algorithms

Original work used a genetic algorithm (GA)
* Experimented with many variations on GA

* Favorite was GA-50
¢ Population of 50 sequences
¢ 100 evolutionary steps (4,550 trials)

* At each step
¢ Best 10% survive
¢ Rest generated by crossover

— Fitness-weighted reproductive selection

— Single-point, random crossover

¢ Mutate until unique

Original GA ran 20,000 evaluations.

COMP 512, Rice University

GA-50 finds best sequence within
30 to 50 generations

Difference between GA-50 and
GA-100 is typically < 0.1%

This talk shows best sequence
after 100 generations ...

Makes it a search, rather than a
simulation of evolution

Search Algorithms
22

Search Algorithms: Hill climbers

Many nearby local minima suggests descent algorithm
* Neighbor = Hamming-1 string (differs in 1 position)
* Evaluate neighbors and move downhill

* Repeat from multiple starting points

* Steepest descent = take best neighbor
* Random descent = take 15t downhill neighbor (break ties randomly)

* Impatient descent = random descent, limited local search

¢ HC algorithms examine at most 10% of neighbors
¢ HC-10 uses 10 random starting points, HC-50 uses 50

Search Algorithms
COMP 512, Rice University 23

Search Algorithms: Greedy Constructive

Greedy algorithms work well on many complex problems

How do we create a greedy search?

1. start with empty string
2. pick best optimization as 15t element

3. fori=2tok
try each pass as prefix and as suffix

95 evaluations for
keep the best result

10-of-5 space

Algorithm takes k- (2n-1) evaluations for a string of length k
Takes locally optimal steps {

Local minimum under a

Early exit for strings with no improvement different notion of neighbor

Search Algorithms
COMP 512, Rice University 24

Search Algorithms: Greedy Constructive

Successive evaluations refine the string

15t pass 2" pass
Sp
ps
sl
P I
| S
© ‘ S ‘ N ‘ sn ‘
S oS
n SS
winner sn winner
ns

COMP 512, Rice University

3" pass

snp
psn
snl
Isn
sno
osn
sns
snn
nsn

- o

winner

25

Search Algorithms: Greedy Constructive

Unfortunately, ties (equal-valued choices) pose a major problem
* Ties can take GC to wildly different places
* Have experimented with three GC algorithms

¢ GC-exh explores pursues all equal-valued options

¢ GC-bre does a breadth-first rather than depth-first search

¢ GC-n breaks ties randomly and use n random starting points

adpcm-d GC-exh GC-bre GC-50
Sequences checked | 91,633 325 2,200
Code speed 1.0 + 0.003% +2%

* Yi Guo developed GNE, a greedy variant that does a more careful search of
local neighbors. In preliminary tests, it outperforms greed constructive

Search Algorithms
COMP 512, Rice University 26

Search Algorithms: Pattern-based Direct Search

Qasem has shown that PBDS does well in the search spaces that arise in
loop-fusion and tiling

* Deterministic algorithm that systematically explores a space

¢ Needs no derivative information
¢ Derived (via long trail) from Nelder-Meade simplex algorithm
¢ For<p,p,ps..,p,> examines neighborhood of each p,
— Systematically looks at <p,*+s,p,*s,p;%s,...,p,*s>
— Finds better values (if any) for each parameter, then uses them to compute a new point
— When exploration yields no improvement, reduces s
* For fusion and tiling, it outperforms window search, simulated annealing, &
random search

¢ Good solutions for fusion & tiling in 30 to 90 evaluations

Random does surprisingly well,
suggesting that the space has
many good points

COMP 512, Rice University 27

Roadmap

Problems we have attacked

Search space characterization

Search algorithms

Parameterization is important
* Lessons we have learned

®* Future work

COMP 512, Rice University

28

Inline Substitution

The transformation is easy
* Rewrite the call site with the callee’s body

* Rewrite formal parameter names with actual parameter names

Safety
* Aslong as the IR can express the result, it should be safe

* Semantics does not address the number of copies of a procedure in the
executable code

Profitability
* The obvious profit comes from eliminating call overhead

* The complications arise from changes in how the code optimizes

Opportunity

* Most implementations traverse the (partial) call graph & look at each edge

COMP 512, Rice University 29

Inline Substitution

The transformation is easy
* Rewrite the call site with the callee’s body

* Rewrite formal parameter names with actual parameter names

The decision procedure is quite hard

* At a given call site, profitability depends on the extent to which the callee
can be tailored to the specific context

¢ Performance can improve or degrade
* Resource constraints limit the amount of inlining
¢ Experience suggests register demand is important

¢ Code size (whole program & current procedure) play a role

— Excessive code growth leads to excessive compilation time

* Each decision affects profitability & resource use of other call sites

COMP 512, Rice University 30

Inline Substitution

Choosing which call sites to inline is hard

* Performance of transformed code is hard to predict

COMP 512, Rice University

31

N ~
an edge E (p.q) (1.e. a call site in function p which calls function g in the call \
graph).!

cycle 2alOgE (5 q) N
t ture s, (poy = —————oipa} (1)
EMPETATUTeE. (p.y S1ze .."(n'mv \ %
where:

fregepe) . cule-conty Compute a “temperature” for each
call site

cycle_ratiog, (, o = (2)

freg, Total eycle _count
freqe p.o) 18 X_h«.- frequency of the n..l.u;- Ei(p.q) and freg, is the overall execu-
tion frequency of function ¢ in the training execution.

Total cycle_count is the estimated total execution time of the application:) CO m p I icated CO m p utatio n

Total cyele_count = Z eycle _count), (3)

T * Single number to characterize

PUset is the set of all program units (2.¢. functions) in the program. cyele _count,,

18 the estimated number of cycles spent on function ¢ ea C h Site

cycle counly, = Y Sreq, (4)

| o e, | ~* |nline sites that are hotter than
where stmfs, is the set of all statements of function q. freq, is the frequency
of execution of statement 1 in the training rn. h h |d
Furthermore, the overall frequency of execution of the callee ¢ is computed SO me t res O

by:

= Y freas » ® Tuning implies choosing the

A€ callevs

where callers, is the set of all functions that contain a call to q. th res h O I d

Essentially. cyele_ratio is the contribution of a call graph edge to the ex-
ecution time of the whole application. A functions cycle count s the exe
cution time spent in that function, including all its invocations. ('r"‘,‘;‘;‘l_\" ¥
eyele Lounty) 18 the number of cycles contributed by the callee q invoked by the
edge Ei(p.q). Thus, cyele ratiog, 4 18 the contribution of the eveles resulting

from the call site E:(p.q) to the application’s total cycle count. The larger the °
cycleyatiog 0y 15, the more important the call graph edge. Expla natlon actua I Iy goes

CT R

s satin = g S ® on for another half page

Total application size is the estimated size of the application. It is the sum
of the estimated sizes of all the functions in the application. séze,. the estimated
size of the function ¢, 18 computed by:

' Because function p may call g at different call sites, the pair (p, g) does not define
an unique call site. Thus, we add the subscript @ to uniquely identify the " call site
from ptog

From “To Inline or Not to Inline? Enhanced
Inlining Decisions” by Zhao & Amaral 37

Inline Substitution

Choosing which call sites to inline is hard

* Performance of transformed code is hard to predict

* Decisions interact
¢ Inlining A into B changes B’s properties
4 Inlining A into B might make B a leaf
* Can’t even name the call sites
¢ Inlining destroys some & creates others
* Some decisions look easy, others look hard
¢ Inline procedure smaller than linkage or called from one place

¢ Don’tinline large procedure or calls in critical loops

Existing compilers use heuristics, such as ORC’s temperature

COMP 512, Rice University

33

Inline Substitution

Benefits and Costs
* Inline substitution cures many of the inefficiencies that can arise at a call
Site
¢ Eliminates overhead
¢ Allows context-specific tailoring
¢ Eliminates disruption to analysis in both caller and callee
* Inline substitution can cause its own problems
¢ Unlimited compilation times (ignoring the MIPS story)
¢ Performance degradation
¢ Significant code growth
* There are other consequences of inline substitution ...

COMP 512, Rice University 34

Decision Procedures

Of course, the hard part is deciding what to do ...
* Decision for one call affects behavior at other sites
* Difficult to predict effects

¢ Demand for registers can cause increased spilling

¢ Inlined code can have much larger name space (analysis)
¢ Quality of global optimization may fall with procedure size

MIPSPro computes a quantitative score
¢ Gives a yes or no answer based on potential and size
* Some decisions are obvious

¢ Inline small procedures (< linkage size)
¢ Inline procedures called only once (leaf procedures)

Still room for experimental work
¢ See Cooper, Hall, & Torczon or Davidson & Holler or McKusick

See Waterman 2006

COMP 512, Rice University 35

Inline Substitution

So, how should we determine a good inline decision heuristic?

* Waterman proposed an adaptive approach
¢ His system constructs a program-specific heuristic

¢ Run once to find heuristic; use heuristic every time

Prior art

* Ad hoc heuristics based on program properties
¢ Inline leaf procedures of less than k lines
¢ Inline by call frequency until code grows by x percent

¢ Inline calls with more than one constant parameter

* Combine ad hoc heuristics into a single test applied at each call site —
applied in a fixed order based on original call graph

COMP 512, Rice University

36

Adaptive Inline Substitution Waterman 2006

Inline substitution is a natural application for adaptive behavior

® Built a demonstration system for ANSI C programs
¢ Analyzes whole program and collects data on program properties
— Nesting depth, code size, constants at call, call frequency, etc.
— Experimented with 12 properties in Waterman’s thesis

¢ Apply tunable heuristic at each call site —

— Compare actual values against parameter values

Order based on
original call graph

— Use search to select best parameter values

¢ Produce transformed source

Source)
—————» Inliner

¢ Compile, run, evaluate Code

A

Compiler

Adaptive
Control

¢ Improvements of 20% over static inliner
and 30% over original (PowerPC & Pentium)

¢ Heuristics vary by application and by target architecture

COMP 512, Rice University 37

Adaptive Inline Substitution Waterman 2006

Key design issues
* Finding a good way to parameterize the problem & the software
¢ Takes a “condition string” in CNF where each clause is a program property and a
constant, e.g.,
inliner -c “sc< 25 | Ind >0, sc < 100” foo.c
¢ Search produces a condition string that can be used repeatedly

* Search space is huge
¢ Range of values depends on input program
— Estimate the range & discretize it into 20 intervals
¢ Condition string syntax admits too many choices

¢ Designed a single format for condition strings in our experiments

Fixes the search

’ llshape"

space’s

sc<A|sc<B,Ind>0| sc<C,scc=1|
clc<D | cpc>E,sc<F|dcc>G

COMP 512, Rice University 38

Adaptive Inline Substitution Waterman 2006

Search spaces are much smoother than in sequence finding problem

W 20-21
b19-20
W18-19
017-18
016-17
W15-16
[014-15

bzip, varying sc and sc vortex, varying sc
for single-call and constants per
procedures call

* Designed search techniques for these spaces
¢ Impatient hill-climber and random restart

* And validated them experimentally

COMP 512, Rice University 39

Adaptive Inline Substitution Waterman 2006

How might we deploy these results?

* Source-to-source inliner

¢ Runs for a while and produces a CNF expression that describes a program-
specific heuristic

¢ Use the inliner on subsequent compilations with that heuristic

— |f code properties change “enough”, re-run the search

Adaptive
once —7| TInliner

Source
Code \

— heuristic

' Object
each time Fast Standard
Corizilles Code

* Tools
¢ Current implementation is an ad hoc C program

¢ Should reimplement it in Rose or something similar

COMP 512, Rice University 40

What Have We Learned?

* Adaptation finds better solutions
¢ Sequences, tiling, inlining, fusion & tiling, copy coalescing
* Search can navigate in these huge, ill-mannered spaces
¢ Down from 20,000 trials to the range of 100 to 500 trials
¢ In most spaces, can find reasonable improvements
* Specific parameterization is crucial

¢ Must find effective parameterization
— ORC’s “temperature” heuristic vs. Waterman’s CNF exprs

— Sandoval added optimization that made space much larger, but produced faster search
termination at better values

¢ With PBDS, getting parameterization right is critical (Lewis)

COMP 512, Rice University 41

What Have We Learned?

To make adaptive compilation practical, must combine lots of ideas

* Evaluation is expensive, so avoid it
4 Hash search points to avoid re-evaluation
¢ Recognize identical results (same code, different point)
¢ In many cases, simulated execution is good enough
— Fall-back position when update fails? Run the code!
* Performance measures should be:
¢ Stable (e.g., operation counts versus running time)

4 Introspective
— Have allocator report amount of spilling

— Look at the schedule for unused slots rather than execute

¢ Directly related to solution quality (if possible)

— Cache simulation for fusion & tiling

COMP 512, Rice University

42

What Have We Learned?

Selecting optimizations where internal adaptation pays off

* Consider “decision complexity” of a transformation
¢ LVN, SVN, LCM have O(1) decision complexity
— Each decision takes (small) constant time
¢ Inlining, register coalescing have huge decision complexity
— Making best decision is truly hard

¢ Hypothesize that some transformations have low-order polynomial decision
complexity
— Block cloning with size constraint?
— Loop unrolling? (num regs is a practical constraint)

* Internal adaptation makes sense when complexity of making the best
decision is high-order polynomial or worse

¢ Have studies that show good results for inlining, coalescing, and combined loop
optimization

COMP 512, Rice University 43

Future Compiler Structure

High-level opt’'ns 4 Scalar opt’ns)
N > > > > > > > > > > >
__________________ N /S X~ F) T
Front end Back end
Feedback-driven Feedback-driven
Search Execut
4 cod
(Measure
L Results
= é
Some of these passes have their own < = >
o . = (]
feedback-driven adaptive controls = >
— memory hierarchy opts, inliner,
allocator, scheduler

COMP 512, Rice University

able
e

44

Future Compiler Structure

High-level opt’ns 4 Scalar opt’ns)
_’ » » » » » » » » » » » »
__________________ N J o\ F)
Front end Back end
Feedback-driven Feedback-driven
Search Search Executlable
A A Code
(Measure
Results

The result is a compiler that uses (& manages) multiple

levels of feedback-driven adaptation

— From this structure, we have the platform to

expand into managing other parameters that
affect performance

COMP 512, Rice University

L

45

Multi-level Feedback-driven Adaptation
The PACE Compiler

Source code —

"
v

Machine

Description
A

}.
R

4" Code generation]K

/
Analy5|s and/or
Execution

adaptive controllers
COMP 512, Rice University

4’[High-level opt’n]\ Adapt've
Control

\
\
\

==

—— -

\
Low-level opt’n] | \ Adapt've . \
> -\,_ Control X
_ I

\
\

-

N o -

Some passes should provide data directly to the

Multi-level Feedback-driven Adaptation

Many open (research) questions

s
+
e
e

* Sequential approach to search source High-level Opt,n]
¢ Internal cycles run to completion
¢ Tune balance & ||’ism
¢ Fit code to architecture 3 ,

* Solve joint search problem Machine o Opth

¢ May reach solutions that cannot be Descripﬁon
reached separately

v

¢ Might be more chaotic Code generaﬁon]

* What metrics best drive changes in
machine description?

v

Analysis and/or _},_'_’_ =27

®* Proxies for actual execution

Execution

* Efficacy of search in this context

PR
el
+
-
+
»
»
5
B
&
4
o
&
5
&
%
s
5
4
;
F,
¥
J
s
I
;
J
P

v

s
4

.
H
H
v

* Replace search with learning

COMP 512, Rice University 47

Multi-level Feedback-driven Adaptation

Many open (research) questions

.
i
+
e
e

* Impact of initial machine description >°urce

code High-level opt’'n]
on search results

* Quantization of machine parameters
(num & ranges)

v

Low-level opt’'n]
¢ May raise design questions Machine

Description

* Do we have the right knobs to turn? 4
(choice & control) "'

v

. . Code generation
* What useful metrics can the compiler]

expose to the process?

v

Analysis and/or _},_'_’_ =27

* Metrics other than speed

Execution

P
el
+
-
+
»
o
o
B
&
&
o
s
5
&
%
s
5
4
;
F,
¥
J
s
I
;
J
P
v
s
4
.
H
H
v

* Quantify the improvements?

Find the answers by experimentation

COMP 512, Rice University 48

Multi-level Feedback-driven Adaptation

Long term questions

* Choice of source language

¢ How should we write applications?
¢ MATLAB? Mathematica?

* Heterogeneity in target?
¢ On-chip FPGA
¢ Multiple diverse cores

* Does available | [ism limit us?

COMP 512, Rice University

Source
code

Machine
Description
A

.
i
+
e
e

High-level opt’n]

v

Low-level opt’'n]

v’

Code generation]

\ 4

P
el
+
-
+
»
o
o
B
&
&
o
s
5
&
%
s
5
4
;
F,
¥
J
s
I
;
J
P

v

s
4

.
H
H
v

Execution

Analysis and/or _},_'_ =2

-’ -
=

49

~ - —_—— -

Conclusions

Any conclusions would be premature at this point
We’ve come a long way since 1997
* From 10,000 to 20,000 evaluations down to hundreds

* Experience across a range of problems & search techniques

* Attracted many people to working on this kind of problem

Joint hardware/software evolution is an endpoint to our search

COMP 512, Rice University 50

