Comp 512
Rice University
Spring 2015

The Swift Java Compiler

Daniel J. Scales, Keith H. Randall, Sanjay Ghemawat, and Jeff Dean, “The Swift Java
Compiler: Design and Implementation”, COMPAQ WRL Research Report 2000/2, April 2000.

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.

Background

Swift was an attempt to build a serious optimizing compiler for Java
* Translates Java bytecode into optimized assembly code for the DEC Alpha
* Alpha was a 64-bit RISC machine intended to replace the VAX-11

— Design goal was high-frequency operation, enabled by manual chip design & layout

No branch delay slots 32 Integer & 32 FP registers
No condition codes IEEE FP & VAX FP
No byte-oriented loads/stores On-chip L1 & memory controller

¢ Alpha (& Swift) were developed at DEC WRL, later Compaq WRL, later HP

* This compiler did not see much daylight. It is different than the other
“classic” compilers that we will study. We study it because of the paper.

¢ Good summary of state of the field as of 2000
¢ Compiler targets generic Java code, rather than Fortran or PL.8

4 Nice evaluation methodology

Rice University, COMP 512 2

Optimizing Java

Several characteristics of Java make optimization more difficult
* Heap allocation of all objects

* Synchronization in library routines (unnecessary in single threaded code)
* Virtual methods (slow runtime & complicate analysis)

* Required runtime checks
¢ Performing the checks slows the code

¢ Failing a check can raise an exception (more complications)

Rice University, COMP 512 3

Optimizing Java

Several characteristics of Java make optimization more difficult
* Heap allocation of all objects

* Synchronization in library routines (unnecessary in single threaded code)
* Virtual methods (slow runtime & complicate analysis)

* Required runtime checks
¢ Performing the checks slows the code

¢ Failing a check can raise an exception (more complications)

Several features of Java make it an attractive target for optimization

* Strong typing eliminates many ambiguities found in other languages
¢ Local variables are unambiguous, as are fields of objects

* No unrestricted pointers, no pointer arithmetic

* Standard classes written in Java, so they can be optimized, too

Rice University, COMP 512 4

Compiler Structure

This compiler is a full-blown optimizing compiler, rather than a JIT.

It translates Java methods from standard Java bytecodes into Alpha code,
using a large suite of analyses and transformations.

Info about Alpha

— Bytecode Program —> Indep’t Lower —> Code ode >
Bytecode to IR the IR i Gen Code
Opts Opts Motion
Profile Info on Other Instruction Register Instruction
—> —> —>
Data Methods & Classes Scheduler Allocator Selection

Classic Compiler Structure
This compiler is more complex than a typical JIT.

Some kind of
repository or
“cache”

* Ambitious whole method and cross-method optimization

* Some mechanism to preserve information across compilations

Rice University, COMP 512

Swift Compiler’s IR

Swift has a multi-level IR (similar to Fortran H and PL.8)
* Operations represented in Static Single Assignment Form

¢ They discuss SSA as a graph; it can just as easily be viewed as a linear form
¢ Each node in the graph represents an SSA name (or value)
— Node has an operation & operand (edges to other nodes)

¢ Aset of nodes has an implicit partial order from the definition-use relationship

. :
Several kinds of ops Representation of calls

¢ Simple arithmetic ops simplifies method inlining

¢ Abstract ops such as phi, field accessors, allocation, invocation, various checks

¢ Low-level, machine-dependent ops that map directly to Alpha ops (100 or so)
* Bytecode to IR pass builds SSA

¢ Performs some local optimizations
* Lowering pass translates into low-level ops, when appropriate

¢ Performs logical peephole optimization over edges in SSA graph

Rice University, COMP 512 6

Swift Compiler’s IR

The Swift IR includes a Control-Flow Graph (CFG)

* Nodes in the CFG represent basic blocks
¢ Maximal length sequences of straight line code — a set of SSA value nodes
¢ Each block ends with a transfer of control, including exception behavior

¢ Block has a control value that determines whether or not it executes

— Encodes simple notion of control dependence — blocks are partially ordered, too
* Edges in the CFG represent transfers of control
¢ Edges for both normal transfers and exception-triggered transfers

* Swift breaks all critical edges to simplify later optimizations

Y B AD is a critical edge
— A has multiple successors
\ — D has multiple predecessors
(-: To break AD, insert an empty
D

block at mid-edge

Rice University, COMP 512 7

Swift Java IR’s Memory Model

In Swift Java IR, every SSA name is a local, unambiguous value

Edges between use & def encode precise dependences for local scalars

Global variables and heap-allocated objects may be ambiguous

¢ Swift represents these values with explicit read and write operations

— Fields of class objects or instance objects No deliberate SSA edges between
— Array elements memory ops to represent order.

¢ Compiler must maintain relative ordering of the reads and writes

— Cannot move definition of a location past a read of that location (in either direction)
To represent this constraint, Swift introduces a global store
¢ Write operation takes global store as operand and produces a new one as result
¢ Read operation takes global store as operand
¢ Effectively serializes the store operations by threading them together in the SSA

¢ Anti-dependences must be enforced by the scheduler

The authors emphasize the IR memory model

Rice University, COMP 512 8

The Problem with Stores & Loads

In general, a compiler must maintain the ordering of loads and stores
implied in the source code, unless it can prove that the memory accessed
by the reordered stores is disjoint.

* SSA does not have an edge that connects two memory operations that
access the same location

¢ If they use the same SSA value as the address, they are transitively connected
¢ If they recompute the address, they are not connected
* Load-store & store-load order matter; load-load order does not
¢ The compiler must maintain the serial order of stores
¢ The compiler cannot move a load past a store, in either direction
* The Swift compiler introduces a global store to enforce true dependences
¢ Writes consume a global store and produce a new one
¢ Reads consume a global store

¢ The SSA edges on the store enforce the correct order of memory operations

Rice University, COMP 512 9

Analysis and Optimization

They implemented a large set of analyses and transformations

Interprocedural Analyses

Interprocedural Opts

Machine Dependent Opts

Alias Analysis

Class Hierarchy Analysis
Escape Analysis

Field Analysis

Type Propagation

Interprocedural Opts

Method resolution
Method inlining
Method splitting
Object inlining
Stack allocation

Synchronization removal

Bound check removal
Branch removal
Constant propagation
Dead code elimination
Global CSE

Global code motion
Loop peeling

Null check removal
Peephole optimization
Strength reduction

Type test elimination

Lower IR

Peephole optimizations
Sign-extension elimination
Trace scheduling

Register allocation

Block layout

Final code generation

10

Experimental Evaluation

Platform High speed for 2000
* Alpha 21264 Processor at 667 MHz

¢ Separate 64 KB L1 | & D caches, 4 MB unified, off-chip, L2 cache
* Workstation running Compag/DEC version of Unix (Tru64 Unix)

* High-performance JVM with a “quite good” JIT
Their JVvM plays some

Benchmarks cute tricks, too.
* Specl]VM98 plus others

* Compared execution times, in seconds, under a variety of scenarios

Compile time
* Swift compiles at 1800 to 2200 SLOC per second on the Alpha

¢ That is without escape analysis (+ sync removal & stack allocation)

¢ Those features slow down compilation by 20 to 40%

Rice University, COMP 512 11

Experimental Evaluation

Name
compress
jess
cst
db
si
javac
mpeg
richards
mtrt
jack
tsgp
jlex

Problem Domain
text compression
expert system
data structures
database retrieval
interpreter
Java compiler
audio decompressor
task queues
ray tracing
parser generators
genetic programming
scanner generator

JVM
sLocs Time (secs)
910 12.68
9734 4.97
1800 8.02
1026 17.73
1707 8.09
~ 18000 5.80
~ 3600 10.63
3637 8.09
3952 4.69
~ 7500 5.92
894 35.89
7569 4.96

Speedup over JyM

JVM is their optimized JVM running bytecode.

Swift times are compiled code, loaded into their
optimized JVM.

Rice University, COMP 512

Swift Run Time (secs)

w/o CHA
9.61
4.35
5.97

15.62
6.48
7.57
5.74
8.52
5.11
5.27

25.70
4.10
1.21

w/s-CHA
8.72
4.17
5.65
12.73
5.93
7.14
5.60
5.30
2.09
4.90
24.10
3.84

1.43

w/CHA
9.66
4.12
5.38
12.44
6.33
7.00
5.68
4.69
1.59
4.96
24.05
2.95

1.52

Table 1 from the paper

12

Experimental Evaluation

Optimizations

inl ' cha @ fld objinl split stk @ sync | sr cse | gecm | peel ckelim selim br
compress | 1.16 | 1.20 1.16 1.09 | 1.06 1.04
jess 1.07 | 1.09 1.04 1.03 1.04
cst | 1.08 1.04 1.05 1.07
db 105 1.26 | 1.04 | 1.03 1.03 | 1.04 1.03
si 1.27 | 1.14 1.05 | 1.04 | 1.06 | 1.16 1.12 1.04 | 1.09
javac 1.09 1.09
mpeg 1.07 1.13 1.05 1.35
richards 1.40 | 1.76 1.11
mtrt 1.57 | 2.68 1.27 | 1.16 1.13 1.09 1.06
jack 1.05
tsgp | 1.03 | 1.05 1.12 | 1.05 1.05
jlex | 1.22 | 1.19 1.15 | 1.18 1.15

Entries represent the percent slowdown, from the Swift

Runtime with CHA number in Table 1, when the
optimization corresponding to that column is disabled.

Rice University, COMP 512

Table 2 from the paper

13

Take-Away Points

* Optimizing Java requires some different analyses, but the compiler
looks quite similar to Fortran H and PL.8

* IR design has a large influence on how well the compiler works
¢ You must represent it to optimize it!

* Decent selection of algorithms and techniques

* Interesting evaluation method
4 Subtracting optimizations from the full set to see their impact

¢ Different results than you might see in an additive test

¢ Multiple transformations might catch the same effect (e.g., GCSE & code
motion)

Rice University, COMP 512 14

