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Smalltalk-80

The System (Learning Research Group at PARC)
* Object-oriented language

®* Dynamic class structure (changeable at any point)

Defined with interpretive semantics and “feel”

Aimed at rapid prototyping

Distributed as monolithic bytecode image

Prior Art for Smalltalk-80
* Smalltalk-80 ran on a Dorado (8172 microcoded EcL engine)
* Strictly interpretive system (+, -, x)

* Custom microcode supporting the bytecode interpreter

* High-performance interpreter = custom hardware
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Smalltalk-80

The Language

* Object-oriented language (everything is an object)

* Simple, selector-oriented syntax

* Complete, hierarchical class structure with single inheritance

* Dynamic class structure (can change at run-time)

* Every object has local, protected storage (instance variables)

* No declarations

* Dynamic binding

* Small procedures (methods)

* Frequent, expensive calls (message sends)

Smalltalk-80 was an attempt to create a Smalltalk for the masses

COMP 512, Rice University | Alan Kay envisioned Smalltalk as the programming language for the Dynabook.
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Smalltalk-80

The Environment
* All tools written in Smalltalk-80 (> decade of work)
* Bytecode image includes all tools, in malleable, source form

* Whole system compiles to bytecode

* Implementation consists of virtual machine + bytecode image

The Philosophy (pseudo-religious tenet )

* Bytecode distribution limited implementation effort for complex system
¢ Assumed that target machines could achieve reasonable performance
* Implementors were not to change the bytecode image

¢ Implementation consisted of building the Smalltalk-80 virtual machine

* Series of books on the various aspects of system
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Smalltalk-80

What’s the problem?
* System was slow, except on a Dorado

* Response time was critical to Smalltalk’s “feel”

All the classic problems of an interpreter
¢ Fetch-decode-execute in software
¢ Stack-based virtual machine running on CISC hardware

4 No cross-operation optimization

All the classic problems of a dynamic ool
¢ Dynamic class structure = full lookup on every call

¢ Deallocation via reference counting

Deutsch’s target was a $7,000 SUN Workstation

* Wanted to make it compete with a Dorado
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Brief Interlude

What’s hard about compiling an ooL?

* |n Smalltalk-80, the entire environment is malleable
¢ User can change (effectively) any method at any time
¢ Class structure can change at runtime

¢ All message sends (method calls) require the full search in the class hierarchy

* Key inefficiency in Smalltalk-80 was the overhead of method lookup

¢ To attack this, people have tried:
— Static analysis to predict class types (CHA)
— Inline substitution to create cases that can be analyzed

— Language design to force most method calls to be statically predictable (C++)

¢ None of these options work well in Smalltalk-80, because of malleability

* |In Smalltalk-80, activation records are objects (ref. counted)
¢ Increases the cost of message send (method call) after we’ve resolved callee

¢ Pervasive OOP meant that even operators (+,-,*,/) were method calls

COMP 512, Rice University As we will see, Deutsch & Schiffman solved most of the efficiency problems.
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Smalltalk-80

Goal: efficient bytecode execution

Strategy
* Overcome interpreter overhead by compiling
* Use multiple representations for high-impact run-time structures

* Capitalize on data & code locality

Virtual machine code (bytecode)
Tactics
* On-the-fly translation of v-code into n-code
* Implement contexts (ARs) based on use Native code (68010)
* Clever method caching to speed lookups

* Extend scope of translation across multiple bytecodes
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Overhead of Interpretation

Dynamic Translation
* Every bytecode needs a fetch-decode-execute cycle
* Virtual machine is a stack machine (code size)

* No cross-bytecode optimization

Key Insights

* |t can be faster to generate native code & execute it than to interpret
bytecodes (with the appropriate tricks)

* Performs fetch-decode-execute in hardware (not software)

If compiling is a priori profitable, can discard code as needed

Once the system is compiling, it can perform minor optimization

An object can only be accessed from code visible to its class

Philosophically, this idea differs from a current-day JIT, in that the compiled code is viewed as a transitory
artifact — hence the term throwaway code generation. It might be closer to Dynamo, where they flushed
the code cache periodically to exploit phase behavior. 8




Overhead of Interpretation

Dynamic Translation

. . This system is one of the first JITs !
* Always compile before execution

Simple, fast translation

5x code expansion (still faster to execute)

Cache code when memory is available

* Discard code when memory is needed (discard rather than page)
* Simplified mapping v-address < n-address (limited breakpoints)
Code quality

* Cross-bytecode optimization helps

* Example: eliminating reference count updates

Deutsch & Bobrow already showed
how to eliminate ref counts on locals
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Access to High-impact Run-time Structures

Contexts (activation records) are heavily accessed

85% of contexts are created by a call, never explicitly referenced, and freed
by a return

Use three representations
* Stack-based (or volatile) representation for executing methods
* Smalltalk-80 virtual machine form (or stable) for direct access
* Hybrid form that is visible, but not accessible
All closures are created
. in stable form
Implementation
* Translate between them as needed
® Use classes to set run-time traps
* Less than 10% of contexts ever take non-volatile form

* Only reference count non-volatile
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Capitalizing on Locality

Prior Art
* Single-probe, hashed “method cache”
* Attains 85 to 90% hit ratio, for improvements of 20 to 30%

Inline method caches
They kept the global cache

* Single-element cache at each send site to speed full lookups
¢ Last receiver class + code pointer
4 Class changes = perform full lookup

* Attains 95% hit ratio, for 9 to 11% improvement over global cache

Mechanism

. Self modifying code — store the last
* Generate sends unlinked class & last method inline
* First call does lookup & link

* Method checks stored class & invokes full lookup on miss
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Results

On “Krasner” Benchmarks

Strategy Space Time

Interpreter 1.00 1.000

Simple translator, no inline cache 2.35 0.686 31%
Simple translator, inline cache 3.45 0.625 18 %
Optimizing translator, no inline cache 5.00 0.564 « 9%
Optimizing translator, inline cache 5.03 0.515 48.5 %

* Interpreter = straight forward implementation
* Simple translator = macro expansion into n-code

* Optimizing translator = peephole optimization, TOS in register
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Summary

Novel Approach to OOL Execution
* Throw-away generation of native code (JIT)

* Applies a couple of carefully chosen ideas

Evaluation

Standards of experimental evaluation are primitive by today’s norms

Real evaluation: made Smalltalk-80 practical on a SUN 1.5

Near-Dorado performance

Marked the beginning of the end for custom hardware

“We have achieved this performance by careful optimization of the observed
common cases and by plentiful use of caches and other changes of representation”
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