Comp 512
Rice University
Spring 2015

Runtime Optimization

As Typified by the Dynamo System

V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A Transparent Dynamic Optimization
System,”, PLDI 2000, June 2000, pages 1-12.

Copyright 2015, Keith D. Cooper & Linda Torczon, all rights reserved.

Students enrolled in Comp 512 at Rice University have explicit permission to make copies of these
materials for their personal use.

Faculty from other educational institutions may use these materials for nonprofit educational purposes,
provided this copyright notice is preserved

Citation numbers refer to entries in the EaC2e bibliography.




What is “Dynamic Optimization”?

And why should it be profitable?

* Run-time adaptation of the code to reflect run-time knowledge
¢ Constant values, variable alignments, code in DLLs
¢ Hot paths (dynamic as opposed to averaged over entire run)
* If the code is performing poorly ...
¢ Correct for poor choice of optimizations or strategy
¢ Correct for poor data layout
* If the code is performing well ...
¢ Straighten branches

¢ Perform local optimization based on late-bound information

Dynamo is an excellent example of these effects

COMP 512, Rice University 2




The Dynamo System

Runs on HP PA-8000 RISC processor emulating an HP PA-8000
* Focuses on opportunities that arise at run time
* Provides transparent operation

¢ No user intervention, except to start Dynamo

¢ Interprets cold code, optimizes & runs hot code

— Has high overhead in interpretive code

¢ Speedup on hot code must cover its overhead
* Key notions

¢ Fragment cache to hold hot paths

¢ Threshold for transition from cold — hot

¢ Branch straightening

Note that you could use this kind of technology to do emulation as well

=> Speed doubler for the Mac

COMP 512, Rice University




How does it work?

l

Interpret until Lookup branch
P — P — start of trace?

no

taken branch target in cache miss
A
lhit lyes
no
Jump to cached Counter for br. Counter >
fragment target ++ hot threshold

lyes

‘ Interpret + code
gen until taken

branch

l Fragment
Cache

a
\ 4

Signal
Handler

Emit, link, & Create & opt’ze
N <— end of trace?
recycle counter new fragment

COMP 512, Rice University




How does it work?

\ 4 no ‘

Interpret until Lookup branch Interpret cold code until the code takes a
—> —>

taken branch target in cache miss | Pranch
1 lhit Target is in fragment cache?
Yes = jump to the fragment
J t hed .
HMP 10 cacne No|=> decide whether to start a
fragment
\ / new fragment
g%’ . . v Fragme Cold code is interpreted (slow)
e Cache Hot code is optimized & run (fast)

Emit, link, &
recycle counter

<— Hot must make up for cold, if system is to be
profitable ...

COMP 512, Rice University 5




Start of trace
How does it work? => Target of backward branch (loop header)
=> Fragment cache exit branch

l
Interpret until Lookup branch / \
P —”] p — start of trace?
taken branch target in cache miss
A
lhit lyes
no
Jump to cached Counter for br. Counter >
fragment target ++ hot threshold
| N— R

If “start of trace” condition holds, bump trace’s counter
If the counter > some threshold value (50)

Move into code generation & optimization phase to convert code into
an optimized fragment in the fragment cache

Otherwise, go back to interpreting
Counter forces trace to be hot before spending effort to improve it

COMP 512, Rice University 6




End of trace
How does it work? => Taken backward branch (bottom of loop)
=> Fragment cache entry label

To build an optimized fragment:
Interpret each operation & generate low-level IR code

Encounter a branch?
If end-of-trace condition holds

create & optimize the new fragment
emit the fragment, link it to other fragments, & free the counter

Otherwise, keep interpreting ...
/ lyes \
| Fraement Interpret + code
8 gen until taken

CEIENE branch

A
A 4

Signal
Handler

Emit, link, & Create & opt’ze
N <— end of trace?
recycle counter new fragment

- /

COMP 512, Rice University 7




How does it work?

l

Interpret until Lookup branch
P — P — start of trace?

no

taken branch target in cache miss
A
lhit lyes
no
Jump to cached Counter for br. Counter >
fragment target ++ hot threshold

lyes

_ 5 l ‘ Interpret + code
S5 _ . Fragment ,
oo > gen until taken
» o Cache
I branch
Moving code fragment into the cache

Emit, link, &
recycle counter

* End of fragment branch jumps to stub that
jumps to the interpreter ...

COMP 512, Rice University




Overhead

Dynamo runs faster than native code
* Overhead averages 1.5% (Spec Int 95 on HP PA-8000)
* Most of the overhead is spent in trace selection
¢ Interpret, bump target counters, test against threshold
¢ Optimization & code generation have minor cost
* Dynamo makes back its overhead on fast execution of hot code
¢ Hot code executes often
¢ Dynamo must be able to improve it
* Design of trace selection lowers its overhead via speculation
¢ Only profiles selected blocks (targets of backward branches)

¢ Once counter > threshold, it compiles until “end of trace”
— No profiling on internal branches in the trace

— End of trace relies on static properties

COMP 512, Rice University 9




Effects of Fragment Construction

) call ¢

COMP 512, Rice University

Profile mechanism identifies A as
start of a hot path

After threshold trips through A,
the next path is compiled

Speculative construction method
addsC,D, G, |,J, &E

Run-time compiler builds a
fragment for ACDGIJE, with exits
for B, H, &F

10




Effects of Fragment Construction

From the —;‘ A
interpreter

*
/>F—<
Back to the e B*

interpreter
/ H*
—

COMP 512, Rice University

A

A

Hot path is linearized

¢ Eliminates branches

¢ Creates superblock

¢ Applies local optimization
Cold-path branches remain
¢ Targets are stubs

¢ Send control to interpreter
Path includes call & return
¢ Jumps not branches

¢ Interprocedural effects
Indirect branches

¢ Speculate on target

¢ Fall back on hash table of branch
targets

11




Sources of Improvement

Many small things contribute to make Dynamo profitable
* Linearization eliminates branches
* Improves TLB & I-cache behavior

* 2 passes of local optimization

¢ Redundancy elimination, copy propagation, constant folding, simple strength
reduction, loop unrolling, loop invariant code motion, redundant load removal

(spill code?)
¢ One forward pass, one backward pass

4 Linear code with premature exits
— Dynamo appears to split traces at an intermediate entry points

— Fragment linking should make execution fast while splitting stops code motion across
intermediate entry point
* Keep in mind that “local” includes interprocedural in Dynamo

Engineering detail makes a difference

COMP 512, Rice University 12




Redundant Computations

Some on-trace redundancies are easily detected
* Trace definesr,
* Definition may be partially dead
¢ Live on exit but not trace = move it to the exit stub
¢ Live on trace but not at early exit = move it below the exit
* Implies that we have LIVE information for the code
¢ Collect Live sets during backward pass
¢ Move partially dead definitions during forward pass
¢ Store summary LIVE set for fragments

¢ Allows interfragment optimization

YCan we know this?
— Only if exit is to a fragment rather than to the interpreter.

— Otherwise, must assume that definition is LIVE on each exit

COMP 512, Rice University 13




Block B meets “start of trace”

Fragment Linking condition (exit from fragment)

2
(e
N

From the
interpreter

Speculative Trace
Construction

4

*
/| A
return !3ack to the / B* |«
What happens if another path Interpreter —
becomes hot? (Say ABDGIJE) R r

COMP 512, Rice University 14




Fragment Linking

When counter reaches hot:

* Builds a fragment

COMP 512, Rice University

From the
interpreter

Back to the
interpreter

7
g )
|

F*

B*

A

H*

A

15




Fragment Linking

When counter reaches hot:

* Builds a fragment

COMP 512, Rice University

From the
interpreter

Back to the
interpreter

NN
|

F*

B*

A

H*

A

F*
A*

H*

A

16




Fragment Linking

When counter reaches hot:

* Builds a fragment From the
* Links exit A—>B to new mterereter
fragment
® Links exit E—A to old
fragment
Back to the
interpreter

COMP 512, Rice University




Fragment Linking

When counter reaches hot:

* Builds a fragment From the _;/A
* Links exit A—Bto new M =

fragment C

* Links exit E—A to old D

fragment >

G

. I
What if B* held redundant op? N

* Have Live on entry to B J

* Can test LIVE sets for both exit E

from A & entry to B 1

* May show op is dead ... 7 F*

Back to the

interpreter
4_

COMP 512, Rice University

A\ 4
o

18




Results

They measured performance on Spec95 codes

257

20%. 1 B aggressive
m conservative
15, @ no optimization
10 |
5%,
0% |

m&8kzim COmpress perl deltablue . . vortex Average

Speedup relative to native +02 execution

-S7

Graphic from ARS Technica report on Dynamo
COMP 512, Rice University http://www.arstechnica.com/reviews/1q00/dynamo/dynamo-1.html 19




Fragment Cache Management

* Examples in paper (Spec Int 95), cache was big enough

¢ Flushed cache when fragment creation increased

— Might indicate a phase shift in program behavior
¢ Worked well enough
* What about real programs?
¢ Microsoft Word produces huge fragment cache
¢ Loses some of I-cache & TLB benefits
¢ Does not trigger replacement early enough
* New research needed on fragment cache management

¢ Algorithms must be dirt cheap & very effective
¢ Subsequent work on this problem by several capable people

COMP 512, Rice University

20




Details

* Starting up
¢ Single call to library routine

¢ It copies the stack, creates space for interpreter’s state, and begins Dynamo’s
execution

* Counter management
¢ 1st time at branch target allocates & initializes a counter
¢ 2nd & subsequent times bumps that counter
¢ Optimization & code generation recycles counter’s space
* With cheap breakpoint mechanism, could execute the cold code

¢ PA-8000 had expensive breakpoints, so it was cheaper to interpret the cold code

COMP 512, Rice University 21




Summary

* They built it
* |t works pretty well on benchmarks

* With some tuning, it should work well in practice

Principles:
* Do well on hot paths
* Run slowly on cold paths

* Win from locality & local optimization

Postscript (10 years later): Dynamo was an influential system, in that it sparked a line of
research in both academia and industry and led to a reasonably large body of literature
on similar techniques. (The paper has a huge reference count for this area.)

COMP 512, Rice University 22




