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What is “Dynamic Optimization”?

And why should it be profitable?

* Run-time adaptation of the code to reflect run-time knowledge
¢ Constant values, variable alignments, code in DLLs
¢ Hot paths (dynamic as opposed to averaged over entire run)
* If the code is performing poorly ...
¢ Correct for poor choice of optimizations or strategy
¢ Correct for poor data layout
* If the code is performing well ...
¢ Straighten branches

¢ Perform local optimization based on late-bound information

Dynamo is an excellent example of these effects
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The Dynamo System

Runs on HP PA-8000 RISC processor emulating an HP PA-8000
* Focuses on opportunities that arise at run time
* Provides transparent operation

¢ No user intervention, except to start Dynamo

¢ Interprets cold code, optimizes & runs hot code

— Has high overhead in interpretive code

¢ Speedup on hot code must cover its overhead
* Key notions

¢ Fragment cache to hold hot paths

¢ Threshold for transition from cold — hot

¢ Branch straightening

Note that you could use this kind of technology to do emulation as well

=> Speed doubler for the Mac
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How does it work?
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How does it work?
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<— Hot must make up for cold, if system is to be
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Start of trace
How does it work? => Target of backward branch (loop header)
=> Fragment cache exit branch

l
Interpret until Lookup branch / \
P —”] p — start of trace?
taken branch target in cache miss
A
lhit lyes
no
Jump to cached Counter for br. Counter >
fragment target ++ hot threshold
| N— R

If “start of trace” condition holds, bump trace’s counter
If the counter > some threshold value (50)

Move into code generation & optimization phase to convert code into
an optimized fragment in the fragment cache

Otherwise, go back to interpreting
Counter forces trace to be hot before spending effort to improve it
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End of trace
How does it work? => Taken backward branch (bottom of loop)
=> Fragment cache entry label

To build an optimized fragment:
Interpret each operation & generate low-level IR code

Encounter a branch?
If end-of-trace condition holds

create & optimize the new fragment
emit the fragment, link it to other fragments, & free the counter

Otherwise, keep interpreting ...
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N <— end of trace?
recycle counter new fragment
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How does it work?
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Moving code fragment into the cache
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* End of fragment branch jumps to stub that
jumps to the interpreter ...
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Overhead

Dynamo runs faster than native code
* Overhead averages 1.5% (Spec Int 95 on HP PA-8000)
* Most of the overhead is spent in trace selection
¢ Interpret, bump target counters, test against threshold
¢ Optimization & code generation have minor cost
* Dynamo makes back its overhead on fast execution of hot code
¢ Hot code executes often
¢ Dynamo must be able to improve it
* Design of trace selection lowers its overhead via speculation
¢ Only profiles selected blocks (targets of backward branches)

¢ Once counter > threshold, it compiles until “end of trace”
— No profiling on internal branches in the trace

— End of trace relies on static properties
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Effects of Fragment Construction

) call ¢
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Profile mechanism identifies A as
start of a hot path

After threshold trips through A,
the next path is compiled

Speculative construction method
addsC,D, G, |,J, &E

Run-time compiler builds a
fragment for ACDGIJE, with exits
for B, H, &F
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Effects of Fragment Construction
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interpreter
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Hot path is linearized

¢ Eliminates branches

¢ Creates superblock

¢ Applies local optimization
Cold-path branches remain
¢ Targets are stubs

¢ Send control to interpreter
Path includes call & return
¢ Jumps not branches

¢ Interprocedural effects
Indirect branches

¢ Speculate on target

¢ Fall back on hash table of branch
targets
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Sources of Improvement

Many small things contribute to make Dynamo profitable
* Linearization eliminates branches
* Improves TLB & I-cache behavior

* 2 passes of local optimization

¢ Redundancy elimination, copy propagation, constant folding, simple strength
reduction, loop unrolling, loop invariant code motion, redundant load removal

(spill code?)
¢ One forward pass, one backward pass

4 Linear code with premature exits
— Dynamo appears to split traces at an intermediate entry points

— Fragment linking should make execution fast while splitting stops code motion across
intermediate entry point
* Keep in mind that “local” includes interprocedural in Dynamo

Engineering detail makes a difference
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Redundant Computations

Some on-trace redundancies are easily detected
* Trace definesr,
* Definition may be partially dead
¢ Live on exit but not trace = move it to the exit stub
¢ Live on trace but not at early exit = move it below the exit
* Implies that we have LIVE information for the code
¢ Collect Live sets during backward pass
¢ Move partially dead definitions during forward pass
¢ Store summary LIVE set for fragments

¢ Allows interfragment optimization

YCan we know this?
— Only if exit is to a fragment rather than to the interpreter.

— Otherwise, must assume that definition is LIVE on each exit
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Block B meets “start of trace”

Fragment Linking condition (exit from fragment)
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Fragment Linking

When counter reaches hot:

* Builds a fragment
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Fragment Linking

When counter reaches hot:

* Builds a fragment
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Fragment Linking

When counter reaches hot:

* Builds a fragment From the
* Links exit A—>B to new mterereter
fragment
® Links exit E—A to old
fragment
Back to the
interpreter
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Fragment Linking

When counter reaches hot:

* Builds a fragment From the _;/A
* Links exit A—Bto new M =

fragment C

* Links exit E—A to old D
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Results

They measured performance on Spec95 codes
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Graphic from ARS Technica report on Dynamo
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Fragment Cache Management

* Examples in paper (Spec Int 95), cache was big enough

¢ Flushed cache when fragment creation increased

— Might indicate a phase shift in program behavior
¢ Worked well enough
* What about real programs?
¢ Microsoft Word produces huge fragment cache
¢ Loses some of I-cache & TLB benefits
¢ Does not trigger replacement early enough
* New research needed on fragment cache management

¢ Algorithms must be dirt cheap & very effective
¢ Subsequent work on this problem by several capable people
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Details

* Starting up
¢ Single call to library routine

¢ It copies the stack, creates space for interpreter’s state, and begins Dynamo’s
execution

* Counter management
¢ 1st time at branch target allocates & initializes a counter
¢ 2nd & subsequent times bumps that counter
¢ Optimization & code generation recycles counter’s space
* With cheap breakpoint mechanism, could execute the cold code

¢ PA-8000 had expensive breakpoints, so it was cheaper to interpret the cold code
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Summary

* They built it
* |t works pretty well on benchmarks

* With some tuning, it should work well in practice

Principles:
* Do well on hot paths
* Run slowly on cold paths

* Win from locality & local optimization

Postscript (10 years later): Dynamo was an influential system, in that it sparked a line of
research in both academia and industry and led to a reasonably large body of literature
on similar techniques. (The paper has a huge reference count for this area.)
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