
Frances E. Allen

John Cocke

IBM Thomas J. Watson Research Center

Yorktown Heights

A pesuZt of the peaent 1A1oPk in optimization
has been to systematize the potpouppi of optimizing
tpansfopmations that a aompiZep aan make to a pPO-
gpamt This papep aataZogues many of these tpans-
fopmations.

INTRODUCTION

A catalogue of optimizing transformations which
a compiler can make on a program is presented in
this paper. The catalogue does not pretend to in~
clude all possible transformations; what is presen-
ted is a categorization of most of the transforma-
tions which are currently reasonably well understood.

The basic purpose of the transformations pre-
sented is to improve the execution time of compiled
programs. Some attention is given to execution
space, but no attention is given to optimizing com-
pile time or to the more general questions of total
job or system optimization.

The term optimization is a misnomer in that it

2 E . Allen, John Cockefrances

is not generally clear that a particular, so called,
optimizing transformation even results in an
improvement to the program. A more correct term
would be "amelioration." Aho, Sethi and Ullman [I]
have been able to prove the optimality of a set of
transformations on straight-Iine code. The criter--
ion they used for measuring optimality was the
length of machine code generated. We do not have,
however, any general means of establishing optimal
bounds, much less any means of determining that a
general set of transformations produces code satis-
fying given bounds.

Another aspect of optimization which needs
further study is the question of the correctness of
transformations. We would like to be able to prove
that applying a set of transformations to a program
produces an equivalent program. Some investigations
into this question are reported by Ullman [15] .In
developing the transformations presented here, care
has been taken not only to assure that the obvious
data values are correct and available when required
but that "side effects" are maintained and language
rules honored. These assurances are built into the
algorithms implementing these transformations and
are not reported here. They are generally a rather
ad hoc collection of considerations.

The survey of optimizing transformations which
follows is organized so that the interprocedural
optimizations are presented first, transformations
best performed on a program form close to the source
language are presented next, followed by the SO-
called machine independent and machine dependent
optimizations. The classification of transformations
into machine independent optimizations and machine
dependent optimizations is used to distinguish the
transformations which are applicable to mostregister-
oriented computers from those which require knowledge
of the specific characte"ristics of a given computer .
For example, eliminating redundant instructions is
a machine independent transformation, whereas regis-
ter allocation is machine dependent. Very little is
said about the language level best suited for the
transformations. Clearly, however, the machine

Optimizing Transformations 3

dependent optimizations create and/or transform
instructions close to the machine level. Most of
the machine independent optimizations are best per-
formed on subexpressions: the language level of
these subexpressions can be high, that is, close to
source language level, or low, close to the machine
language level.

Each transformation included in the catalogue
is identified and described briefly (but is not
formally defined) .An example is given, followed
by some discussion of the transformation. The fi"rst
transformation effects an interprocedural optimiza-
tion.

PROCEDURE INTEGRATION

In order to smooth subprogram linkages and to
provide more global program units for optimization,
subprograms and/or their prologues may be merged
into their calling subprograms. If subprogram C
calls subprogra~ S (C + S) , then one of the
following linkages may be established.

I. CLOSED. This is a standard linkage and no
intersubprogram optimization is performed. S, the
called routine, is known to the system loader. No
information about S is available during the com-
pilation of c. This kind of linkage is inefficient
because

a. registers must be saved and restored on
and exit.entry

b. specific registers must be allocated to
specific functions. This constrains register
assignment, and may cause "register busy interlock"
delays at execution time on close sequential calls
in pipelined CPU's.

c. the parameters and global variables (e,g.,
variables in COMMON) set and/or used in S are not
known during the compilation of C. The compilation

4 Frances All en ,E . John Cocke

of C must assume that all such variables can be set
and used in s. At the time of the CALL memory must
contain the current values of such variables; first
uses after the CALL must access storage.

d. in most cases, all information must be
passed in storage.

e. the called program cannot take advantage
of particular argument values, recurrences or
relationships. For example, the called routine
cannot take advantage of a constant valued argu~ent

2. OPEN. An open linkage is not a linkage at all.
The called routine, S, replaces the CALL statement
in the caller, C, after the arguments on the CALL
have replaced their corresponding parameters in s.
The program S is completely integrated in C and is
not known to;~he system.

There are many obvious advantages to this kind
linkage; two are:of

There is no linkage overhead whatsoever.a.

b. C and S are optimized together. Advantage
can be taken of particular argument values and
relationships: constant arguments can be folded
into the code, invariant instructions in S can be
moved to infrequently executed areas of C, etc.

The major disadvantages and constraints on
opening up subprograms are:

program sizes may become too large.a.

b. irreducible subprograms require special
handling. (An irreduaible subprogram is one which
maintains a history, performs 1/0 operations, can
return different function values for identical
argument values, or does not return through a
standard return point.

a high-level version (not necessarilyc~

Optimizing Transformations 5

source) of the program being called must be avail-
able to the compiler at the time the caller is
compiled~

d. a change in the called routine obsoletes
object modules into which it has been merged.

3. SEMI-OPEN, A semi-open linkage is a non-stand-
ard linkage in which the called routine, S, is com-
piled with its caller, C. S and C become part of
the same object module; S is not known to the system
The parameters become real locations which are used
to hold argument values or locations. During
optimization it may be recognized that actual para-
meter locations are not needed, and S and C become
indistinguishable. All CALL's to S.in C become
branches to a location internal to the module.

On a computer with a paged memory or base-
offset addressing, both the open and the semi-open
forms increase the possibility of both routines
being in the same page or in the same addressing
area~ The semi-open form of linkage has some of
the same disadvantages and constraints as the open
form. The primary advantages arise from the effects
of optimizing the two routines as a unit. The
object-time-association is, of course, more direct
and faster than a standard linkage.

4. SEMI-CLOSED. The semi-closed linkage is a non-
standard linkage in which the two routines are
compiled as separate modules and are both known to
the system. The called routine, S, is compiled
first. The compilation of S determines the linkage
registers and the parameter passing conventions to
be used when S is called. This information, along
with other information about S, is used during the
compilation of C to establish the calling linkage.
The other information about S which is available to
C is

a. which global
and/or used by S.

variables and parameters are

6 Frances Allen,E . John Cocke

b. which registers are used by s.

The advantages of this type of linkage are:

a. the compilation of S is not constrained by
fixed registef assignment at entry and exit points~

b. the compilation of C can take advantage
of knowing how global variables are used in S to
avoid memory references across CALL points and to
carry information in registers.

c. registers unused in s need not be saved
and restored at linkage time. The unused registers
can be active in C across the linkage.

The major disadvantage is that a recompilation
of S may obsolete all programs which have a semi-
closed linkage to s. A sophisticated loader may
avoid this difficulty.

Although most of the above description has
been given in terms of subprogram linkages, two of
the linkages can be generated in a single COBOL
program. A COBOL PERFORM block which is always
entered at its beginning (i.e., there are no branches
into the middle of it} can be treated as a called
subprogram to which internal linkages are generated
or which is opened up. In the latter case, a PERFORM
of the block is replaced by the block of code. If
the PERFORM has a VARYING clause, this becomes
analogous to the FORTRAN DO.

Many compilers automatically open certain
functions. Beyond this the optimization described
here does not exist in any commercially available
compiler. In order to perform a procedure integra-
tion, the compiler has to have access to both pro-
cedures at essentially the same time; Therefore,
a change has to be made to the standard compiler
organization in which each procedure or subroutine
is compiled to binary code independently of all
others submitted with it. In addition to a differ-
ent compiler design some criteria for determining

Optimizing Transformations 7

which type of linkage to make are needed. This may
be best established by the programmer based on what
he knows about the future usages of procedures, but
it can be made by the compiler itself in certain
cases. For example, it might be fairly easy to
determine that a routine could be opened up if it
appears just once in the programs that are associ-
ated with a job or if it is very small. The
criteria for automatically integrating routines
need further investigation and probably cannot be
established without knowledge of the program
environment.

LOOP TRANSFORMATIONS

Several transformations can be made on program
loops to improve the execution time of the program.
Although it is not necessary that these transfor-
mations be made on a language level which is close
to the source language, they seem to be more easily
identified and performed at that level~ In the
examples which follow, DOs are used to identify the
loops being transformed.; however, other encodings of
loops could trigger the transformations. Three
types of loop transformations are considered in
this paper~

I. Loop Unrolling. A loop can be unrolled
completely so that the successive computations
implied by the loop appear sequentially or it can
be partially unrolled as in the following example:

DO I = I TO 100 BY 1;

A(I) = A(I) + 8(1) ;

END7

becomes when unrolled by 2:

E. Allen, John Cocke8 Frances

DO I = 1 TO 100 BY 2;

A(I) = A(I) + B(I) ;

A(I+l)

END~

= A(I+l + B(I+l} ;

The advantages of loop unrolling are that

a. the number of instructions executed is
reduced. In the preceeding example the number of
increments and tests for loop control is halved.

b. more instructions are exposed for parallel
execution. The two statements in the unrolled form
of the preceding example can be executed at the
same time since they are independent.

The major disadvantage of loop unrolling is the
increased instruction space required. For this
reason the criteria for unrolling loops should
include the size of the loop and the relative fre-
quency of executing the loop. Other factors are
the severity of the object space constraints and
the form of the loop itself. A loop with variable
control parameters (e.g., DO I = J to K by L;) can
be unrolled but requires code to test for end con-
ditions~ Nests of loops can be unrolled; an
example of this will be given in the next section.

2. Jamming or Loop Fusion. The second loop-
related transformation is called jamming or loop
fusion. In this transformation two loops are put
together and expressed by one loop as in the follow-
ing example:

DO I = 1 TO 100;

A(I) = 0-:

END;
DO I = 1 TO 100;

8(1) = X(1) + Y;

END:

Optimizing Transformations 9

becomes

DO I = 1 TO 100;

A(I) = 0.;

= X(I)B(I) + Y;

END;

The advantages of this transformation are that

a.
b.
c.

loop overhead is reduced;
code space is reduced;
more instructions are exposed for parallel
execution and for local optimization.

The cases which can be found and transformed
can be fairly elaborate or relatively simple. The
simplest case involves two loops which together
satisfy the following criteria:

a. If one loop is executed the other one is
also; that is, they have the same execution condi-
tionality.

b. The computations in either loop do not
depend upon the computations in the other. This
criterion can easily be relaxed to more particular
situations.

c. The loops are executed the same number of
times. By generating code for the end conditions,
this criterion can be deleted.

The need for this transformation may occur
during the compilation of languages which have
array or vector operations. If statements involving
array or vector operations are translated to the
more basic element-by-element operations, fusible
loops and nests of loops may appear quite frequently
in the code. This optimization has been done by
Ershov in his ALPHA compiler [9] and was described
in a thesis by Wagner [16] .

10 Frances E . Al John Cockeen,

An example follows in which a matrix multiply
program is unrolled by 2 and jammed to eventually
yield a program which multiplies 2 x 2 matrices.
The steps are:

origi'nal program:a.

DO I = 1 TO 100;
DO J = 1 TO 100;
A(I,J) = 0. ;
DO K = 1 TO 100;
A(I,J) = B(I,K)
END; END; END;

* C(K,J + A(I,J):

b. the outer loop is unrolled by 2:

the two inner sets of loops are jammed:c.

DO I = 1 TO 100 BY 2;
DO J = 1 TO loo;
A (I ,J) = 0. ;
A(I+l,J) = 0.;
DO K = 1 TO loo;
A(I,J) = B(I,K) * C(K,J) + A(I,J) ;
A(I+l,J) = B(I+l,K) * C(K,J) + A(I+l,J

ENDi END; END;
) :

d. the next inner loop, the J loop, is
unrolled by 2 and the two resulting K loops are
jammed; then the innermost loop, the K loop, is un-
rolled by 2. The result of these transformations
is:

Optimizing 11Transformations

DO I = 1 TO 100 BY 2i
DO J = 1 TO loo BY 2i
A (I ,J) = 0. :
A(I,J+l) = 0.;
A(I+l,J) = 0.;
A(I+l,J+l) = 0.;
DO K = 1 TO loo BY 2i
A(I,J) = B(I,K) * C(K,J) + A(I,J) ;
A(I,J) = B(I,K+l) * C(K+l,J) + A(I,J) ;
A(I,J+l) = B(I,K) * C(K,J+l) + A(I,J+l) ;
A(I,J+l) = B(I,K+l) * C(K+l,J+l) + A(I,J+l) ;
A(I+l,J) = B(I+l,K) * C(K,J) + A(I+l,J) ;
A(I+l,J) = B(I+l,K+l) * C(K+l,J) + A(I+l,J) i
A(I+l,J+l) = B(I+l,K)*C(K,J+l)+A(I+l,J+l) ;

A(I+l,J+l)=B(I+l,K+l)*C(K+l,J+l)+A(I+l,J+l) ;
END; ENDJ END;

e. the eight expressions in the inner loop can
be simplified to 4 by a transformation alluded to
later in this paper~

DO I = 1 TO 100 BY 2;
DO J = 1 TO loo BY 2;
A (I ,J) = 0. ;
A(I,J+l) = 0.;
A(I+l,J) = 0.;
A(I+l~J+l) = 0.;
DO K = 1 TO loo BY 2;
A(I,J) = B(I,K+l) * C(K+l,J) + B(I,K)

* C(K,J) + A(I,J) ;
A(I+l,J+l) = B(I+l,K+l) * C(K+l,J+l

+ B(I+l,K) * C(K,J+l)
+ A(I+l,J+l) ;

END; END;END;

3. Un8~itahing. The third transformation
related to loops is the opposite of jamming. It is
called unswitching and involves breaking a loop
coptaining a loop-independent test into two loops
with the test selecting which of the two loops to
execute. The following is the quintessential
example of this transformation~

12 Frances E. Allen, John Cocke

= A(I)

= A(I)

+ B(I) ;
-B(I) ;

END;

becomes

(T)IF THEN
DO I = 1 TO 100;

X(1) = A(I) + 8(1) ;
END;

ELSE
DO I = 1 TO 100;

X(I) = A(I) -B(I)
END;

This optimization has the advantage of reducing
the number of instructions executed. More instruc-
tion space is required, however.

It is not clear how frequently unswitchable
loops appear in programs and, therefore, how impor-
tant this transformation is.

The machine independent optimizations which
transform subexpressions and subexpr~ssion rela-
tionships are now considered. In this transforma-
tions a distinction is made between those involving
subexpressions in the same "basic block" and those
involving subexpressions in different basic blocks.
A basic block is a linear sequence of instructions
with one entry point, the first instruction in the
block, and one exit point, the last instruction in
the block. Since the internal data dependency
relationships within a basic block can be found by
relatively simple analysis techniques [2,8] , the
optimizations performed on basic blocks can, in
many cases, be more elaborate than those performed
on the program as a whole. For example, an algorithm
exists [12] for finding the best assignment of n
registers to the given sequence of instructions in
the block. Such an algorithm does not exist in the
presence of flow. An arithmetic statement by itself
constitutes a basic block --usually a non-maximal

Optimizing 13Transformations

basic block --and the literature [3,5,6,10,11]
describes many optimizing transformations for such
statements.

The primary emphasis in the collection of
transformations presented here is on global optimi-
zation; that is, it is on transforming the program
based upon the dependency relationships which are
found to exist between expressions in different
basic blocks as well as in'the same block.

In the examples that follow, a directed graph
is used to express the control flow relationships
between the basic blocks in a program. The nodes
of the graph represent basic blocks and the edges
control flow paths.

REDUNDANT SUBEXPRESSION ELIMINATION

This optimization, which is also called aommon
subexpression elimination, involves finding and
eliminating those computations which calculate
values already available. Consider the following
examples in which the redundant subexpression is
identified by being enclosed in a box.

Allen, John Cocke14 Frances E ..

The subexpression A*B has, of course, a sub-
sequent use: its value is used in another expres-
sion, is assigned to a variable or used in a test.
In both examples, correct though not necessarily
identical values are available on every path to the
subexpression and hence to its use. The subexpres-
sion is therefore redundant.

In the two examples the redundant subexpression
was formally identical with the subexpressions pro-
ducing usable values. One form [7] of global
analysis for this optimization depends upon the
existence of formal identities. Another form of
analysis, based upon the value number algorithm [8] ,
does not depend upon explicit formal identities for
the identification of a redundant calculation.
Consider the following example of straight-line
code:

A * B-

c A=

c * B-
-

C*B is not formally identical with A*B but computes
the same value so is a redundant calculation. The
two methods for detecting redundant subexpressions
find different cases as well as some of the same
cases. The value number method as it is currently
formulated would not find either of the cases shown
in the first two examples in this section; the
method requiring formal identities would not find
C*B in the last example.

The major advantages of this optimization are

that

andfewer instructions are executed,a.

instruction space is saved.b.

The disadvantage is that register usage is
extended.

Optimizing Transformations 15

In the next section it will be seen that code
motion and redundant subexpression elimination are
intimately related. By inserting instructions at
propitious places in the code, more subexpressions
can be eliminated than could be in the original
program form.

CODE MOTION

A subexpression can be moved if the value
available to its uses is not changed by this move
and if the move is "safe." The safety criterion is
somewhat vague, but it essentially means that a
moved subexpression will not cause side effects to
occur which would not have occurred if the sub~
expression had remained in its original position.
Two examples of movable subexpressions are:

In each case it was assumed that neither A
nor B were changed by the other instructions in
nodes 2, 3, 4 and 5, that is A*B is invariant with
respect to the loop. Even if it is assumed that
A*B might cause an overflow condition it is clear
that the occurrence of this side effect is not being
altered by moving the subexpression into node I.

John CockeE. Allen,'6 Frances

It will be noted that the number of times the over-
flow may occur is probably being altered. The true
correctness of moving any subexpression which can
cause side effects is probably questionable and
certainly dependent on language rules. If a standard
system action is taken such as stopping the program
or flagging the result, then maintaining the number
qf occurrences of the side effect is not important,
but maintaining the conditionality for its occurrence
is important. Consider the following two examples:

Assuming A/!3-is considered an unsa£e subexpres-
sion, i.e., one which might cause a side effect,
then, clearly, A/!3 in node 3 in the first example
cannot be moved to node I. However, the second
example has an A/!3 subexpression in node 4 which
may, at first glance, appear to be movable to node
I. It is not, however, because a divide check error
may result which would not occur in the program as

given.

The basic intent of code motion is to move
instructions from frequently executed areas of the
program to less frequently executed areas. Since
it is not always apparent what the relative execu-
tion frequencies of various areas are, an improve-
ment may not always result.

Transformations 17Optimizing

Consider the following example:

Assuming that I+J is movable and is a safe
subexpression, i.e., it cannot cause any side
effects, then it may still not be acceptable to
move I+J to node I: node 3 may never be executed.
In the absence of any information to the contrary,
it is generally assumed that the branch back to 2
from 4 is more frequently taken tharl the exit from
4, and'that the branch from 2 to 3 is taken 50%
of the time.

The primary advantage of the code motion trans-
formation, however, is to reduce the number of
instructions executed. It has the same d-isadvantage
as redundant subexpression elimination: register
usage is extended.

A variant on code motIon which does not reduce
the number of instructions executed but does save
instruction space is called hoisting. This trans-
formation is exemplified by the following:

A*B A*B

18 E . Allen, John CockeFrances

So far in this section, pure code motion has
been discussed. Techniques currently exist which
essentially combine code motion with redundant sub-
expression elimination, and indeed subexpressions
are not moved at all but eliminated against inserted
subexpressions. The following example shows how
this can happen.

The A*B in 4 cannot be safely moved and the
A*B in 5 cannot be profitably moved. However, if
an A*B were placed in node I, then both of them
could be eliminated. An analysis procedure exists
which accomplishes this.

CONSTANT FOLDING

Constant folding, also called subsumption and
constant propagation, replaces uses of variables
that have been set to a constant by the constant
itself. Consider the following example:

19Optimizing Transformations

(-:\ A=1

~ 8=5

(;\ A=1

~ 6=5

T=6

IF (6=6) GO TO @

ELSE @

T=A+B

IF (T=6} GO TO @

ELSE @

The constant assignments to A and B in node 1
replace their uses in node 2. This finds T = 6
which is then propagated to the use of T in the IF
statement. As can be seen by this example, constant
folding not only involves replacing uses Of vari-
ables by constants but also involves performing
operations whose operands are constants and propa-
gating the result.

A variant on constant propagation involves
collecting constants into addresses. In the
following example, which is expressed in a very
mixed language level, the resulting A+5 represents
an address rather than an execution time add.

K = 5K = 5

SI = 1*10{1*lO}+Ks =
becomes

(5')Load A+5(s')Load A

Constant propagation has many obvious advantages
and no disadvantages. It is a particularly important
optimization on code in which subprograms have been
opened. Arguments to subprograms are frequently

E. Allen, John Cocke20 Frances

constants and, when constants replace the parameters
of the subprogram, many transformations may be made
to the subprogram.

ELIMINATIONDEAD CODE

Primarily as a result of constant folding,
instructions become "dead. II Instructions are con-

sidered dead when they cannot be executed because
they are in an area of the program which cannot be
reached, or when their results are never used.
After constant folding, the first example in the
previous section had an unreachable block, and,
assuming there were no other uses for the definitions
of A and B in block 1 and of T in block 2, those
instructions are dead.

0
~ A=1
\}...) B = 5

T=6

IF (6=6} GO TO @

ELSE @

STRENGTH REDUCTION

The strength reduction optimization replaces
certain computations using recursively defined
variables by recursively defined computations. This
transformation is a generalization of a relatively
common optimization: the replacement of subscript
calculations involving the DO loop induction variable

Optimizing Transformations 2'

by index register increments. Two examples follow:

The first example i£ the traditional case if
1*5 is part of a subscript calculation. It should
be noted that 1*5 in block 1 is a candidate for
constant folding. The second example is a more
general form of strength reduction in which the
variables I ~d J are recursively defined in terms
of each other.

"
The advantage of strength reduction is that

faster computations are used. Although it cannot
of course be guaranteed that the new recursively
defined variables (the t's in the above examples)

Allen, John Cocke22 Frances E .

will end up in index registers and be updated by
register increments, they will be prime contenders
for such register instructions. The strength
reduction optimization is not at all limited to
instructions transformable to register increments.
More complete descriptions of this optimization are
contained in [2] and [8] .

REPLACEMENTLINEAR FUNCTION TEST

After performing the strength-reduction
optimization and introducing new recursively defined
variables, it is frequently the case that the only
use for the original recursively defined variable is
in a test. The test can often be replaced by a test
on an introduced variable, thereby making the
instructions associated with initializing and
incrementing the program variable dead. Suppose
that the first example in the preceding section were
derived from a DO loop in which the DO statement
was DO I = 1 TO 10; then after strength reduction
and folding this becomes

r-;"'\ 1=1

~ t=5

I = I +1

t=t+5

IF {I $10) THEN GO TO 2

The test can be replaced by a test on t:

Optimizing Transformations 23

I = 1 and I = I +
eliminated.

1 are now dead and can be

CARRY'S

The carry optimization is a somewhat specialized
optimization which recognizes when a subscript cal-.
culation for referencing sequential elements of an
array does not need to be re-initialized when the
reference changes to the next row or column. The
following example shows the result of applying the
carry, linear function test replacement, strength
reduction, folding and dead expression elimination
optimizations.

DCL A(l0,lO) ; becomes

t = 11

DO I = 1 TO 10; Ll: A- 11 (t)
' J

t=t+l

= 0

DO J = 1 TO 10;

A(I,J) IF (t<lll) THEN= 0.;

END; GO TO Ll

END;

(A -11 is an address)

24 Frances E. Allen, John Cocke

We now consider the machine dependent transformations.

INSTRUCTION SCHEDULING

In this optimization, sequences of instructions
are ordered to minimize the execution time of the
sequence. This optimization is used when the target
computer has pipelined units.

Suppose a computer has the following character-
istics:

a. an instruction can be started every cycle
provided there are no register or data interlocks

b. the instructions are taken in order

c. the divider takes 12 cycles

d. the three-cycle adder is pipelined and
can start a new add on every cycle

stores take 1 cyclee.

= x/yTI = A + B
T4may

T2 = TI + C TI = A + Bbecome

T3 = T2 + D T2 = Tl + C

E = T3
T3 -T + D

-2

= X/y

T4
E = T3

z = T4 z = T4

The original sequence, the one on the left,
takes 23 cycles; the reordered sequence takes 13
cycles. In effect the adds and the store into E
are free.

Transformations 25Optimizing

The advantage is clear: execution time is
decreased. The disadvantage is that register usage
is extended.

PARSING METHODS

Several variants on the usual left-to-right
associative parse can produce better code. An
interesting one is the minimum depth parse.

Since pipelined units are capable of having
several independent instructions in execution at
the same time, the operations in a source expression
can be associated to produce an instruction sequence
which minimizes hardware delays due to data depen-
dencies and to unit-busy interlocks. For example,
the expression A+B+C+D can be parsed as if it had
be'en written as (A+B) + (C+D) rather than by the
usual left-to-right association (((A+B) + C) + D) ..~
Depicted in tree form, this is:

A B c D A B

Such a parse is called a minimum depth parse
because it minimizes the depth of the parse tree
and hence the depth of the data dependency tree.
For the computer described in the previous section,
the instruction sequence for the minimum depth
parse of the expression A+B+C+D takes 7 cycles
instead of 9.

A secondary but very important effect of the

26 Frances E . Allen, John Cocke

minimum depth parse is to expose subexpression
independence. Many optimizations involve transfor-
mations to and permutations of subexpressions.
These transformations and permutations are generally
severely constrained by data dependency considera-
tions. In the above example, the subexpression
C+D is exposed as independent of A and B by the
minimum depth parse and can be moved and transformed
independently.

Thus the minimum depth parse optimizes in that
it exposes more independent subexpressions for
optimization and for execution. The disadvantage
is that register usage is extended.

REGISTER ALLOCATION

Allocating registers is quite possibly the
hardest optimization to perform.

Several subproblems can be isolated:

a. Allocation can be separated from assign-
ment. Allocation involves determining how many
registers are required and allocating registers
symbolically. Assignment involves determining which
of the actual hardware registers will be used for
each allocated register. Allocation is cognizant
of hardware constraints. One of the subproblems in
assignment is boundary matching: the same entity
in program areas which may be executed sequentially
should be assigned to the same register if possible.

b. Load-store motion moves loads and stores
out of loops in order to be able to retain inter-
mediate results in registers and to avoid unneces-
sary storage references. Other instructions can
sometimes also be moved to obtain a better alloca-
tion.

c. The scope of the allocation and assign-
ment can be local or global. The straight-line
code of basic blocks can be allocated by simpler

Optimizing 27Transformations

techniques than an allocation which must be aware
of the control flow. An optimizing allocation
normally consists of both local and global alloca-
tion. The problem and solutions are described in
more detail in [4] and [13] .

STORAGE MAPPING

There are two aspects of storage mapping which
are optimizable:

a. Space. The total amount of active space
required £or variables and for temporaries can be
decreased by reuse of dead storage. Ershov [9]
treated storage mapping as a generalization of the
register allocation and allocated memory cells by
some of the same techniques used in register
allocation.

b. Adjacency. For computers with paging,
base-offset addressing or for which there is any
sort of storage staging system it is important that
information which is used at the same time should
be mapped together.

Other than the work already cited,
been done in this area.

little hasvery

We now consider some miscellaneous optimiza-
tions.

SHADOW VARIABLES

In this optimization variables are not only
kept in the form specified by the program but also
in a form more appropriate for their use. For
example, it is frequently the case in COBOL pro-
grams that all numbers are kept in the decimal
radix. It may, however, be determined that certain
numbers are frequently used in arithmetic opera-
tions and, assuming binary arithmetic is faster

28 Frances E. Allen, John Cocke

than decimal arithmetic on the target comput~r, can
be kept in binary.

ANCHOR POINTING

Anchor point analysis minimizes the number of
logical tests performed in a Boolean expression
before a branch or fallthrough occurs. For example,
IF (A.AND.B.AND.C) GOTO 10; can branch to the
next statement if A is false without testing
B and C.

SPECIAL CASE CODE GENERATION

This very important optimization involves
detecting special situations in order to generate
'better code. For example, A2 may be implemented
by A*A rather than using a general exponential
routine. There are dozens of examples and there
are many compilers which have detected special cases.

(or WINDOW) OPTIMIZATIONPEEPHOLE

The final code from a compiler can frequently
be improved simply by a local scan oj the sequence
of instructions [14] .A window of, for example, 10
or 12 instructions can be examined for possible
transformations.

This completes our catalogue of optimizations.
It is not encyclopedic in any sense, nor is it all
definitive. It does, however, report on that part
of the recent work in program optimization which has
attempted to systematize and extend the collection
of optimizing transformations that have long existed.

Transformations 29Optimizing

REFERENCES

Aho, Alfred V., Sethi, Ravi, and Ullman, J.D.,
"A Formal Approach to Code Optimization, II

Ppoa. of a Symposium on CompiZep Optimization~
SIGPLAN Notices, July 1970.

Annual

5,

Allen, F.E., "Program Optimization,"
Revie~ in Automatia Programming, Vol.
Pergamon, New York, 1969.

Bagwell, John T., Jr., "LocalOptimizations,"
PPOC. of a Symposium on Compilep Optimization,
SIGPLAN Notices, July 1970.

Beatty, J.C., "A Global Register Assignment
Algorithm," this voLume.

Breuer, Melvin A., "Generation of Optimal
for Expressions via Factorization," CACM,
June, 1969.

Code

Busam, VoAo, and Eng1und, DoE., "Optimization
of Expressions in FORTRAN," CACM, December
19690

Cocke, John, "Global Common Subexpression
Elimination," Proa. of a Symposium on Compiler
Optimization, SIGPLAN Notices, July 1970.

Cocke, J. , and Schwartz, J .T ., "Progranuning
Languages and Their Compilers," Preliminary
Notes, Courant Institute of Mathematical
Sciences, New York University, N.Y., April 1970

Ershov, A.P., "ALPHA -An Automatic Program-
ming System of High Efficiency," JACM,
January 1966.

Floyd, R.W., "An Algorithm for Coding Efficient
Arithmetic Operations," CACM, January 1961.

Frailey, Dennis J., "Expression Optimization
Using Unary Complement Operators," Proc. of
a Symposium on Compiler Optimization, SIGPLAN

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

30 Frances E ~ John Cocke

Notices, July 1970

[12] Horwitz, L.P., Karp, R.M., Miller, R.E., and
Winograd, s., "Index Register Allocation,"
JACM, January 1966.

[13] Kennedy, Ken, "Index Register Allocation in
Straight-Line Code and Simple Loops, I' thi s

volume.

[14] "Peephole Optimization," CACM,McKeeman,
July 1965

W.M.,

[15] Ullman, Jeffrey, and A.V. Aho, "Code optimiza-
tion and Finite Church-Rosser Systems," this
volume.

[16] Wagner, R., "Some Techniques for Algorithm
Optimization with Application to Matrix Arith-
metic Expressions, II Ph.D. Thesis, Department of

Computer Science, Carnegie-Mellon University,
June 1969.

