A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES

Ken Kennedy

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Typed by Martha J. Cooper
Formated using the Yorktown Formatting Language
Printed on the experimental printer

Abstract

Compiler optimization can be a tremendous benefit to high-level language programming
because it compensates for some of the inefficiencies in compiler-generated code. But to be
effective, most optimization techniques require global information about the definitions and
uses of data within the program; this survey describes several important methods for gathering
such information. Section 2 covers value numbering, a major technique for analyzing straight-
line code. Section 3 describes and compares nine fast algorithms suitable for solving simple
data flow analysis problems. Section 4 introduces use-definition chains, a method for efficient-
ly handling more complex problems. Symbolic interpretation, a more general but less efficient
method for complex problems, is treated in Section 5. Finally, the application of these
techniques to very-high-level language optimization is discussed in Section 6.

A SURVEY OF DATA FLOW ANALYSIS TECHNIQUES

Ken Kennedy

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598

Abstract

Compiler optimization can be a tremendous benefit to high-level language programming
because it compensates for some of the inefficiencies in compiler generated code. But to be
effective, most optimization techniques require global information about the definitions and
uses of data within the program; this survey describes several important methods for gathering
such information. Section 2 covers walue numbering, a major technique for analyzing straight-
line code. Section 3 describes and compares nine fast algorithms suitable for solving simple
data flow analysis problems. Section 4 introduces use-definition chains, a method for efficient-
ly handling more complex problems. Symbolic interpretation, a more general but less efficient
method for complex problems, is treated in Section 5. Finally, the application of these
techniques to very-high-level language optimization is discussed in Section 6.

1. INTRODUCTION

High-level programming languages are valuable programming tools because they permit the
specification of algorithms in notations more natural for expressing the abstract concepts
involved. Thus, freed from attending to numerous machine-dependent implementation details,
the programmer can produce correct, reliable code more easily. Why then aren’t such
languages universally used for programming? The usual answer is that the resulting programs
are inefficient. That is, the code generated by a high-level language is less efficient than the
code a good assembly language programmer would write. The problem is that the generality of
programming languages, the very generality which is such a desirable aid to algorithm specifi-
cation, prevents the programmer from making use of specific machine features to improve the
efficiency of his code. Unfortunately, compilers for these languages fail to take up enough of
the slack. Since a major aim of programming languages is to encourage programming at a
more abstract level, there must be an improvement in the efficiency of object programs
produced by compilers. This is the goal of compiler optimization.

Note that optimization is not intended to compensate for poor programming, but rather to
reduce the inefficiencies in code to within '"reasonable" bounds -- to a point where the
advantages of high-level language programming outweigh any remaining efficiency penailties.
For some languages, optimizing compilers might well be expected to produce code for inner
loops that would be competitive with loops hand coded by assembly language programmers.

This last goal is difficult to achieve because high-level languages, if they are to be usable, must
include general-purpose features flexible enough to serve many different applications. It is not "
enough to merely include a grab-bag of specialized features because programmers would find
such a grab-bag difficult to learn and use. The assembly language expert can write efficient
code because he knows the specific purpose to which each data structure in his program will be
put; therefore he can choose for each structure the machine realization that will be most
efficient. By contrast, the high-level language programmer must use one of the general-
purpose data structures provided by the language. In the absence of better information, the
compiler generates code for accesses to these structures which will be correct for any legal
application. Thus it is unable to take advantage of any efficient short cuts which the specific
problem at hand might allow. If the compiler is to compete with assembly language coding, it
must be able to determine enough of the nature of the program being compiled to safely take
those shortcuts; in other words, it must be able to perform some kind of global program
analysis.

As an example, consider run-time subscript range checking. It is desirable to capture all
attempts to reference outside the limits of an array because out-of-bounds references are the
sources of many subtle errors. Unfortunately, range checks are expensive and can result in a
significant speed degradation. Optimization offers a viable alternative to the common but
questionable practice of eliminating all range checks: global program analysis can show that
many range checks are superfluous, while others may be safely moved to less frequently
executed code [Har75, Sul77]. The result will be more efficient programs without the cost of
compromised reliability.

There is a widely-held notion that optimization is intended to compensate for bad program-
ming. Nothing could be further from the truth. In fact, no currently-known technique can
compensate for the main component of bad programming: a poor choice of algorithm.
Instead, optimization encourages good programming by making high-level languages more
attractive and by taking care of small matters of efficiency so the programmer is free to
concentrate on the essence of his problem.

A variety of code improvement transformations have been proposed in the literature; I won’t
attempt to discuss them all since they are covered in two important compendia: The Allen-
Cocke catalogue [AlC72a] and the "Irvine Catalogue" [Sta76]. But as background for the
discussion of analysis methods, I will mention the most prominent techniques. First, two
transformations are fundamental to optimization in straight-line code.

redundant subexpression elimination [Coc70, Fon771:

If two instructions that both compute the expression A*B are separated by code which
contains no store into either A or B, then the second instruction can be eliminated if the
result of the first is saved.

constant folding [CoS70]:

If all the inputs to an instruction are constants whose values are known, the result of the
instruction can be computed at compile-time and the instruction replaced by a "load" of
the constant value.

In simple loops, two more transformations can lead to significant improvements.

C.

code motion [Coc70, CoS70]:

An instruction that depends only upon variables whose values do not change in a loop
may be moved out of the loop, improving performance by reducing the instruction’s
frequency of execution.

strength reduction [Al169, CoK77, FoU76, PaS77]:

Instructions that depend on the loop induction variable cannot be moved out of the loop,
but sometimes they can be replaced be less expensive instructions. For example, in the
loop

I'=1;
while / < 100 do
A:= I*5;

[]

I:= I+1
od

the value of I*S can be saved in a temporary T whose value is incremented by 5 on each
iteration; I*5 can then be replaced by a load from T as shown below.

I:=1;
T.‘=5,‘
while 7 < 100 do

= T,

o . ®

L= I+1;
T:=T+5
od’

In effect, the multiplication has been replaced by an addition.

-3

Automatic introduction of instructions at new positions in a program (4 la code motion) gives
rise to two important questions. First, the safety question asks whether the new instruction
can cause an error interrupt that would not have occurred in the original program. This
problem can be illustrated by the example in Figure 1. It is easy to see that if a computation
of 4/ B is inserted at point p in block 1, the computation in block 3 becomes redundant and
can be eliminated. But what if the purpose of the branch from block 2 to block 3 is to
prevent an attempt to divide by zero? Moving 4/B to block 1 might well introduce an error
interrupt that the programmer has been careful to avoid.

1
« point p
— I
P
4

B~ expression
computa A/B

3

compute &/3

Figure 1. Safety example.

The question of profitability asks whether we are really moving code to a region of less
frequent execution. Most compilers assume that code inside a loop is executed more often
than code outside the loop, but this assumption could be wrong if there are several alternative
branches within the loop. It is possible to do a fairly complete job of frequency estimation
[CoK76], but few compilers make the attempt since it is not known whether the benefits will
justify the cost.

Both "constant folding" and '"redundant subexpression elimination', introduced earlier as local
optimizations, can be applied on a global scale as well. Complementing these are two new
global optimizations that ''clean up" after other transformations.

e. variable folding [L.oM69]:
Instructions of the form A:=B will become useless if B can be substituted for subsequent

uses of A.

f. dead code elimination [Ken75]:
If transformations like variable folding are successful, there will be many instructions
whose result is never used. Dead code climination detects and deletes such instructions.

An extremely important class if transformations is intended to improve the efficiency of
procedure invocation.

g. procedure integration [AIC72]:
Under certain circumstances, a procedure call can be replaced by the body of the proce-
dure being called (open linkage); in other cases the overhead associated with standard
calling sequences, parameters, and global variables can be reduced by compiling the
procedure with the calling program (semi-open linkage).

Procedure integration is an extremely important optimization because procedure calls, desirable
from the point of view of programming methodology, are often unbelievably inefficient. Thus
good modular programming is penalized rather than rewarded by most compilers.

The last three optimizations are classified as "machine dependent" because they aim to
increase efficiency by taking advantage of special features of the target machine.

h. register allocation [Bea74]:
This optimization seeks to eliminate load and store instructions by assigning variables to
CPU registers whenever possible.

i. instruction scheduling [SeU70, Bea72]:
The proper arrangement of instructions often leads to improved performance. Different
machines give rise to different scheduling criteria -- on a machine with pipelined arithme-
tic units, the goal is to achieve maximum parallelism, while on simpler machines the goal is
to minimize register usage.

j- detection of parallelism [Sck75]:
For vector machines it is desirable to detect inherently parallel operations and code them
as vector instructions.

This list is by no means complete, but it gives the flavor of some typical optimizing transfor-
mations. For those interested in reading further, and excellent introductory treatment of
optimization appears in [AhU77], and Knuth’s famous empirical study [Knu71] demonstrates
the utility of various optimization techniques.

2. OPTIMIZATION IN BASIC BLOCKS

One of the first steps in analyzing a program for the purpose of code improvement is to
subdivide the program into basic blocks, which are simply sequences of consecutive instructions
that are always executed from start to finish. In other words, a basic block may only be
entered at the first instruction and left at the last. Figure 2 shows how a PL/I program would
be partitioned into basic blocks.

E

r‘.- -*-‘1
E' =0"“”E“rSLOL’§|2
s o et c bt --—b--——--J

SC = B#B - 4.0%A%C;12
DI

'.._‘..__..“

ISC > = O{THEN DO;

DROOT = SQRT(DISC); ‘E
= (-B + DROOT)/(2.0%4);!

R2 = (-B - DROOT)/(2.0%4);!

e e

ELSE DO;

{ DROOT = SQRI(LISC);
Rl = -B/(2.0%4);

R2 = DROOT/(2.0%A)
END;

.4
(V]

- - . —— - —

¢
t
1
!
!
i
i
]
]
i

L

1

(o2}

PUT DATA(DISC,RL1,R2);
GO TO REPT;

p oo -
b o - ey =y

Figure 2. A PL/I program fragment partitioned into basic blocks.

Of course, in a compiler the partitioning is usually performed on some intermediate code
representation of the program.

The subdivision process itself is fairly straightforward. I present a method adapted from
[ARU77], that identifies a set of leader instructions, instructions which begin basic blocks, and
then constructs a block by appending to its leader all subsequent instructions up to, but not
including, the next leader. The algorithm is informally specified in an Algol-like high-level
language which admits set theoretic notation.

Algorithm BB: Basic Block Partition
Inpur: A program PROG in which instructions are numbered in sequence from 1 to
|PROG|. INST(i) denotes the ith instruction.
Ourput:
1. The set LEADERS of initial block instructions.
2. ¥ x ¢ LEADERS, the set BLOCK(x) of all instructions in the block beginning at x.
Method:

begin
LEADERS := {1}; ¢ first instruction in PROG ¢
for i := 1 to [PROG] do
if INST(¢) is a branch
then add the index of each potential target to LEADERS
fi
od;
TODO := LEADERS;
while TODO # ¢ do

x := element of TODO with smallest index;

TODO := TODO - {x}

BLOCK(x) := {x};

for i := x+1 to [PROG]| while i ¢ LEADERS do
BLOCK(x) := BLOCK(x) v {i}
od

od

end

Once the program is subdivided into blocks, each block can be optimized using local techni-
ques. In this section I will describe the value numbering scheme of Cocke and Schwartz
[CoS70], which performs redundant expression elimination and constant folding in straight-line
code. As a side effect the method can also compute some of the information used by the
global analysis methods treated later.

Suppose the source language version of a basic block under consideration is as follows:

A:= 4

K:= I*J+5
L:= 5*4*K
M:=]

B:= M*J4+-I*A

This might be transformed into the intermediate code in Table 1.

TIl: A:= C4 T5: C5%4 T9: M*J
T2: IV T6: T5*K T10: I*A
T3: T2+C5 T7: L:=T6 TI11: T9+TI0
T4: K:= T3 T8: M:=I T12: B:=Tl1l

Table 1. Intermediate code example.

Each triple in this code represents a simple operation; operands may be variables, constants
(e.g., C4) or the results of previous operations (e.g., 72).

The main data structure of the 'value numbering' method is a hash-coded table of available
expressions which is used to help uncover redundant subexpressions. As each triple is treated
in sequence from the start of a block, the table is searched for a previous instance of the same
expression. If a match is found, the new triple may be eliminated if all subsequent references
to it are replaced be references to the previous triple.

For the method to work, there must be some way to determine when two operands are
identical. This is provided by a system of value numbers in which each distinct value created or
used within the block receives a unique identifying number. Two entities have the same value
number only if, based upon information from the block alone, their values are provably
identical. For example, after scanning the first instruction in Table 1,

Tl: A:= C4,

variable 4 and constant C4 would have the same value number. The 'current" value number
associated with a variable (or constant) is kept in the symbol table entry for that variable; the
value number for the result of a triple is kept in the table of available computations and as an
auxiliary field of the triple itself. The hash function for entry to the available expression table
is based on the value numbers of the operands and a special code for the operator.

-7 -

Constant folding is handled via an auxiliary bit in each symbol table entry, indicating whether
the current value is a constant, and a bits in each triple, indicating whether the result is a
constant. Also required is a table of constants, indexed by value number, which contains the
actual run-time values of constants.

Algorithm VN, presented in a high-level mixture of English and Algol, embodies the ideas
discussed so far. Note that an instruction is assumed to be the value of a structured variable
with an operator field OP, some auxiliary information and two operands L and R (left and
right, respectively).

Algorithm VN: Value Numbering in a Basic Block

Input:
1. A basic block of triples.
2. A symbol table SYMTAB.

Output: An improved basic block, after redundant subexpression elimination and constant

folding.

Intermediate:
1. Table of available expressions AVAILTAB.
2. Table of constants CONSTVAL.

Method:
begin
while there is another instruction do
INSTR := the next instruction;
OPERATOR := OP of INSTR;
if OPERATOR = store then
find r, the value number of R of INSTR
(this may assign a new value number);
if r represents a constant value then
so indicate in the SYMTARB entry for L of INSTR
fi
else ¢ an expression ¢
find value numbers /,r for L of INSTR and R of INSTR
(this may assign new value numbers);
if / and r represent constant values then
compute the value x of the result by applying OPERATOR to
CONSTVAL(/) and CONSTVAL(r);
enter the new constant x in CONSTVAL, assigning a new value number
in the process;
delete INSTR
else ¢ check for availability ¢
look up the triple </,operator,r> in AVAILTAB, setting FOUND := true
if successful;
if FOUND then
record the fact that any reference to this triple is to be subsumed by a
reference to the previous one (a pointer to which is contained in
AVAIL);
delete INSTR;
else ¢ not available ¢
enter </,operator,r> in AVAILTAB, assigning a new value number to
‘the result
fififi
od
end

Consider the application of this algorithm to the example intermediate code from Table 1. In
processing triples 1 through 4, nothing unusual takes place. Value numbers are assigned to
variables 4, I, J and K and to constants C4 and C5. The results of triples T2 and T3 are
recorded as available. The information collected up to this point is displayed in Table 2.

At instruction 5, the algorithm looks up C5 and A and discovers that they are both constant.
The resuiting C20 may be computed from values in CONSTVAL,; it receives a new value
number (7) and is recorded in CONSTVAL. Finally, triple S is deleted. In the next step,
triple 6 will be modified to use C20 in place of T5.

, Result
Name Value # Constant? Value # Coascant?
1 (C& 1 yes Il: 1 yes
2 A 1 yes T2 4 no
3 2 no T3 6 no
4 3 no T4 6 no
5 |CS 5 yes
6 K 6 jelo] i
| i
SYMTAS Auxiliary Fields of
Iriples
Left Right Result Origimal
Value # Value Value # OP Value # Value # Iastr.,
‘ "
A 2 * | 3 4 ‘ T2 ’
5 5 4 1 s 6 | ‘
!
CONSTVAL AVAILTAB

Table 2. Information collected up to instruction 5.

Resule

Name Value # Constant? Value # Constunt?
1 C4 1 yes Tl 1 yes
2 A 1 yes T2 | 4 no
3 2 no T3 6 no
4 J 3 no T4 6 no
5 |cCS 5 yes TS™ 7 yes (deleted)
6 K. 8 no
7 |C20 7 vas
8 L 8 no
9 M 2 no
SYMTAB Auxiliary Fields of
Triples
’ Left Righe Result Original
Value # Value Value # OP Value # Value # Instr.

4 2 * 3 & T2

3 4 + S 6 T3

20 7 * 6 8 T6

CONSTVAL AVAILTA3

Table 3. Information collected up to instruction 9.

Table 3 displays the information collected by the algorithm up to instruction 9. At this point it
discovers that operands M and J have value numbers 2 and 3 respectively and that there is a

previous computation (72) of the product of these values.

Therefore triple 9 can be deleted

and subsequent references to it replaced by references to 72. The final optimized code is

shown below.

Tl: A:= C4

T2: I*J

T3: T2+C5
T4: K:=T3

T6: C20*K
T7: L:=T6
T8: M:= 1

T10: I*4
T11:T2+TI10
T12: B:=TI11

It is especially interesting that instruction 9 is discovered to be identical to /*/ even though an

alias is used for I.

The method I have described is an elementary prototype of more sophisticated versions which
can also handle array references and structured variables [CoS70, AhU77, KeZ78].

-10 -

An important side effect if this or any other basic block analysis routine is that it can be
modified to compute certain sets which are useful in determining global information. For
example, the final version of the available computations table can be used to determine the set
of expressions which are "available on exit" from the block. In the next section we turn to the
probiem of performing global analysis once we have such sets for each basic block.

3. GLOBAL DATA FLOW ANALYSIS

While analysis within basic biocks can lead to substantial improvements in a program, larger
gains may be achieved by going a step further and gathering information on a global scale.
For example, suppose the expression 4*B in block b is not eliminated by local methods; that
is, there is no earlier computation of 4*B in b. Suppose also that neither A4 nor B is redefined
in b prior to the computation of 4*B. If we can prove that, no matter what control path is to
be taken at run time, A *B will always be computed before control reaches b, then we can still
eliminate the computation in b. Establishing facts like this requires an analysis of control flow
in the program that is thorough enough to yield useful information about data relationships.

In essence, the problem is this: given control flow structure, we must discern the nature of the
data flow (which definitions of program quantities can affect which uses) within the program.
The questions about data flow fall into two classes:

¢Y) Those which, given a point in the program, ask what can happen before control
reaches that point (i.e., what definitions can affect computations at that point);

(2) Those which, given a point in the program, ask what can happen after control leaves
that point (i.e., what uses can be affected by computations at that point).

Class 1 problems are usually called forward flow problems, while class 2 problems are back-
ward flow problems. The gathering of informaticn to solve problems of either class is accom-
plished in two phases. Once the program is subdivided into basic blocks, possible block-to-
block transfers are noted and program loops are found. This phase is known as control flow
analysis. Next the information about how uses and definitions relate to one another is gleaned
in the global data flow analysis phase. The construction of data flow information is difficult
because most nontrivial programs have complex control flow graphs; nevertheless, a number of
solution methods exist. In this paper I shall outline a few of the most important.

The control flow of a program may be represented as a directed graph G=(N,E,ny) where N is
the set of nodes, E is the set of edges and n, is the program entry node. In this model, nodes
represent basic blocks and edges represent possible block-to-block transfers. Figure 3 shows
the control flow graph corresponding to the PL/I program in Figure 2.

-11 -

~ "

\
' 0 j dummy program entry
~ 4

—~

R

SN

Figure 3. Control flow graph for Figure 2.

Two special notations will be used frequently in discussing control flow graphs. The successor
set S(x) for a node x is defined as

S(x) = {yeN|(x.y)e E}
and the predecessor set P(x) is
P(x)={yeN| (y,x)e E}

A simple path in G is a sequence of nodes (n,15,...,1,) such that all nodes are distinct and
(nyni) €E, 1<i<k. A simple cycle is a simple path except that n;=n,.

We shall use as examples two problems which are typical of class 1 and class 2 data flow
problems.

a) Available Expression Analysis.

We say that an expression is defined at a point if the value of that expression is computed
there. An expression is said to be killed by a redefinition of one of its argument variables. In
these terms an expression is available at point p in G if every path leading to p contains a prior
definition of that expression which is not subsequently killed. Let AVAIL(b) be the set of
expressions available on entry to block 5. We define a system of equations for AVAIL(5),
be N, in terms of sets which can be computed from local information. Let NKILL(5) be the
set of expressions which are not killed in block » and DEF(b) be the set of expressions which
are defined in b without being subsequently killed in b, i.e., the set of expressions which are
always available on exit from 5. These definitions lead directly to the system of equations:

-12 -

AVAIL(5) = N(DEF(x)u(AVAIL(x)nNKILL(x))) &)
x € P(b)
Solution of this system will provide the desired global information.

b) Live Variable Analysis

A path in G=(N,E,ng) is said to be X-clear if that path contains no assignment to the variable
X. The variable X is live at point p in G if there exists an X-clear path from p to a use of X.
Let LIVE(b) be the set of variables which are live on entry to block b. Once again we seek a
system of equations for the live sets in terms of local sets. Let IN(b) be the set of variables
which are live on entry to b because of a use within b, and let THRU(b) be the set of variables
which are redefined in 5. The following system of equations is the result.

LIVE(b) = IN(d)u U (THRU(b)nLIVE(x)) **
x€ S(b)

Similar equation systems can be developed for most data flow analysis problems. In fact,
Kildall [Ki173], Kam and Ullman [KaU76], Graham and Wegman [GrW76], and Tarjan
[Tar75b] all formalized their treatment of data flow analysis by providing axioms for
"acceptable' equation systems, thus unifying their methods. To show that a particular
problem can be handled by a standard algorithm, one need only show that the sets of quanti-
ties and rules for combining the sets at control flow junctions satisfy the required axioms. This
approach simplifies the discussion of data flow methods. Curiously, it has also contributed to
the classification of the algorithms by ranges of applicability [KaU76, Fon77]. Fast solution
methods to these problems have taken a number of forms. Nine such methods are surveyed
here, four in detail.

3.1 Iterative Techniques

Perhaps the simplest approach to data flow analysis is to iterate through the nodes to the graph
applying the appropriate equations until no changes take place. Such a method has been
studied by Hecht and Ullman [HeU75, Ull73] and subsequently by Kennedy [Ken76]. Here is
the iterative algorithm for live variable analysis.

Algorithm IT: Iterative Live Analysis
Inpur: IN(b), THRU(b), VbeN.
Output: LIVE(b), YbeN.

Method:

for all be N do LIVE(d) := IN(b)ed;
change := true;
while change do
change := false;
for all beN do
oldlive := LIVE(d);
LIVE() := IN(b)u U (THRU(H)nLIVE(x));
X eS(b)
if LIVE(b) # oldlive then change := true fi
od
od
end

If n =|N|, this algorithm requires O(n2) extended (or '"bit vector") steps for the entire
computation. Kildall [Kil173] has described a very general form of the iterative algorithm using

-13 -

lattice theory while Kam and Ullman [KaU76] have shown that there exist optimization
problems for which the iterative algorithm does not converge rapidly -- for example, constant
propagation.

3.2 Nested Strongly-Connected Regions

A somewhat structured approach to data flow is based upon the loop organization in the
program. This method proceeds from local to global analysis by first extending data flow
information to inner loops, then effectively collapsing these loops to single nodes before
continuing to the next level. Many optimizations such as code motion can be performed in
stages using this method with code being '"bubbled" outward to less frequently executed
regions. This is the technique originally used by Allen [All69]. The difficulty is that it is not
always easy to find a suitable collection of nested strongly-connected regions. The accepted
way of locating such a collection was first devised by Earnest, Balke and Anderson [EBAT72];
it involves the application of two ordering algorithms on the nodes of the control flow graph.
Earnest [Ear74] continued this work by presenting a number of optimization algorithms which
used nested regions. Beatty [Bea74] has developed an elegant register assignment algorithm
using this method.

3.3 Interval Analysis

A simpler way to partition the control flow graph into regions was developed by Cocke and
Allen [All70, All71, Coc70, AIC76]. An interval in G is defined to be a set 7 of blocks with
the following properties:

1) There is a node hel, called the head of I, which is contained in every control flow
from a block outside 7 to a block within I; i.e., [is a single-entry region.

(2) I is connected. (This property is trivial if C is connected.)

3) I - {h} is cycle-free; i.e., all cycles within / must contain 4.

Given a node # in some graph G, the following algorithm, due to Allen and Cocke [AIC76],
constructs MAXI(4), the maximal interval with head 4. In presenting the algorithm, I use the
notation S/M] where M is a set of nodes, to mean

Usx),
XEM
that is, the set of successors of nodes in M.

Algorithm MI: Maximum Interval Construction.
Input: The specified head A.
Output: MAXI(h).
Method:

begin
I .= {h};
while 3x¢ (S/i] - I) such that P(x) < I
do
I:=1Tu {x}
od;
MAXI(h) := T
end

As we shall see, the order in which Algorithm MI adds nodes to an interval I is important, so
it is usually given a name: interval order. Interval order is a total ordering on I which

-14 -

preserves the partial order generated by the subgraph I—{h}. The significance is that if nodes
of I are processed in interval order, a particular node b(# h) will be treated only after every
node in P(x) has been processed. Similarly, if I is processed in reverse interval order, every
node in S(x)nI will be treated before x is. These order-of -processing observations are crucial
to data flow algorithms based on intervals.

Using Algorithm MI as a subprogram, the following algorithm, also due to Allen and Cocke
[AIC76], partitions a flow graph into a set of disjoint intervals. Algorithm IP is based upon
the observation that any node which is the successor of some node in interval 7, but which is
not in 7 itself, must be the head of some other interval J.

Algorithm IP: Interval Partition.
Input: A flow graph G=(N,E,ny.
Output: A set INTS(G) of disjoint intervals which form a partition of G.
Auxiliary:
A set H of potential interval heads.
A set DONE of heads for which intervals have been computed.
Method:

begin ¢ the program entry n, is a head ¢

H:= {no};

DONE := ¢;

while H # ¢ do
X := an arbitrary node in H;
find MAXI(x) using Algorithm MI;

' INTS(G) := INTS(G) v {MAXI(x)};

¢ add new heads ¢
H := H v (SIMAXI(x)] — MAXI(x) - DONE)
od

end

As an example, consider the flow graph displayed in Figure 4. When Algorithm IP is applied
to this graph, it identifies nodes 1,2 and 5 as interval heads; the corresponding intervals are
{1}, {2,3,4} and {5,6,7}

For a given flow graph G, the derived flow graph I(G) is defined as follows:

(a) The nodes of I(G) are the intervals in INTS(G).

(b) If J,K are two intervals, there is an edge from J to X in /(G) if and only if there exist
nodes njeJ and ng e K such that ny is a successor of ny in G. Note that nyg must be the
header of K. ‘

(¢) The initial node of I(G) is MAXI(ngp).

The sequence (Gg,Gys...,Gp) is called the derived sequence for G if G=Gg, G, 1=1(Gy),
Gp1%Gm, and I(Gp) = Gp. G is called the derived graph of order i and G,is the limit flow
graph of G. A flow graph is said to be reducible if and only if its limit flow graph is the trivial
flow graph, a single node with no edge; otherwise, the flow graph is nonreducible [All70,
AIC76, CoS70].

Figure 5 shows the rest of the derived sequence for the example in Figure 4.

- 15 -

Figure 4. A flow graph with intervals.

Figure 5. Derived sequence for Figure 4.

- 16 -

In this example, the graph is reducible; however, that will not always be the case, as Figure 6
demonstrates. If we apply Algorithm IP to this graph, The result will be the same graph --
each node is an interval unto itself.

.,
wp

Figure 6. A nonreducible graph.

As it happens, the data flow analysis algorithms based on intervals work only for reducible
graphs, so nonreducibility could present a serious obstacle. However, we are able to ignore
this problem for two reasons. First, three empirical studies have shown that flow graphs
arising from actual computer programs are almost always reducible -- i.e., more tha 95% of
the time [AIC72, Knu71, KeZ77]. Second, any nonreducible graph can be transformed to a
reducible one by a process known as node splitting [CoS70, Sch72]. Figure 7 shows a split
version of the graph in Figure 6; the new graph, semantically identical to the old one, has been
made reducible through the use of an exact copy of node 3.

Figure 7. Split version of Figure 6.

Thus, secure in the knowledge that node splitting can always be applied in those rare cases
where a graph fails to reduce, we can concentrate on finding fast data flow algorithms for
reducible flow graphs.

Like all approaches which are based upon a program’s control flow structure, the interval
partition gives rise to a two-pass algorithm for data flow analysis. I will discuss the method as
it applies to live analysis, treating each pass separately.

-17 -

1) Pass 1 -- Local to Global

During the first pass, local quantities IN and THRU are computed for larger and larger regions
of the program. The heart of this pass is Algorithm I1 below, which computes IN and THRU
for an interval from their values for blocks in the interval. Note that a second parameter has
been added to THRU to indicate a particular successor; this permits handling of THRU for
composite regions like intervals.

Algorithm I1: Interval Pass 1.
Input:
1. An interval I.
2. IN(x), Yxe I, THRU(x,y), YxeI, Vye S(x).
Output: IN(D); THRUW,J), YJe S(I).
Auxiliary: For each xe I, PATH(x), the set of variables 4 for which there is a clear path (not
containing a store into 4) from the entry of I to the entry of x.
Method:

begin
IN(J) := IN(Aa);
PATH(R) := Q; ¢ Q = set of all variables ¢
for aill x ¢ I—{h} in interval order do
PATH(x) := U(PATH(y)nTHRU(y x));
x€ P(x)
IN(I) := IN(J) u (PATH(x)nIN(x))
od;
¢ let Ay denote the head of J ¢
for J such that h;€ S{I] do
THRU(/J) := U(PATH(y)nTHRU(y,4)))
yePhynl
od
end

If Gy,Gy,...,Gy, is the derived sequence (where Gy=G), pass 1 consists of applying Algorithm
I1 to each interval in Gy, then to each interval in G, and so on until it has been applied to the
single interval in G, ;. At this point, IN and THRU sets will have been computed for each
node in the derived sequence of graphs. '

2) Pass 2 - Global to Local

During the second pass, LIVE is computed for smaller and smaller regions of the program.
Let x* denote the single node in G,. Pass 2 begins with the assignment

LIVE(x*):= IN(x*) .

This is clearly correct since x* has no successors. The remainder of the pass consists of
repeated application of Algorithm I2, which computes LIVE sets for each node in an interval
I, given correct live sets for the entry to / and to each successor J of I. This precondition is
assured by the order in which I2 is applied: first to the interval x*, then to each interval in
Gn.2» and so on (backwards through the derived sequence) until LIVE sets have been
computed for every node in the original graph G.

The algorithm itself is based on the observation that if nodes of /—{h} are treated in reverse

interval order, the live analysis equation (**) can always be applied because the correct LIVE
set for each successor of a given node x € I—{#} will have been previously computed. To see

- 18 -

this, suppose we are processing nodes of /—{h} and we arrive at node x. A successor y of x

can be one of three things:

1) y is another node in /~{h}, in which case LIVE(y) has already been computed because
nodes are being treated in reverse interval order; :

2) yis the head of /, in which case LIVE(J) can be used for LIVE(y), or

3) yis the head of some successor interval J, in which case LIVE(J) can be used.

Algorithm 12 is a direct encoding of these insights.

Algorithm 12: Interval Pass 2.
Input:
1. An interval I with head 4.
2. IN(x), ¥xeI; THRU(xy), ¥xel, VyeS(x).
3. LIVE(J); LIVEW), WeS().
Output: LIVE(x), Vxel.
Method:

LIVE(h) := LIVE(D);
for all JeS(J) do
LIVE(head of J) := LIVE();
od;
for all xe I-{h} in reverse interval order do

LIVE(x) := IN(x)u U (THRU(x,y) nLIVE(y));
yeS(x)
od
end

Although interval analysis has been shown to require fewer bit vector operations than the
iterative method in many cases [Ken76], it is still O(n?) in the worst case, and in practical
implementations the elegantly simple iterative method may prove faster. The main advantage
of the interval approach is that it constructs a representation of the program control flow
structure which can be used for other optimizations [Coc70]. Allen, Cocke, Schwartz,
Kennedy, Aho and Ullman [All70, Coc70, AIC76, CoS70, Ken71, Ken76, AhU73] have
applied interval analysis in the solution of data flow problems. Allen and Cocke [AIl70,
Coc70] first used intervals to solve class 1 (forward) problems, while Kennedy [Ken71,
Ken76] indicated the interval solution for class 2 (backward) problems.

3.4 T1-T2 Analysis

In search of better theoretical results and faster algorithms, Ullman [Ul73] introduced two
transformations on program graphs. Transformation T1 collapses a self-loop to a single node,
while transformation T2 collapses a sequence of two nodes to a single node if the second has
the first as its only predecessor. When T1 and T2 are repeatedly applied to a control flow
graph, the graph is often reduced to a single node. Hecht and Ullman.[HeU72] have shown
that the reducible flow graphs in the T1-T2 sense are exactly the interval-reducible graphs.
This result has led to a number of useful characterizations of flow graph reducibility [HeU72,
HeU74].

T1-T2 analysis also allowed Ullman [Ull73] to design an algorithm which uses balanced "3-2"
trees to perform available expression computation in O(n log n) extended steps. Ullman’s
method can be extended to many other class 1 problems; however it is not known whether it
can be adapted to class 2 problems.

-19 -

3.5 Node Listings

A variation of the iterative method for data flow analysis builds an intermediate representation
of the céntrol flow called a node listing [Ken75a], which is then used to solve the data flow
equations. I here describe the node listing method for live analysis.

In the solution of the live analysis problem we are concerned with how operations in one block
can effect "liveness" on entry to another. Thus we are interested in propagating information
from every block in the program to every other block. Thus it is natural to consider the paths
along which this information is propagated. A node listing for control flow graph G=(N,E,n;)
is defined to be a sequence

{=(ny,n,,...,n)

of nodes from N (nodes may be repeated) such that every simple path in G is a subsequence of
{. That is, if
(x15%25---0g)

is a simple path in G then there exist indices

jl&jzv'"’jk

such that j;<ji,;, 1Si<k, and x; = n, 1<isk.
i

For any control flow graph there exists a node listing of length <n? where n= | N| since
{ = (n,,nz,...,n,,,nlynzy...n",...,nl...,n")

with n repetitions of (#,...,n,) is certainly such a listing. A node listing is minimal if there is
no shorter listing for G.

The utility of this concept is demonstrated by the following algorithm which, given a node
listing, computes the live sets in a manner similar to the Hecht-Ullman iterative method.

Algorithm NL: Node Listing Live Analysis.
Input: IN(b), THRU(D), YbeN.
Outpur: LIVE(b), Ybe N.
Method:

begin

for all be N do LIVE()) := IN(b) od;

for i := |[nodelist to 1 by ~1do
b := nodelist[i];
LIVE(b) := IN(b)u U (THRU(L)nLIVE(x))

x€ S(b)
* od
end

The node listing concept is introduced in [Ken75a]; in [AhU75] Aho and Ullman show that for
reducible flow graphs on O(n log n) length node listing can be found in O(n log n) time.
Combining this method with Algorithm NL produces an O(n log n) algorithm to solve either
class 1 or class 2 data flow problems. Markowsky and Tarjan [MaT75] have shown that
O(n log n) is a lower bound of the node listing algorithm, i.e., no better worst-case bound can
be found, although there are linear listings for a large class of graphs [Ken75]

-20 -

3.6 Path Compression

Another O(n log n) data flow analysis algorithm was discovered by Graham and Wegman
[GrW76]. It is based on three transformations which are similar to Ullman’s T1 and T2. The
Graham-Wegman transformations are depicted in Figure 8. Transformation T, removes a self
loop; T, compresses a two-step path to a one-step path, eliminating the middle node whenever
it has no other successors (T,b); T, eliminates a successor of the entry node that has no
successors of its own. For technical reasons, application of T, requires that the node with the
loop have a unique predecessor. An example reduction using these transformations is shown in
Figure 9. Graham and Wegman have shown that any graph reducible in the interval sense will
be reduced by T,-T;.

B3 0 4
+ % 8Ty
2:@ ﬂgg-?—»

Figure 8. Graham-Wegman path compression transformations.

T, (121)
—

Q0
©

¥ O
o (2)
®

). 4
TZ (013)

T
LS G- ©
®

Figure 9. Sample Graham-Wegman reduction.

Data flow analysis using the path compression transformations is similar to interval analysis.
The method I present here differs from the one originally published by Graham and Wegman
in that it easily handles backward as well as forward analysis.

Given a flow graph, the first step is to construct a ""parse’. i.e., a list of transformations which
will reduce the graph to a single node. The complexity analysis is very sensitive to the order to
choose a parse that reduces loops from the inside out and minimizes the number of T,
transformations. Since T, transformations are the most expensive, this strategy achieves the
good time bound.

Once available, the parse is employed in a two-pass algorithm which computes IN and THRU
for composite regions of increasing size in a pass through the reduction sequence, then
computes LIVE for each node as it appears in the reverse reduction sequence (or production
sequence). This process is embodied in Algorithm P2, which applies a set of associated
computations at each reduction or production. Each transformation in the parse is really a pair
<t, n>, where ¢ is a transformation number and 7 is a mapping from the nodes in the prod-
uction to nodes of the graph being reduced; in other words, n specifies the region of applica-
tion for transformation z. Such a pair is called a transformation instance.

-22 .-

Algorithm P2: Two-pass Live Flow Analysis
Input:
1. A graph G=(N,E,ny).
2. IN(x), ¥xeN; THRU(xy), VxeN, YyeS(x).
3. A list PARSE, consisting of transformation instances <¢,7> which reduce G.
Output: LIVE(x), VxeN.
Method:

begin

¢passle¢

for i := 1 to [PARSE| do
<t,n> := PARSE[i];
apply the reduction computations associated with ¢ to the nodes specified by 7.
od;

LIVE(n,) := IN(n,);

¢pass2 ¢

for i:= [PARSE| to 1 by —1 do
<t,n> := PARSE[];
apply the production computations associated with ¢ to the nodes specified by 7.
od

end

All that remains is to specify the computations associated with each transformation. Figure 10
shows the computations of IN and THRU performed during the reduction pass. Note that
path compression emphasizes edges rather than nodes, so the THRU sets being constructed are
for composite edges. For notational convenience, we define THRU of a nonexistent edge to
be the empty set. Figure 11 shows the production computations; an initial LIVE set for each
node is determined when the node first appears as the result of some production. This live set
is then revised as new exit edges are added by T,a productions.

In practice, path compression is very fast indeed; in fact, it operates in linear time for an
extremely large subclass of the reducible flow graphs. Its only disadvantage is that, although
classified as a ''structured" method, the structure it uncovers seems unnatural because it is
based on edges rather than nodes. Nevertheless, path compression is an excellent algorithm
from both the theoretical and practical standpoints.

3.7 Balanced Path Compression

In 1975, Tarjan devised an algorithm [Tar75b] which combined elements of the node listing
approach with a stronger form of path compression using a balanced tree data structure he had
introduced in [Tar75a]. The result is a very fast algorithm with running time O(na(n,n)),
where « is related to a functional inverse of Ackermann’s function. Thus for all practical
purposes the algorithm is asymptotically linear; unfortunately it seems very complex, so until
there is some experience with an implementation, I cannot tell whether it is suitable for
inclusion in a compiler. Tarjan’s algorithm can be used to solve a variety of class 1 problems,
but it is not yet clear that it can be adapted to class 2 problems.

-23 -

!
O
)20

&
1

no computation IN(n o (n)U(J.:I'%U (1 ,2)NINEGED))

éi . @R
©

T

[

94
<;> \
T,b v
v 2

IN(x):= INCG)U(THRU (x,y)NIN(Y))
THRU (x,2) := THRU (x,z)U(THRU (x,y) TERU (v, 2))

Figure 10. Reduction computations.

-24 -

e i

—> ! e~y
. . Q

3
LIVE(x):= ILi(x)
LIVE(y):= IN(y)U (TERU (y,2)(LIVE(2))

%

LIVE(q) = WVED u (THRY (4,2) N LWE))

‘,—.—._\

et

Figure 11. Production computations.

-25-

3.8 Graph Grammars

in an attempt to further simplify the problem of data flow analysis, Farrow, Kennedy and
Zucconi [FKZ75] studied further restrictions on the class of acceptable graphs, restrictions
stronger than the traditional notion of reducibility. They introduced the Semi-Structured Flow
Graph (SSFG) grammar, depicted informally in Figure 12, and studied the class of flow graphs
generated by that grammar. The set of rules in Figure 12 was chosen because it seems to
include most of the control structures proposed as extensions of the basic Bshm and Jacopini
set for structured programming [BoJ66]. For example, the SSFG grammar can generate the
double-exit loop used by Ashcroft and Manna [AsM71] to demonstrate a limitation of the
Bohm-Jacopini control structures (see Figure 13).

The major problem with using SSFG or any other graph grammar for data flow analysis is that
of graph parsing, constructing a parse for an arbitrary graph. For the SSFG rules, an
important step toward the fast parsing algorithm was a proof that corresponding SSFG
reductions can be applied in any order without affecting the result. In other words, reducibili-
ty of a given graph is not sensitive to the order in which reductions are applied. Farrow,
Kennedy and Zucconi established this result by proving, via a long graphical argument, that the
SSFG reductions have the Finite Church-Rosser property [ASU72, Set74]. As a result of this
property, they were able to devise a parsing algorithm which applies reductions in a disciplined
way and avoids wandering around the graph.

- 26 -

<>]]
T

v
basic block) 4 sequence
- | l
- ' .
) conditional . loop
5) | ! 6) J
—> '_ I L [< >_J —> v
: ot v
' decision block decision sequence 1
7 8)
v f<>_l r '
R A 4
* ' decision sequence 2 double decision

.

y <o —
v

double=-exit loap

Figure 12. SSFG grammar.

.27 -

double decision

Loop < decision sequence 2
O —_ —_— 4 s
A4

(A%
decision ' basic A
sequence 1 block
Q decision [J [] l—:;—j
block
A 4
ﬁ
‘.' ‘Vb

Figure 13. Derivation of the Ashcroft-Manna counterexample.

I present the parsing algorithm in two parts. First, Algorithm CO (collapse) finds all the
reductions which apply at a particular node x. If it discovers at least one reduction, it sets a
success flag to true and returns the.reduction list.

Algorithm CO: Collapse
Input: A graph T and a node x in T.
Output:
1. A flag SUCCESS indicating whether or not a reduction has been found,
2. A list of reductions P, (possibly empty),
3. A modified graph I'.
Method:

begin P, := ¢; SUCCESS := false;
reducing := true; I’ :=T;
while reducing do
for each production P in Ggggg do
if right-hand-side(P) is isomorphic to a region R in I’ headed by x
then
apply P! to reduce R to a single node x’, forming a new version of I';
add thf production P to P, along with some auxiliary information;
x:=x;
SUCCESS := true;
goto reduced
fi

-28 -

od;
reducing := false;
reduced:
skip
od
end

The SSFG parsing algorithm assumes a list L of nodes of the program in siraight order, a fairly
obvious order for nodes of the flow graph [EBA72, HeU75), and produces a parse Pr. The
basic scheme is to take each node from L in sequence and try a collapse. Whenever a collapse
succeeds, the algorithm backs up to a predecessor, indicated by a "link," to try further
collapses; otherwise it moves on to the next node on L. This disciplined backup is the key to a
linear time bound.

Algorithm PA: SSFG Parse
Input:
1. A graph T.
2. A list L of nodes of T in straight order.
Output:
1. A list Py of reductions.
2. An answer to the question, "is T in the language generated by Gsseg?"
Method:

begin
L := the list of unvisited nodes (straight order);
x := the entry of T;
Pr:=¢;
remove x from L;
while x % null do
perform a collapse at node x;
¢ collapse produces I, P,, and the flag SUCCESS ¢
make x the unique linked predecessor of all unvisited successors of xinI’;
append P, to Pr;
r:=1;
if SUCCESS ¢ at least one reduction ¢
and x is linked to a predecessor
then x := linked predecessor of x
elif L=¢ then x := null
elsex:=hd L; L:=dL
fi

if T is now a single computation node

then the graph is SSFG and P, is a valid parse
else the graph is not SSFG fi

end

The operation of this algorithm is demonstrated by the example in Figure 14. m this figure,
links are indicated by dotted lines. Nodes are numbered in straight order. The steps are as
follows:

1) An unsuccessful collapse is attempted at node 1. A link to 1 is inserted in 2.

2) A collapse at node 2 discovers a "decision sequence 1" involving node 4. Links to 2
are inserted in nodes 3 and 10 (Figure 14b).

3) A backup leads to another unsuccessful collapse at 1.

-29 .

4) A collapse at node 3 discovers a long sequence of reductions:
two "decision sequence 1" reductions (Figure 14c), a "double-exit loop” and a
"decision sequence 1" (Figure 14d), a "conditional" and a "decision sequence 2"
(Figure 14e). A link to 3 is inserted in 10, but not in 2 (it has been visited).

5) After a backup, a collapse at node 2 discovers a ""double-exit loop", a "conditional" and
a "sequence' (Figure 14f).

6) After one more backup, a collapse at node 1 produces the final ""sequence" reduction.

It has been shown that this algorithm, in time linear in the number of blocks in the original
program, either produces a parse for I or reports that I' is not reducible. If the graph is
reducible, the length of its parse must also be linear in the size of the original graph.

With the parse in hand, we can apply the same two-pass algorithm used by path compression
(Algorithm P2) to perform data flow analysis. Space does not permit me to specify the
computations associated with each of the nine transformations in the SSFG grammar; instead, I
have selected two rules, "'sequence’ and "double-exit loop", as examples. Reduction computa-
tions for these rules are shown in Figure 15 and production computations in Figure 16. As
with path compression, a correct LIVE set is determined for each node when it first appears as
the result of some production. Since there is a fixed number of operations associated with
each transformation in the parse, the linear parse length implies that the entire computation
takes linear time.)

-30 -

P Lt Kl ek dhadnd o

-

collapse (1)
(f£ail)

collapse (2)

collapse (1)
(fail)

collapse (3):

=

,--————-\‘

6(,'

(d) (e)

-

-

@

(£) (g)

-

@ collapse (1)
— @

Figure 14. An example parse.

-31-

2) @ sequence
—D

v
z
z
IN(x):= IN(x) U (THRY (&,y) 1 IN(y))
THRU (¢, 2) := THERU (:,y) N THRU (v, z)
‘ double-]
o g exit loop
9) —D |
7
vy Vv r4 v
zZ 0w

IN(x):= IN(x) U (THRU (x,y) N IN(y))
THRU (x,2) := THRU(x,z)
THRU (x,#) := THRU (x,y)) THRU (y,w)

Figure 15. Sample reduction computations.

sequence
2) —_—

! ' v
_’ . d
z ©
‘?
Z
LIVE(y):= IN(y) U (THRU (y,z) N LIVE(2))

1 . double- l
exit loop

Y .
>y T

4 7 Y -
z w T‘\\/

v v

b4 e

LIVE (y):= IN(y) U (THRU (y,x) N LIVE(x))
U (TERY (y,w) N LIVE (w))

Figure 16. Sample production computations.

-32-

An important by-product of the method is the parse itself, which can be used for many
different data flow problems and which provides a convenient representation of the structure
of the program. Because it uncovers loops and other control constructs this representation can
be used to perform optimizations like code motion and strength reduction. The structure
discovered by the SSFG parse is more natural than that discovered by the interval method or
the Graham-Wegman technique, because the SSFG grammar is based upon control structures
arising from good programming practice.

The main drawback of the graph grammar approach is its limited range of applicability. In
order to find out how much of a drawback that is, Kennedy and Zucconi conducted a follow-
up study in which they analyzed 500 FORTRAN subroutines taken from running programs
used by several departments in the School of Natural Sciences at Rice University. All of these
programs were written before the emphasis on structured programming, yet 94% were
Cocke-Allen reducible and, of these, 88% were SSFG reducible. In other words, 88% of the
programs for which most other methods work can be reduced and hence analyzed by the SSFG
method [KeZ77].

As a final note I would point out that the Graham-Wegman algorithm is also linear on all the
SSFG-reducible graphs. It is gratifying to observe that well-structured programs can produce
benefits other than the obvious ones -- e.g., faster compilation speeds. In a sense, programs
that are easier for humans to understand are also easier for compilers to understand.

3.9 High-Level Data Flow Analysis

The methods surveyed thus far are designed to work with a low-level version of the program.
One might well ask if it is possible to perform the same analysis on a high-level representation
such as the parse tree. The answer is yes. This approach, often called high-level data flow
analysis, is similar to the graph grammar method, except no complicated graph parsing
algorithm is required. For simplicity, I will illustrate the method by considering a language
which contains no escape or goto statements. Consider the simple grammar fragment below.

<program>::= begin <statement> end

<statement>::=<assignment>

<statement>::=<statement> ; <statement>

<statement>::=if <condition> them <statement> else <statement> fi
<statement>::=while <condition> do <statement> od

Although this grammar is clearly ambiguous, we can nevertheless write a parser which resolves
the ambiguity in some sensible way, say by grouping from left to right.

The parse tree for a program generated by this grammar will have a <program> node as its
root and a number of <statememt> nodes as nonterminals in the tree. Data flow analysis can
be applied to such a tree in the familiar two-pass fashion. The first pass propagates IN and
THRU sets associated with <statemenr> nonterminals up toward the root; the second pass
propagates LIVE sets down toward the leaves. To specify the entire procedure within this
framework, one need only specify the computations that can occur at each <statement> node
— for pass 1, how to compute IN and THRU for a <statement> given IN and THRU for its
parts, and for pass 2, how to compute LIVE for subparts of a <statement> given LIVE for the
<statement> along with IN and THRU for the parts, as determined on pass 1. These specifi-
cations must be given for each rule of the grammar.

As an illustration, consider the computations associated with the sample grammar given earlier.

For compactness, I will specify these computations using the shorthand notations S for
<statement>, C for <condition>, P for <program>, and A for <assignment>; I will use

-133 -

subscripts to distinguish different occurrences of the same nonterminal in a single rule. Each
nonterminal S will have a number of associated atmributes: IN, THRU, LIVE, and LIVEOUT
(the set of variables live on exit) for the region that S represents. The specification is
completed by associating with each rule of the grammar semantic equations, which show how to
compute the various attributes. To apply the semantic equations at a particular node while
traversing the parse tree, set up a correspondence between the node and its sons on the one
hand and the nonterminals of the production that applies at the node on the other. Then the
semantic equations associated with the rule can be used to compute attributes for the tree
nodes.

Here is the complete specification for the sample grammar.

1) P := begin S end
¢ no computations on pass 1 ¢
¢ pass 2 computations ¢
LIVE(S) := IN(S);
LIVEOUT(S) := ¢ ;

2) Si:= A4

¢pass1le¢

IN(S) := IN(4);

THRU(S) := THRU(A);

¢ pass2 ¢

LIVE(A4) := IN(4) u (THRU(4)nLIVEOUT(S));

2) SO o= Sl s Sz

¢passle

IN(Sp) := IN(S,) v (THRU(S)nIN(S3));
THRU(Sp) := THRU(S;) n THRU(S,);

¢ pass 2 ¢

LIVEOUT(S,) := LIVEOUT(S);

LIVE(S,) := IN(S,) v (THRU(S,)nLIVEOUT(S,));
LIVEOUT(S,) := LIVE(S,);

LIVE(S,) := IN(S;) v (THRU(S)nLIVEOUT(S));

4) So ::= if C then Sl else Sz fi

¢passle¢

IN(Sp) := IN(C) u (THRU(C)n(IN(S;)UIN(S>,)));
THRU(S,) := THRU(C) n (THRU(S,)uTHRU(S>));
¢ pass 2 ¢

LIVEOUT(S,) := LIVEOUT(S,) := LIVEOUT(S);
LIVE(S,) := IN(S,;) v (THRU(S)nLIVEOUT(S));
LIVE(S,) := IN(S,) v (THRU(S,)nLIVEOUT(S>));
LIVEOUT(C) := LIVE(S;) v LIVE(S;);

LIVE(C) := IN(C) v (THRU(C)nLIVEOUT(C));

5) So ::= while C do S, od
¢passl ¢

IN(Sp) := IN(C) u (THRU(C)nIN(S}));
THRU(S,) := THRU(C);

-134 -

¢ pass2 ¢

LIVEOUT(C) := LIVEOUT(Sy) v IN(S;) u (THRU(S) nIN(C));
LIVE(C) := IN(C) v (THRU(C)nIN(O));

LIVEOUT(S,) := LIVE(C);

LIVE(S)) := IN(S) v (THRU(Sl)nLIVEOUT(S,));

The high-level approach, described here via an attributed grammar [Knu68], has several
advantages. First, because the computations at each node of the parse tree are selected from a
finite set and because the tree is traversed exactly twice, the total amount of processing is
linear in the number of nodes of the parse tree. However, the constant of proportionality
depends on the richness of the set of control structures — the richer the language, the more
complex the data flow analysis.

Second, the method lends itself to convenient updating of data flow when sections of the parse
tree are modified by optimization. If the leaf of some subtree is changed, new values of IN
and THRU can be propagated upward to the first nonterminal where these sets are unchanged;
then the computation of modified LIVE sets can be propagated back toward the leaves. This
process limits the updating in response to 2a change to the region where the change actually
makes a difference.

Finally, the first pass of high-level analysis can be performed as a part of the parse itseif.
Whenever a composite control structure is recognized, the IN and THRU sets for the region it
represents are computed from IN and THRU for the individual parts according to the semantic
equations above.

Various formulations of high-level data flow analysis have been proposed [Wul75, NeA7S,
Jaz75]. Particularly notable is its use in the BLISS/11 compiler at Carnegie-Mellon [Wul75].
The name "high-level data flow analysis" was coined by Rosen in his detailed treatment of the
method [Ros77]. Recent work [BaJ78a, BaJ78b, Ros77, Ros79] in high-level analysis allows
the same escape and goto statements allowed by low-level analysis. In most cases, such jumps
can be processed without a substantial increase in computational complexity.

3.10 Summary Table

Table 4 summarizes the characteristics of the algorithms I have described. The column labeled
speed shows the asymptotic complexity of each method. In the simple column, "S" indicates an
easy-to-program method, "C" indicates a complicated method, and "M" indicates average
difficulty. A "yes" under structure says that the method uses a model of the program loop
structure in its computation -- i.e., that the algorithm attempts to discover the structure of the

program.

both graph
Method speed simple? structure? ways? class
Iterative n? S no yes all
Interval n? M yes yes reducible
Bal. Tree nlogn C yes no reducible
Path Comp. nlogn M semi yes reducible
Node List nlogn M no yes reducible
Bal. Path na(n,n) C no ? reducible
Grammar n M yes yes L(grammar)
High-Level n S yes yes parse trees

Table 4. Summary of data flow methods

-35 -

A "yes" in the both ways column indicated that the algorithm works in the given time on both
forward and backward data flow problems. The last column shows the class of graphs for
which each algorithm was analyzed (in most cases this is also the class to which the algorithm
is applicable).

3.11 Interprocedural Analysis

The foregoing material has said nothing about the effect of procedure calls on data flow
analysis. Usually calls within blocks are treated as complex instructions which may affect the
values of many variables. It is the function of interprocedural data flow analysis [All74] to
construct summary information for a procedure: which variables are used and which are
redefined as the result of a call. For example, interprocedural analysis might construct IN and
THRU sets for the procedure call to support live analysis.

Interprocedural analysis is important because, in its absence, extremely conservative assump-
tions must be made. For example, in live analysis, it must be assumed that a procedure uses
every variable it has access to; in availability analysis it must be assumed that it kills every
expression it can and defines no new ones. Broad assumptions like these quickly dilute the
power of data flow analysis.

Interprocedural analysis is a complex process, particularly for languages with Algol-like scoping
rules. One method {Bar78] entails constructing a call graph and summary information for a
single activation of each procedure in the graph, then taking a transitive closure on the graph.
Another approach is to adapt intraprocedural methods like the ones described earlier in this
section to interprocedural use, applying them to the call graph or within the procedures
themselves [Ban79, Ros79)]. Since it is treated elsewhere in this collection, I will not discuss it
in detail, but be aware that interprocedural analysis is an essential part of any system for
global data flow analysis.

4. USE-DEFINITION CHAINS

For data flow analysis problems which are more compiex than the ones examined previously,
data interconnections may be expressed in a pure form which directly links instructions that
produce values to instructions that use them. These links are called use-definition chains For
the purposed of this exposition, I will assume that these chains are realized in the following

forms:

1) For each instruction /i and input variable ¥, DEFS(V,/) is the set of instructions
which may be the most recent defining instructions for ¥ at runtime. In other
words, DEFS(V,i) contains the set of instructions which may compute the value of
V used by i.

2) For each instruction i and output variable ¥, USES(V,/) is the set of instructions
which may use the value of V' computed by i/ at runtime. These sets are related as
follows:

xeDEFS(4.y) = ye USES(4,x).

I will postpone, for the moment, a discussion of how use-definition chains are used in favor of
a discussion of how to compute the sets DEFS and USES. Suppose we are considering an
instruction y and an input variable A. If there is a defining instruction x earlier in the same
block, then this is the only possible member of DEFS(4,y). Otherwise, we must discover
which instructions in the program compute values that can ''reach” the beginning of the biock;
every such instruction that has A as its output variable should be in DEFS(4,). Thus the

- 36 -

problem is reduced to computing, for each block b in the program, the set REACHES(b) of
pointers to instructions that compute values which are available on entry to b. Let
DEFOUT(y,x) be the set of instructions in block y which produce values that are still available
on entry to successor x, and let NKILL(y,x) be the set of instructions whose output variables
are not redefined in passing through block y to block x. Then the following system of
equations holds.
REACHES(n,) = ¢
(*#t)
REACHES(x) = U(DEFOUT(y,x)u(REACHES(y)n NKILL(y,x)))
ye P(x)
This is exactly the kind of system which can be solved by any of the data flow analysis
methods described in Section 3.

Once DEFS is available, USES can be produced by simple inversion. The informal algorithm
below can be used for this purpose.

Algorithm US: USES Computation
Input: DEFS.
Output: USES.
Method:

USES(*) := ¢;
for each instruction i in the program do
for each input variable A of instruction i do
for each instruction j in DEFS(4,i) do
USES(output(}),/) := USES(ourput(j)j) u {i}
od
od
od
end

To illustrate the usefulness of these chains, I present an application to dead code elimination.
The usual method for eliminating dead code is to first find and mark all instructions which are
"useful" in some sense. This is done by starting with a set of critical instructions, instructions
which are useful by definition. For example, you might declare all output instructions to be
critical. Once every instruction in the critical set is marked, the method proceeds to mark any
instruction that defines a variable used by at least one marked instruction, continuing until no
more instructions can be marked. The use-definition chains help in the location of instructions
which can compute some input of a marked instruction. To manage the process, Algorithm
MK below uses a workpile of instructions ready to be marked.

Algorithm MK: Mark Useful Instructions
Input:
1. Use-def chains, DEFS(v,i).
2. Set of critical instructions CRIT.
Qutput: For each instruction i, MARK(i) = true iff i is useful.
Method:

-37-

begin
MARK(*) := faise;
PILE := CRIT;
while PILE # ¢ do
x := an arbitrary element of PILE;
PILE := PILE - {x};
MARK(x) := true;
for each y ¢ DEFS(4 x) do
if ~-MARK(y) then
PILE := PILE u {y}
fi
od
od
end

All that remains after application of the marking algorithm is to remove any unmarked
instructions as useless.

While Algorithm MK demonstrates a fairly powerful application of use defimition chains, it
only uses chains in one direction. We shall next consider the problem of global constant
folding, whose solution requires simultaneous use of chains in both directions. This is because
each constant instruction discovered may lead to more folding at the use points of its output
variables, and testing an instruction for constant inputs implies an examination of the defining
points of those inputs. Put another way, each time an instruction is replaced by a constant,
the folding algorithm must recheck all uses of its output variable to see if the using instruction
might also be eliminated. Such a check necessarily involves looking at other definitions which
can reach the use. The situation is depicted in Figure 17.

other uses of same varizabla
new ~
® L
constant
_ /

instruction

chaing

DET'S

def-use
chain
USES

use of new constant

Figure 17. The need for two types of chains in constant folding.

The method implied by the above observation is realized in Algorithm CP. Like Algorithm
MK, it uses a workpile to control iterations. A number of set theoretic notations are used in

- 38 -

the informal specification; these have the obvious meanings. The algorithm also uses a
subroutine COMPUTE to evaluate constant instructions.

Algorithm CP: Constant Propagation

Input:
1. A program PROG containing instructions of the usual type.
2. A flag CONST(4,i) for each instruction i and input or output ariable 4 of i Initially,

CONST(A,i) is true only if 4 represents a constant denotation.

3. The chains USES and DEFS.

Ousput:
1. The modified CONST flags.
2. The mapping VAL(4,i) which provides the run-time constant value of variable 4 at

instruction i; VAL(A4,i) is defined only if CONST(A4,i) is true.
Method:

begin ¢ start with the trivially constant instructions ¢
PILE := {xe PROG | (VA cinputs(x) | CONST(A4,x)};
while PILE # ¢ do
x := an arbitrary element of PILE;
PILE := PILE - {x};
B := output(x);
for each i ¢ USES(Bx) do
¢ check for constant inputs ¢
conB .= true;
for each y ¢ DEFS(B,i)—{x} while conB do
-if CONST(B,y) andf VAL(B,y)=VAL(B,x)
then conB := true
else conB .= false
fi
od;
¢ test the exit condition ¢
if conB then
CONST(B,i) := true;
VAL(B,i) := VAL(B x);
¢ is the instruction now constant? ¢
if (VAeinputs(i) | CONST(4,i)) then
C := owtput(i);
CONST(C,i) := true;
VAL(C,i) := COMPUTE(i);
PILE := PILE u {i}
fi
fi
od
od
end

Although termination and correctness of Algorithm CP are subtle, the interested reader will

not find it difficult to establish them. The algorithm is interesting because it serves as a model
for many other optimization algorithms. One such will be seen in Section 6.

5. SYMBOLIC INTERPRETATION

The analysis methods presented so far can only solve restricted classes of data flow probiems.
The algorithms of Section 3 work only for problems which ask whether or not a single event

-39 -

may (or must) have happened before control reaches some point (in the forward case) or may
happen later (in the backward ase). They are not effective for questions about sequences of
events along control flow paths. Use-definition chain methods are more general, but they too
can be imprecise because information is gathered by jumping between uses and definitions
rather than by following individual execution paths [Kap78].

The most precise method for gathering global data flow information is symbolic interpretation
[Weg75, Kin76]. As implied by the name, symbolic interpretation entails executing the
program with symbolic values for all variables whose values are indeterminate at compile time.
For example, if the value of N in a given FORTRAN program is always 5 but the value of M
is read in as data, M would be assigned a symbolic value «. Then after executing the state-
ment

L =N*M
L will have the (partially) symbolic value 5a.

It should be easy to see that the value numbering method of Section 2 is just symbolic
interpretation restricted to straight-line code. As in value numbering, the compiler can
uncover useful facts about the relationships among values of program variables at point p by
executing the program symbolically up to that point. But there is, of course, a hitch. At
conditional transfers of control, the truth value of the condition may depend on symbolic
values; that is, it may not be possible to determine at compile time which way control will go
at run time. In.such cases, interpretation must proceed down bora paths. But this leads to
problems at points where control paths join. If X has value a on one path and 8 on another,
its value after they join must be expressed as "either a or 8." In loops, value disjunctions of
arbitrary length can be built, as the example in Figure 18 shows.

Figure 18. A loop for symbolic interpretation.

- 40 -

Suppose we assign X the value a at block 1; then interpreting around the loop shows that ist
value at block 2 can be either a or Sa. Another interpretation adds 25a to the list of alterna-
tives. Clearly, there are infinitely many possible values. Since symbolic interpretation
attempts to prove everything it can about a program, it terminates only when it has enumerat-
ed all possible values of the properties it is keeping track of, so interpretation would not
terminate on this example.

The problem is solved by restricting the application of symbolic interpretation to determining
properties from a well-founded property set [Weg75]. Simply put, if we take two properties
from a well-founded set, their disjunction ("either property a or property B") can be approxi-
mated by another property in the set, say v; furthermore, after finitely many such approxima-
tions a limiting property will be reached. For example, suppose we are optimizing a language
in which variables may dynamically take on values of three different types: real, integer, and
character. Suppose also that the special atomic type undefined is used for uninitialized
variables and for values resulting from errors. By adding three more types — number, atom,
and inconsistent — we can characterize our knowledge of variable types with the well-founded
property set shown in Figure 19.

atem

nu~ben \\
////////7$ ﬁ.\\\ <~L“‘1‘\‘t< L*-\\ uu~«c1a i; AL ¢£
\n Lec&a,\ Ve

< x]

inconsistent

Figure 19. A well-founded property set for variable types.

In this diagram, arcs lead from more specific to less specific information. To determine the
result of a disjunction of two distinct types, locate the types in the diagram and find the first
type which can be reached from both by following arrows. Thus the disjunction "real or
integer" yields number, while "real or undefined" yields atom.

Since the disjunction of a type with itseif produces the same type, a stable upper bound must
be reached in this set after at most three distinct disjunctions. Thus a symbolic interpreter
which terminates only when a steady state is reached will always terminate using this set. In
general, symbolic interpretation is guaranteed to terminate when determining properties from a
well-founded set on a finite program [Weg75].

To convey the flavor of this method, I will include an adaptation of Wegbreit’s simplest
interpretation scheme. (More complicated versions, which unroll loops, will not be described.)
First we assume a very simple model in which there are only two types of statements, simple
and conditional. A simple statement x has a single successor given by next(x), while a

-41 -

conditional y has two successors: nexty(y), taken when the condition is true, and nextg(y),
taken when it is false.

Assume we are dealing with a well-founded property set P which has a property disjunction or
join operation V such that, for py,p, € P, p;Vp, is the approximation of "either p; or p,."
Furthermore, assume there is a least general property, denoted by 0, such that for any property
peP, pV0O = p. In Figure 18, "type=inconsistent" is 0.

Finally, the execution of an elementary statement may change the property which holds after
that statement. Let ourprop(x,p) be the property which holds after simple statement x is
executed, given that property p holds initially. Similar functions outpropr(x,p) and
outpropy(x,p) give the resuitant properties on the true and false branches, respectively, of a
conditional.

Algorithm SI: Symbolic Interpretation

Input: .

1. A program PROG consisting of instructions with successor fields next or nexty and
nexty.

2. A wgll-founded property set P with join operation V and minimal element 0.
3. The semantic mappings owtprop, outpropr, and outpropg.

Output: For each statement x<P, PROP[x], the most specific property provably true on entry

to x (within the given framework).
Method:

begin
for each x¢ PROG do
PROP([x] := 0
od;
let xy := the program entry statement;
PILE := {<xq, 0>},

while PILE#¢ do
let z be an arbitrary element in PILE;
PILE := PILE - {z};
<X, p> =2,
oldp := PROP{x];
PROP[x] := PROP[x] V p;

while x# exit statement and 0oldp%#PROP{x] do
if x is a simple statement then
p := outprop(x,PROP(x]);
x := next{x];
else ¢ a conditional; save the false branch ¢
Y = nextg[x];
PILE := PILE u {<yf, outpropp(x,PROP{x])>1};
¢ follow the true branch ¢
p := outprop(x,PROP{x]);
x := nextr{x]
fi;
oldp := PROP{x];
PROP[x] := PROP[x] V p
od
od
end

-42 -

Using the well-foundedness of P, it is not too difficult to show that this algorithm terminates.
Some unnecessary iterations can be avoided by using a more sophisticated structure for PILE,
so that the two pairs <x, p;> and <x, p;> are automatically combined into <x, p;Vp,> when
the second is added to a PILE already occupied by the first. The more complicated versions
of Algorithm SI that unroll loops for more precision are straightforward extensions [Weg75,
Kin76].

If symbolic interpretation is so good, why isn’t it used exclusively? The main reason is
efficiency: Most problems involve property sets much richer than the one in Figure 18. For
example, instead of specifying the type of a single variable, a property might specify the types
of all program variables. Such property sets give rise to numerous iterations before a steady
state is reached. Thus symbolic interpretation is rarely used in compilers. However its
suitability for complex problems makes it an important tool for optimization research and
program verification [Kin76, CoC77, Sul77, CoH78].

6. OPTIMIZATION OF VERY-HIGH-LEVEL LANGUAGES

I shall conclude this survey with a discussion of some current work on optimization for
very-high-level languages, focusing on the SETL project at New York University. SETL is a
language based on the theory of sets [Scz73, KeS75]. It has a standard set of fundamental
data types (real, integer, character, bit, and strings of characters or bits) along with two
structured types -- sets and tuples. It derives its power from its fundamental view of data as
sets and mappings (sets of ordered pairs). An introductory treatment of the language may be
found in [KeS75].

The SETL implementation identifies two classes of objects, long and short Both items use a
root word for their representation. As shown in Figure 20, the first few bits of the root word
identify the object type and the rest are used for actual data, in the case of a short object, or
control information and a pointer in the case of a long object. A long object’s data is
contained in an extended representing block stored elsewhere and pointed to by the root word.

short object | type data

long object type concrol information|
g] f

. w
pointer to
longer structure

Figure 20. Object representation in SETL.

Currently, SETL uses representing blocks organized as arrays for tuples and hash tables for
sets. Individual entries in these blocks are root words for the individual members.

The general unoptimized implementation scheme is as follows. Code is translated into a series
of calls to SETL runtime library routines. Each routine implements one SETL primitive in its
most general form. In particular, since SETL does not have type declarations, type tests must
be made at run time. Consider the primitive

51 eq 5y

-43 -

which tests for equality between objects of any type. Even after it is discovered that sy and s,
are both sets, the test is a complex one involving another primitive, the membership test e

sy eq s, = (Vxes| | xesy)&(Vyesy | yes;)

The strategy of the SETL optimizer is to use special knowledge of the program, gleaned
through global analysis, to replace as many expensive library calls as possible by in-line code
stubs, which assume the most common case and test for exceptions, calling the library only
when necessary. As an example, consider the expression x+y. In the general case, x and y
could be sets, integers, tuples, reals, strings, etc. But suppose a global analysis of types
determines that x and y are both integers; then the situation is greatly simplified, although we
still don’t know whether they are long or short integers (long integers require multi-word
storage). The code stub assumes, as the most likely case, that both are short integers. It then
has the following flavor. ‘

stub: add x and y as short integers;
execute a fast test for overflow or type error;
if test positive then call library routine
else record results fi

Thus with the aid of global type analysis, the optimizer is able to effect a substantial efficiency
gain.

This example leads us naturally to consider the nature of global type analysis. Type analysis
was the subject of Tenenbaum’s Ph.D thesis [Ten74] and has been subsequently studied by
Jones and Muchnick [JoM76] and Kaplan and Ullman [KaU77]. The first step in type analysis
is to define an algebra of type symbols which is built up from:

a) A number of atomic type symbols:
I (integer), R (real), UD (undefined), NS (set of arbitrary elements),
G (general), Z (error), etc.

b) alternation of types:
t=t]t 0t

c¢) set formation:
t={t;}

d) Tuple formation (fixed length):
t= <tp,ly,...,t >

e) tuple formation (indefinite length):
t=[t;]

Next we define the rules for determining the output type of an operation given the input types.
This is encoded in a transition function F which, for each operation op and input types
ty,ty,...,t, of the operands, produces

to = Fop (t1st2mety)

where t, is the output type (or at least the best approximation to it within the algebra).
Finally an operation V, which allows alternation of types at merging paths, is defined; i.e.,

is the type of an object which has types t,,...,t; on k merging paths.

- 44 -

With these definitions, global type determination can be carried out by a direct analog of the
use-definition chain algorithm for constant propagation. Although this is the same problem we
solved by symbolic interpretation in the last section, use-definition chains permit a more
efficient implementation. The workpile is initialized to a set of instructions with clearly
defined (or constant) types. Thereafter an instruction is examined whenever a refinement of
one of its input types is detected.

Algorithm TA: Type Analysis

Input:
1. A program PROG.
2. A mapping TYPE, such that TYPE(A4,x) is the best initial estimate of the type of

variable A at x (for most variables this is "UD’).

3. The sets DEFS and USES.

Output: For each instruction x and input or output variable 4, TYPE(4,x), a conservative

approximation to the most specific type information provably true at x.
Method:

PILE := {xe PROG | (V4 einputs(x) | TYPE(a,x)#'UD’)};
while PILE#¢ do
x := an arbitrary element in PILE;
PILE := PILE - ix};
B := output(x);
for each i ¢ USES(b.x) do
¢ recompute type ¢
oldtype .= TYPE(b,);
TYPE(B,i) := V TYPEBy);
y € DEFS(B,1)
if TYPE(B,i)#oldtype then
¢ a type refinement ¢
TYPE(output(i),i) := Fyp() applied to the input types of /;
PILE := PILE v {i}
fi
od
od
end

In his dissertation, Tenenbaum showed how the above type analysis could be enhanced by a
backward pass which elicits type information from uses and propagates it back to definition
points [Ten74]. Kaplan and Uliman extended this idea to incorporate multiple passes in both
directions [KaU77]. It is clear that symbolic interpretation could also be used for type analysis
to produce more specific results. I will not have space to treat the numerous other SETL
optimizations here. I refer the interested reader to a series of papers [Scz74, Scz75a, Scz75b,
Scz7Sc, Dew77] which lay out most of the methods used by that project; several of these
involve automatic or semiautomatic data structure choice. A number of papers treat further
SETL optimizations [FoU76, PaS77, Fon77]. In general, the optimization of very-high-level
languages should prove a fruitful area for new research and for further application of estab-
lished techniques.

Acknowledgement

I am grateful to Barry Rosen for several suggestions which substantially improved the paper.

- 45 -

AhU73

ARU75

ASU72

All69

All70

All71

All74

AlC72a

AIC72b

AlIC76

AsM71

BaJ78a

BaJ78b

Bar78

Ban79

REFERENCES

Aho, A. V. and Ullman, JI. D., The Theory of Parsing, Translation, and Compil-
ing, Vol. II: Compiling, Prentice-Hall, Englewood Cliffs, NJ, 1973.

Aho, A. V. and Ullman, J. D., "Node listings for reducible flow graphs," Proc
Seventh Annual ACM Symposium on Theory of Computing, Albuquerque, NM,
May 1975, 177-185.

Aho, A. V., Sethi, R. and Ullman, J. D., "Code optimization and finite
Church-Rosser systems," Design and Optimization of Compilers, R. Rustin, ed.,
Prentice-Hall, Englewood Cliffs, NJ, 1972.

Allen, F. E., "Program optimization," 4nnual Review of Automatic Program-
ming 5, Pergamon, Elmsford, NY, 1969, 239-307.

Allen, F. E., "Control flow analysis," SIGPLAN Notices, 5,7, July 1970, 1-19.

Allen, F. E., "A basis for program optimization," Proc. IFIP Congress 71,
North-Holland Publishing Co., Amsterdam, 1971, 385-391.

Allen, F. E., "Interprocedural data flow analysis," Proc IFIP Congress 74,
North-Holland Publishing Co., Amsterdam, 1974, 398-402.

Allen, F. E. and Cocke, J., "A catalogue of optimizing transformations,"
Design and Optimization of Compilers, R. Rustin, ed., Prentice-Hall, Englewood
Cliffs, NJ, 1972, 1-30.

Allen, F. E. and Cocke, J., "Graph theoretic constructs for program control
flow analysis," IBM Research Report RC3923, Thomas J. Watson Research
Center, Yorktown Heights, NY, July 1972.

Allen, F. E. and Cocke, J., "A program data flow analysis procedure," Comm.
Acm, 19, 3, March 1976, 137-147.

Ashcroft, E., and Manna, Z., "The translation of ’go to’ programs into ’while’
programs," Proc. IFIP Congress 71, North-Holland Publishing Co., Amster-
dam, 1971.

Babich, W.A., and Jazayeri, M. "The method of attributes for data flow
analysis (Part I. Exhaustive analysis)," Acta Informatica 10, 1978, 245-264.

Babich, W.A., and Jazayeri, M. "The method of attributes for data flow
analysis (Part II. Demand analysis)," Acta Informatica, 10, 1978, 265-272.

Barth, J. M., "A practical interprocedural data flow analysis program," Comm.
ACM, 21, 9, September 1978, 724-736. '

Banning, J. "An efficient way to find the side effects of procedure calls and
aliases of variables," Conf. Record of the Fifth Annual ACM Symposium on
Principles of Programming Languages,, San Antonio, Texas, January 1979,
29-41.

- 46 -

Bea72

Bea74

BoJ66

Coc70

CoM69

CoK76

CoK77

CoS70

CoC77

CoH78

Dew77

Ear74

EBAT72

FKZ75

Fon77

Beatty, J. C. "An axiomatic approach to code optimization for expressions," J.
ACM, 19, 4, October 1972, 613-640.

Beatty, J., ""A register assignment algorithm for generation of highly optimized
object code,” IBM J. Res. Develop., 18, 1, January 1974, 20-39.

Bohm,C. and Jacopini, G., "Flow diagrams, Turning machines, and languages
with only two formation rules," Comm. ACM, 19, 5, May 1966, 366-371.

Cocke, J., "Global common subexpression elimination," SIGPLAN Notices, 5,
7, July 1970, 20-24.

Cocke, J. and Miller, R. E., ""Some analysis techniques for optimizing computer
programs," Proc 2nd I nternational Conference on System Sciences, Hawaii,
1969, 143-146.

Cocke, J. and Kennedy, K. "Profitability computations on program flow
graphs," Computers and Math. with Applications, 2, 1976, Pergamon, 145-159.

Cocke, J. and Kennedy, K., ""An algorithm for reduction of operator strength,"
Comm. ACM 20,11, November 1977, 850-856.

Cocke, J. and Schwartz, J. T., Programming Languages and Their Compilers:
Preliminary Notes, Computer Science Dept., New York University, 1970.

Cousot, P. and Cousot, R., "'Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints,"
Conf. Record of the Fourth ACM Symposium on the Principles of Programming
Languages, Los Angeles, January 1977, 238-252.

Cousot, P. and Halbwachs, N., "Automatic discovery of linear restraints
among variables of a program,”" Conf. Record of the Fifth Annual ACM Sympo-
sium on Principles of Programming Languages, Tucson, Arizona, January 1978,
84-96.

Dewar, R. B. K., Grand, A., Liu, S.-C., Schonberg, E., and Schwartz, J. T,,
"Programming by refinement as exemplified by the SETL representation
sublanguage,” draft, Dept. of Computer Science, New York University, 1977.

Earnest, C. ""Some topics in code optimization," J. ACM, 21,1, January 1974,
75-102.

Earnest, C., Balke, K. and Anderson, J., " Analysis of graphs by ordering of
nodes," J. ACM, 19, 1, January 1972, 23-42.

Farrow, R., Kennedy, K. and Zucconi, L., "Graph grammars and global
program data flow analysis," Proc. I7th Annual IEEE Symposium on Founda-
tions of Computer Science, Houston, November 1975.

Fong, A. C., "Generalized common subexpressions in very high level lan-

guages," Conf. Record of the Fourth ACM Symposium on Principles of Pro-
gramming Languages, Los Angeles, January 1977.

-47 -

FoU76

GrW76

Har75

HeU72
HeU74
HeU75

Jaz75
JoM76

KaU76
Kap78

KaU77

Ken71

Ken75a
Ken75b

Ken76

Fong, A. C., and Ullman, J. D., "Induction variables in very high level
languages," Conf. Record of the Fourth ACM Symposium on Principles of
Programming Languages, Atlanta, January 1976.

Graham, S. L. and Wegman, M., "A fast and usually linear algorithm for global
flow analysis," J. ACM, 23, 1, January 1976, 172-202.

Harrison W., "Compiler analysis of the value ranges of variables," IBM
Research Report RCS5544, Thomas J. Watson Research Center, Yorktown
Heights, NY, July 1975.

Hecht, M. S. and Ullman, J. D., "Flow graph reducibility," SI4M J.
Computing 1,2, June ‘1972, 188-202.

Hecht, M. S. and Ullman, J. D., "Characterizations of reducible flow graphs,"
J. ACM , 21, 3, July 1974, 367-375. '

Hecht, M. S. and Ullman, J. D., "A simple algorithm for global data flow
analysis," SIAM J. Computing, 4, 4, December 1975, 519-532.

Jazayeri, M., "Live variable analysis, attribute grammars, and program
optimization," draft, Dept. of Computer Science, University of North Carolina,
Chapel Hill, N.C., March 1975.

Jones, N. and Muchnick, S., "Binding time optimization in programming
languages," Conf. Record of the Third ACM Symposium on Principles of
Programming Languages," Atlanta, January 1976, 77-94.

Kam, J. B. and Ullman, J. D., "Global data flow analysis and iterative
algorithms," J. ACM, 23, 1, January 1976, 158-171.

Kaplan, M. A., "Relational data flow analysis," TR-243, Dept. of E.E. and
Computer Science, Princeton University, April 1978.

Kaplan, M. A. and Ullman, J. D., "A general scheme for the automatic
inference of variable types," TR-226, Dept. of Electrical Engineering, Prince-
ton University, June 1977.

Kennedy, K., "A global flow analysis algorithm," Intern. J. Computer Math,
Section A, 3, December 1971, 5-15.

Kennedy, K., "Node listings applied to data flow analysis," Conf. Record of the
Second ACM Symposium on Principles of Programming Languages, Palo Alto,
CA, January 1975, 10-21.

Kennedy, K. "Use-definition chains with applications," Technical Report
476-093-9 Dept. of Mathematical Sciences, Rice University, Houston, April
1975.

Kennedy, K., "A comparison of two algorithms for global data flow analysis,"
SIAM J. Computing, 5, 1, March 1976, 158-180.

- 48 -

KeS75
KeZ77
KeZ78
Kil73
Kin76
Knué68
Knu71

LoM69

MaT?75
NeA75
PaS77

Ros77

Ros78

Ros79
Sch73

Sck75

Kennedy, K. and Schwartz, J. T., "An introduction to the set theoretic
language SETL," Computers and Math. with Applications, 1, Pergamon Press,
1975, 97-119.

Kennedy, K. and Zucconi, L., "Application of a graph grammar for program
control flow analysis," Conf. Record of the Fourth ACM Symposium on the
Principles of Programming Languages, Los Angeles, January 1977, 72-85.

Kennedy, K. and Zucconi, L. "Basic block optimization in Model," draft
report, Los Alamos Scientific Laboratory, Los Alamos, New Mexico, 1978.

Kildall, G. A., "A unified approach to global program optimization," Conf.
Record ACM SIGACT/SIGPLAN Symposium on Principles of Programming
Languages, Boston, October 1973, 194-206.

King, J. C., ""Symbolic execution and program testing," Comm. ACM, 19, 7,
July 1976, 385-394.

Knuth, D. E., "Semantics of contest-free languages," Math. Systems Theory, 2,
1968, 127-145.

Knuth, D. E., "An empirical study of FORTRAN programs,” Software-Practice
and Experience, 1,2, 1971, 105-134.

Lowry, E. S. and Medlock, C. W., "Object code optimization," Comm. ACM,
12, 1, January 1969, 13-22. ‘

Markowsky, G. and Tarjan, R. E., "Lower bounds on the lengths of node
sequences in directed graphs," IBM Research Report RC5477, IBM Thomas J.
Watson Research Center, Yorktown Heights, NY, July 1975.

Neel, D. and Amirchahy, M., "Removal of invariant statements from nested
loops in a single effective compiler pass,' SIGPLAN Notices, 10, 3, March
1975, 87-96.

Paige, B. and Schwartz, J. T., "Expression continuity and the formal differenti-
ation of algorithms," Conf. Record of the Fourth ACM Symposium on principles
of Programming Languages, Los Angeles, January 1977, 58-71.

Rosen, B. K., "High-level data flow analysis," Comm. ACM, 20, 10, October
1977, 712-724.

Rosen, B. K., "Monoids for rapid data flow analysis," Conf. Record of the
Fifth Annual ACM Symposium on Principles of Programming Languages,
Tucson, Arizona, January 1978, 47-59.

Rosen, B. K., "Data flow analysis for procedural languages," J. ACM, 26, 2,
April 1979, 322-344.

Schaefer, M., A Mathematical Theory of Global Program Optimization, Prentice-
Hall, Englewood Cliffs, NJ, 1973.

Schneck, P. B., "Movement of implicit parallel and vector expressions out of
program loops," SIGPLAN Notices, 10, 3, March 1975, 103-106.

- 49 -

Scz73

Scz74

Scz75a

Scz75b

Scz75¢

Set74

SeU70

Sta76

Sul77

Tar75a

Tar75b

Ten74

Weg75

Wul75

Uli73

Schwartz, J. T., ""On programming, an interim report on the SETL project,”
Computer Science Dept., New York University. October 1973.

Schwartz, J. T., "Automatic and semiautomatic optimization of SETL,"
SIGPLAN Notices, 9, 4, April 1974, 43-49,

Schwartz, J. T., "Optimization of very high level languages I; value transmis-
sion and its corollaries," J. Compwter Languages 1, Pergamon Press, 1975,
161-194.

Schwartz, J. T., "Optimization of very high level languages II, deducing
relationships of inclusion and membership," J. Computer Languages, 1, Perga-
mon Press, 1975, 197-218.

Schwartz, J. T., "Automatic data structure choice in a language of very high
level," Comm. ACM, 18,12, December 1975, 722-728.

Sethi, R., "Testing for the Church-Rosser property," J. ACM 21, 4, October
1974, 671-679.

Sethi, R. and Ullman, J. D., "The generation of optimal code for arithmetic
expressions," J. ACM, 17, 4, October 1970, 715-728.

Standish, T. A. et. al., "The Irvine program transformation catalogue,”" Dept.
of Information and Computer Science, Univ. California at Irvine, January
1976.

Suzuki, N. and Ishihata, K., "Implementation of an array bound checker,"
Conf. Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, January 1977.

Tarjan, R. E., "Applications of path compression on balanced trees," Technical
Report STAN-75-512, Computer Science Dept. Stanford University, Stanford,
CA, 1975.

Tarjan, R. E., "Solving path problems on directed graphs," Technical Report
STAN-75-528, Computer Science Dept., Stanford University, Stanford, CA
1975.

Tenenbaum, A., "Automatic type analysis in a very high level language," PhD.
Thesis, Computer Science Dept., New York Univeristy, October 1974.

Wegbreit, B., "Property extraction in well-founded property sets," IEEE
Trans. on Software Engineering, SE-1, 3, September 1975, 270-285.

Wulf, W., Johnsson, R. K., Weinstock, C. B., Hobbs, S. O., and Geschke, C.
M., The Design of an Optimizing Compiler, American Elsevier, New York,
1975.

Ullman, J. D., "Fast algorithms for the elimination of common subexpres-
sions," Acta Informatica, 2, 1973, 191-213.

-50 -

