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Abstract:  This paper reports on the effectiveness of various code optimization techniques. These techniques are
generally found in the literature, but a short informal description wili be given of each. These include sommon
subexpression elimination. code motion, dead code elimination, strength reduction. reassociation and linear test
replacement. constant propagation, subsumption, and register aliocation which is based on graph coloring.

All of these techniques bave been embodied in a compiler which is a variaat of PL/1, whose purpose is to procuce good
system code. A discussion will be given of those changes to PL/1 whaich make the production of good code easier. such
as removal cf on-conditions. use of offsets instead of pointers, and muinor restrictions on declarations of bit strngs.

The techaiques are in general machine and language independent. At the present time we generate code for six different
machines. most of which age experimental. The performance data will be based on System/370 because of availability of
machine time. In parucular, the register allocation techniques and its machine independent aspects will be discussed.

1. XTRODUCTION
' Okiectives

Algoritams for code improvement during the compilation
process have appeared in the literature for over ten years.
This paper presents measurements of the effects of applying
some cf these algorithms. including the additional times to
apply the agorithms, and the changes in running time and
coae space of the compiled programs.

The code improvements with which this paper is concerned
are designed to overcome limitations under which code is
usually generated. Generally, code is produced when some
grammatical conmstruct is recognized; the LALR-produced
parser-generators is an example of this approach. However,
‘nsufficient context is usually available for such a code gener-
ator 10 produce efficient code. Nonetheless code improve-
ment algorithms when applied to code so generated can result
in final code 2pproaching and even surpassing hand coded
assembly ianguage programs. These improvements are
achieved by exploiting global relationships which were upa-
vailable curing tke parsing phase. It should be stressed that
the code improvement (or oprimization) algorithms are not
designed to overcome poor coding practice or inefficient
algerithms.

1.2. The Source Language
LS 20UTes Laoguage

Toe compiler used for measunag the effects of code impreve-
ment 1s {or the PL/IL (PL/I-like) language, which is an
expenimental system programming language at IBM Research.
PL.IL is a PL/1 derivative designed to allow compilation
into efficient object code, and which requires that validiry
checking be carried out at rurn time when it cannot be ascer-
tained dunng compilation time.

eriain PL71 features were omitted from PL/IL in order to
remove obstacles to good global code improvement. ON
cenditions were removed. because the compiex program flow
that these concitions imply tends to inhibit good common
subexpressioz eliminauion and register allocation. However,
ail programs are compiled as though SUBSCRIPTRANGE
was enabied. but so that detecied vioiations iead to program
termunation. Of course, the code which checks for subscnipt
range :olaticns s supjected to all the code tmprovement
transiommanuons

Uncestncted pointers are also not permicted in PL/ 1L, since
they impose ubnacceptably heavy penpalties when full validity
checking is required. Offsets into areas are svailablc.

Bit strings of arbitrary or variable size are also not permitted
in PL/1L because their implementation is too inefficieat. By
resincting declarations of bit strings to specify a fixed. con-
stast length no looger than the machine word size, the com-
moaly encountered uses of bit strings in system programming
yield code of assembly programming quality. Longer bit
strings can be obtained by using vectors of bit strings.

Orn the other hand, PL/1L has improvements in parameter
passing dictions. By declaring parameters as being passed by
value. or declaring that a subprogram does not use internal
stauc storage. more efficient calling sequences are possible.
It becomes feasible to write one or two line subprograms, if
suct programs require no prologue or epilogue.

‘The OFFSET attribute has been made orthogonal to other
auributes, thus allowing efficient address computations to be
encoded in PL/IL. Similarly, logical operations on integers,
or anthmetic on bit strings cap be specified wathout implying
conversions. The arithmetic precision rules, while restricted,
have also been simplified so that the system programmer can
casily predict the effects of his arithmetic computations.

The wiabiiity of this language has been demoaostrated by
developing the PL/IL compiler in the intersection of the
PL.'1 and PL/1L languages. Initially, the compiler was itself
cozriled with PL/1; after development had proceeded suffi-
ciezuy, the PL/1L compiler was bootstrapped. and further
deveiopment has exploited unique PL, 1L features to the
point where the compiler can no longer be compiied by
PL./1. Several operating systems for experimental machines
have ailso been produced in PL/1L.

1.3 The Comopiler

The PL/IL compiler uses a LAlR-geperated parser-
generator 1o produce intermediate language (IL) text for an
1¢s2izecd machine with an unlimited number of high speed
reg:sters. Iz other respects, the IL is a relatively low leve]
inteiace which exposes most of the details of 3 computation.
There are some exceptions; for example MIN and MAX are
IL orimitives to avoid exposing additional program f{low.
Allzr 3¢ coce improvement algonihms have been applied.



final code selection transforms IL text into object code for
the target mactune.

Each code improvement aigonithm s implemenied as a stand-
alone program which transforms the intermediate language
program into another program in the same intermediate lag-
guage. In this way, it is easy to experiment with the order of
applying optimizing transformations, and the effects of the
transformations can be measured singly, and in concert witk
others.

The code improvement algorithms are based on known algor-
ithms which are mathematical in nature. Code selection
tricks are avoided. The transformations are insensitive to the
dictions employed in the higher level language. Loops, con-
trolled by DOs or less structured techniques, but otherwise
equivalent, are both amenable to the same optimizations.

The maghine independeace of these code improvement algor-
ithms i1s demonstrated by the fact that the PL/1L compiler
has final code selection (or back znd) phases for six different
machines at present: System/370. and five experimental
machines. While the [L was originally designed for one of
the experimental machines, the compiler does produce high
quality code for all the target machines. With the exception
of register allocation, the remainder of the optimizations are
insersitive to the target machine.

Even the source language does not effect the optimization
algorithms. A PASCAL compiler is under development at
IBM Research. It is implemented by merely providing a
PASCAL -~ IL (ront end. Thereafter, code improvement {(and
final code selection) run as originally written for PL/IL
without apny regard to the original source language. It ap-
pears that these techniques are applicable to 2 wide class of
languages that are more general than FORTRAN, but not as
general as SETL.

The PL/1IL compiler was produced by eight people who.
during the several years of its development, contributed many
ideas which are reported in this paper. These people are:
Marc Auslander, Gregory Chiitin (who did much of the work
on register allocation), Richard Goldberg, Martin Hopkins,
Peter Markstein. Peter Oden, Philip Owens, and Henry War-
ren.

A description of the code improvement techniques used by
the PL/1L compiler is given in Section 2.

Interprocedural analysis {8} has not been used in the PL/1L
compiler, but will be considered in the future.

1.4 Measurements

There are an unlimited sumber of sequences in which the
code improvement transformations can be applied to the test
programs. Obwviously, just a small set of the tramsformation
sequences could be applied and measured. Hopefully from
the sequences chosec. the relative vaiue of extra compile time
versus improved code benefits can be assessed by the reader.
Again. with six back ends, measurements could be made to
demonstrate whether the improved IL could be translated to
each target machine with equal effectiveness. Unfortunately
limitations on computer time have led us to make most meas-
urements only on System/370.

The programs chosen 10 be compiled and measured are more
than kernels. The opumization transformatiouns do, in fact,
perform exceptionally well on small kernels. However, the
real gain will be 1o the ability to apply program improvemens:
to large stretches of code in spite of aif the commonly arising
obstacies to optimization. The chosen programs are aiso
self-contained. so :that the measurement of execution time of

c.ompilcd programs is 0ot overshadowed by the weight of
lixed. precompiled library routines

The measurement resuits are presented in Section 3.

2. OPTIMIZATION TECHNIQUES

2.1 Terminoloq

Some basic definitions are needed in the discussion of code
improvemeat algorithms.

A straight line block is any sequence of IL instructions such
that control must enter the sequence at the first instruction.
With the possible exception of the last (resp. first) instruc-
tior, every instructian in such a block has a unique successor
(resp. predecessor) which is in the sequence. A basic block is
8 staight line block of maximaj length.

For the abalyses which underlie code improvement. the IL
program is first decomposed into basic biocks., and a flow
graph is then constructed. Each node in the flow graph cor-
responds to a basic block, and the directed edges between the
podes correspond to the flow of control betwees the basic
blocks.

A strongly connected region is a subgrzpk in which there
exists a path between any nodes in the subgraph such that -
the path lies entirely within the subgrapn. A singie entry
strongly coanected region is a strongly connected region in
which only one node, called the header, has predecessors
outside the region. In this paper, strongly connected regions
will be understood to be single entry, unless otherwise stated.

An extended basic block (headed by a distinguished node n)
is a connected subgrapb containing n such that all podes of
the subgraph except possibly a have exactly one predecessor.
An extended basic block is simply a tree of basic blocks.

2.2 Value Numbering

Valoe numbering is a technique for recognizing those compu-
tations in basic blocks which yield identical resuits. Compu-
tauons are examined in execution order within a basic block.
Two distinct situations can arise. In the first case a computa-
tion may be encouniered which is formally identical to a
‘previously encountered computation such that all of the ope-
rands are unchanged between the two encounters. In this
event, the second computation is redundant, and it may be
eliminated from the IL text.

In the second case, 2 computation may be encountered which
can be be shown to vield the same result as a previously
encountered computation, although the computations are not
forzally identical. The second computation. called a discov-
ered identity, may be replaced by copying the result of the
firs: computation.

2 mx®y

a = copyx Pmxty
rmxoy becomes a = copy x (2.2.1)
bma®y b = copyz

In the left hand column of (2.2.1), the third line is formally
identical to the first, and is redundant. The fourth line is an
example of a discovered identity. The right column shows
the improved code.

On mos: computers “"copy™ is the fastest operation when the
source and target are both high speed registers, so that value
nuzcencg never degrades the IL program. However, the
"copy” operations may lead to further improvement by sub-
sumption (see 2.5).



.

Every operand, if escountered before its definition, is as-
signed a2 unique integer. called a value number. For each
computation. 8 hast table is searched for a tupie consisting
of ihe operator and the ‘ilus aumbers of its orcsrands. If
fuunc, tne hass ladie nicics 3 vaive number for the tomputa-
ton. 1f the target of the compuiation already has the same
value number. a redundart expression has been found. Oth-
erwise, if another regster has the computation's value num-
ber, then the computation can be replaced by a register copy
operation. If the :uple is not in the hash table. 2 new value
aumber is stored with the tuple in the nash table, and the
target of the compuzation is given this value number.

Arrays in storage must be treated with care since it is imprac-
tical to associate a value number with each array element.
Aliasing due 10 declarations or use of subprogram arguments
pose similar problems."and are discussed in {1}.

By arranging to remove nems from the hash table and to
regress value pumbers assigned to registers, it is possible to
use value numbering on extended basic blocks {1}.

Wheanever all operands of s computation are known con-
stants. the computation can be evaluated and the target of
the computation then also bolds a known constant. Such
constant propagation is carned out concurrently with value
sumbenzg. Of parucular importance is the case when the
acuzo of a conditional bianch or validity check can be detet-
«ired.  Eitber the corditiona2! brarch or the vaiidity check
can be removed, or the conditional branch can be trans-
formed into an unconditional branch: an edge is removed
from the flow graph. which 10 turn enhances the effectiveness
of other giobal optimizatiot algorithms.

2.3 Global Common Subexopression Elimination

It is not known whether vaiue aumbering in all its generality
can be extended to an arbitrary flow graph. In particular, no
uniform procedure which recognizes discovered expressions
over arbitrary flow is known. However, it is possible to
determine whether rwo formally ideatical computations yield
the same result.

An expression ¢ is available at entry to block b if ¢ is com-
puted aiong every patk from the entry node to b. and if the
computatioz of e at esuy 10 block b wouid vield the same
result as the most recent!y encountered computation of e
before b. regardiess of the path. If for each basic block, the
set avail(b) of available expressions were known, then redun-
dant formally identical computations car easily be recognized
by traversing the code in b in execution order, and updating
ovailfk) as each instrucuon of b is examined. Any computa-
ton which is in gvaifb; whes it is examined is redundant.

The sets availfb) can easily be computed by first determining
for each basic block, the sets of downward exposed expres-
sions, dexfb), and noi-kilied expressions, nok(b/.

An expressicn ¢ is in Jex:}; {f it is computed in b. and pone
of its operands are subsequently altered in b.

An expression is in nok/bs 1! none of its operands are altered
in biock b.

Notice that nokfb) and dex:£) can be determined by examin-
ing oniy the instrucuons it basic block b in execution order.
In terms of these sets. ave:/’bj must obey the following rela-
tionship:

arvciild) m n ilevai (piNnok(p)ludexip)}
peprececessor =)

2.3.1)

A maximai solution :o (2.3.1) can be found by setting
cvai'ss 10 the 2mpiv ser cr the program entry node. and to

the set of all expressions for every other node, anZ then
appiving (2.3.1) to all odes of the graph until aves/’d; re-
mains unchanged for all basic blocks b. This me:zod is
knnwe 1o corterge {2V out ine PLOIL compier uses a aon-
iteralnve tecinique to determine se ovail sets i3}.

.With either technique. the set operations are mos: easily

implemented if sets are represented as bit vectors 18 which
each bit position corresponds to a specific expressioc wnthin
the program. The umons and intersections are thep realized
by fast logical-or and logical-and operations.

2.4~ Code Motion

It may happen that a computation in a strongly connected
region uses operands which are nvanant within the regon.
If the computation were performed just prior to eatericg the
region. the computation within the region would become
redundant and could be eliminated. This combination of
code insertion and redundant code elimination pives the
illusion of code moving from regions of high execution fre-
quency to regions of lower execution frequency. Several

. methods have been published for determining the candidate
" -expressions for code motion, and the locations at which to
-ipsert them {3, 4}.

The PL/1L compiler uses s scheme
which exploits knowiedge of the strongly connected regions
of the program {S}. It is possible to create an ordered list L
of all the strongly cornected regions such that if.2 strongly
cocoected region contains other strongly connected regions,
the intenor regions appear earlier in the list.

The regions are processed in the order in which they appear
in L. For each region. equation (2.3.1) is solved just for the
nodes of the region under two initializations, whick ciffer
only in the initial assignment of availfh). where h is the entry
node of the region. All the other nodes are initialized to the
set of all expressions. Oue solution, p(b), is found by initial-
izing availlh) to the set of all expressions, and represents
those expressions available at b assuming that all eapressions
were available on entry to the region. The other solution,
d(b). is found by initializing awaiifh) to the empty set, and
represeats those expressions available at b assuming that a0
expressions were available on entry to the region. Thea for
any expression e:

eep(b)Nd(b) implies that e is available on entry to

block b,

eep(d)Nd(b) implies that ¢ would be availabie on
entry to block b if it were available
oo eatry to the scr,
eep(b)Nd(d) is impossible, and
eep(b)Nd(d) implies that if e is computed ir block b,
its first evaluation is not redopdaat.
The set of expressions p(b)Nd(5) are candidates for diace-
ment into an artificially inserted basic block whose predeces-
sors are the predecessors of the region’s entry node. &. and
whose successor is h. Considerations of profitabiicy and
safety may innibit moving some of these expressioas. For
exampie, in (2.4.1). J/I canpot safely be moved ou: of the
loop, because if I were equal o 0, the “improved’ code
wouid cause a divide-by-0 exception. whereas the original
code would not. The definitions of not killed and dowpward
exposed can be extended to strongiy connected regions,
whuch reduce the processing time for regions with embedded
strongly coanected regions.

dok = 010 N:
if i # O then
alk) = j /i
end;



2.5 Subsumption

Wehenever the IL coptains ap instruction of the form x = copy
J. 1t is possible that thus wnstruction might pot require any
code in the final object program. This fortunate circum-
stance anses whenever no use of x occurs after a redefinition
of v. and no use of ¥ occurs after a redefinition of x. In this
case. x and v are merely different names for the same object.
In the PL, 1L compiler, register subsumption is determined as
a byproduct of register allocation. In effect, if register x is
subsumed by register y, they will both be allocated to the
same real register pnor to final code generation, which simply

does not generate any code whenever a real register is copied
onto itself. .

2.6 Use-Def Chains

Use-def chains denotes 2 map from points in the IL where
operand$ are used to points in the [L where the operands are
defined. This map. and its inverse piay a key role in most of
the remaining code improvement algorithms to be described.
In practice, the use-def chains are not produced explicitly;
instead, several maps from basic biocks to set of definition
poicts are computed, from which the necessary use-def infor-
mation cap be derived by examimng a basic block, if neces-
sary.

By examining only the contents of a basic block, the follow-
ing sets can be determined:

uses(d): If an expression ¢ is used as an operand in
basic block b before it is computed, thea d
is in uses(d) for every definition point d of
the expression e.

thru(b): If an expression e is not computed in b.
then d is in rhru(b) for every definition
point d of the expression e.

dnx(b): 1f ap expression e, defined at point d
within b is downward exposed in b, then d
is in dnx(b). h

Two global maps from basic blocks to points of definition
mus: be computed:

live(bj:  1f there exists a path from the eatrance of
b to a use of ¢ that does pot pass through
3 computation of e, then d is in livefd) for
every definition point d of e.
reachfbs: If there is a path from the definition of e
at d to Slock b without passing through
apother computation of e, then d is in
reachib,.
The reach and live sets caz be computed from the following
relanonstups in much the same manner as (2.4.1) is solved
for availabie expressions {2. 6}.

live(b) = uxe:(b)Urhm(b)ﬂ[ N livc(:)] (2.6.1)
sesuccessor(d)
reach(b) = U {dnx(p)Ufreach(p)Nrhru(p)}] (2.6.2)
Pepredecessor(d)

For basic block b. reach(5)N uses(b) gives the definitions
which are used in biock . but reach it from another basic
block. and from these sets. the use-def chains can be denved.

2.7 Dead Code Eiim:natcz

An :xpression e is dead if there exists no path from its com-
cutaticn (0 a use of & The Jive sets permut dead zoce o de

- detected and eliminated oo a basic biock basis. For basic
block b, compute the set of expressions whict are dead on
exit from b as:

dead(b} = {e 13 definttion point of ¢ 1n

n =)

Sesuecessond)

127D

Traderse b in reverse execution order. For each computation
¢ do the following:
if ¢ ¢ dead(b) the computation is dead and can be
dejeted;
otherwise, add ¢ to dead(b) and remove all of c's
operands from dead!b).

Dead code can arise in many ways through no shortcoming of
the source language program. For exazple, a reasonable way
for the statement C = length (A || B) to be compiled is as
follows: 4 | | B is the first subexpression recognized by the
parser. Unaware of the context in which 4 || 8 will be
used, it generates code to compute it. Assuming that L' is
the IL operator to find tne length of a string. the IL code
generated is:

L'T = L'A + L'B (272)
T = concat(A, B) =

Next, length (A | | B), ot equivaiently, length /T) 1s recogniz-
ed and expanded as the built-in lengtt operator. producing as
IL for the original statement:

L'T = L'4 + L'B
T = concar(A4, B) (2.7.3)
C=L'T

If o use is actually made of A4 || B, then the second L
statement in (2.7.3) is dead, and it will be discarded by dead
code elimination. Notice that the parser did not special case
the expansion of an argument to a built-in functios.

Dead code elimination is not commutative with other code
improvement algodthms. Consider the following code frag-
ment:

if length (A | | B) < 16 then
Ca=AllB: (2.7.4)
eise C = *;

Performing dead code elimination before common subexpres-
sion elimination vields superior code. because the computa-
tion of A | | B will only appear in the traasiation of Ge then
clause. On the other hand. if common subexpression elimina-
tion were performed first, the computation of 4 | | £ in the
then clause wouid be eiiminated. thereby freezing the compu-
tation in the unconditional portion of the program.

Dead code elimination should (aiso) be performed as the last
code improvement because the other code improvemeszts tend
to induce computations to become unused.

2.8 Global Constant Propagation

The use-def chains allow the effects of computaticas with
constants 1o be propagated throughout a program. regardless
of flow. Ip an imutiai scan of an [L program. ai! poiats of
definition of coaostan: values are collected Ik 3 censtant-
definition list. For each element oo the list, the use-def
chains idertify all computations which use the consiasl as an
operand. For such a computation. if all its operzads are
constants {the use-del caains can be used aga:n o cetermune
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where the operands are defined) the computation is replaced
mv L ocopy of ife comsianmi vaive, anc lais Jefiaion powat and
28 sa.ue .S piaced at e =nd of tbe consiant-delintion iist.
When the entire list has been scanned. the process termi-
nates.

2.9 Strenzth Reduction

Streng:h reduction is the process of replacing complex opera-
tions with simpler ones o strongly connected regions, and
sopyving the complex operation to a point just prior to the
region's entry node. (Code motivn is a special case, where
ihe simpler operation is mo operation at all!) In the PL/IL
compiler, strength r.educuon is used to transform multiplica-
uoas which often anse from subscripted variabies, into addi-
roas.

A quantity which vanes as a linear function of the number of
loop %Kerations is called an induction variable. To replace a
product of ap inductioc vanable 1 and a loop-constant c,
designate a new register t 10 hold the current value of I®c. t
must be initialized by actually computing I*c before control
eoters the stroogly connected region. Wherever [ is incre-
mented in the region by a quantity q, precede that instruction
by incrementing t by ¢®*q. These points are determined from
the use-def chains. Of course, c*q will be a loop-constant,
and saould be computec pnor to entering the loop. (c°q
might later be deterrnined to be a constant by global constant
propagation).

This technigue can easily be extended to strength reduce
products of induction variables. Just as with code motion,
strength reduction saould operate on regions as given by list
L (see Section 2.4). If a node represents an inner strongly
connected region, no instructions in such a node need be
considered further. Procucts which were copied to points
outside ar inper region may themselves be strength reduced
in an outer region.

If, after strength reduction. the induction variable | would be
dead except for use in a loop closure test, the test may be
rewritten as a comparison of the pew register U against the
other comparand. multiplied by c¢. (2.9.1) is an exampie to
which strength reductior. global constant propagation. and
dead code elimination have been applied

loop: R = [*6 l::o;:Rl _6‘
[ =1 +1 becomes ,-..1—4. 6 (2.9.1)

compare [ : 100

branch = if = low ioop compare 1 : 600

branch — if = low loop

2.10. Reassociatior anc Zssential Computations

An esseptial computation is a computation whose result is
stored in memory, is usec 1o access memory, is printed, or 1s
passed 1o a subprogram as an argument. For each essenual
computation in a strongiv connected regioan, the full algebraic
expression is coastructed in terms of quantities availabie on
loop eatrv. It may bappen that the algebraic expansions of
the essential computatiors will reveal common subexpressions
whick were pot apparent from the formal identities. By using
the associative rule to rearrange these computations, the
discovered common subexpressions can be exploited to re-
duce the actual compuiauions in 3 loop. This is a relauvely
~ew code improvemen: lachmique whick has not vet been
reported in the literature. In some cases examined. as much
25 3095 of the coce in :zper locps zan be eliminated ip thus
=3anaer.

2.11 Anchar Prirsime

Consider the following statement:

ifA | Bthengoto L, (2.11.1)
This statement can be interpreted as:

If A then go to L, -

if B thengoto L. 211.2)

(3:11.2) avoids the logical-or operation and avoids testing B
altogether if A is true. A similar transformation is used to
replace if-clauses using the iogical-and operator. If A or B
are expressions involving logical operations, these operations
likewise can be repiaced by a pair of conditional branches.

2.12. Register Allocation
Each of the above optimizations improves the IL program.

However, before final code generation takes place, the ualim-
ited set of [L registers must be mapped onto the finite set of

_ registers in the real target machine. If all the [L registers can
~ be mapped onto the real registers, then the full benefit of the

other optimizations can be realized; otherwise the coatents of
some of the [L registers must temporarily be spiiled. that is,
they must be kept iz storage.

The first step in register allocation is to prepare an interfer-
ence graph. Each register in the IL program, as weil as the
real registers. are represented by a node. Two registers
which cannot coexist in a real register are said 10 interfere.
For each interference, an edge is inserted into the graph.
The interfersnce graph is then colored; that is, "colors” are
assigned to each node in the grapb under the restriction that
nodes joined by an sdge may not have the same color. The
minimum number of colors required, R, is called the chromat-
ic pumber.

Because the determination of the chromatic number is NP-
complete {7}, the PL/1L compiler uses a beuristic 10 color
the interference graph. (In all practical cases investigated,
the heuristic succeeded in finding the chromatic number. It
appears that reaj programs do not lead to very complex inter-
ference graphs.) If the chromatic number does not exceed
the number of real registers, then register allocation is
achieved by assigning to each IL register, the real register
which has the same color.

Scbsumption is accomplished as 2 byproduct of building the
interference grapb by not regarding 2 register cOpy operation
as producing an interference between the source and target
reqsters.  After the interference grapb is construcied. each
register copy operauon is reexamined. If the source and
target do not interfers, these registers can share the same real

. register, and their nodes in the interference graph are coal-

esced. so that these podes will per force be assigned the same
coior.

The algorithms for spilling are the most heuristic of tze code
improvement aigonthms., and will not be described here.
When spilling is required, the heuristic forces a sufficient
number of computations intc memory so that the number of
concurrently live expressions in registers does not exceed a
fixed quantity, N. If the chromatic number is still 00 high.
N is reduced by 1. Spilling and recoloring are repeated untii
the chromatic numbper does not exceed the numbe: of real
registers.

Setung N to four iess than the gumber of real remsters has
avoided iterated spiliing in practice. As an option. N can be
started 3t 2 more than the number of available reg:sters, in
an attempt te spiil as little as possibie, but this choics usually
le2d to several iter2uons. and can be very time consumung



We consider the IL instruction 4 = P + Q to further illus-
trate the the etfects of recsier allocation. Tlus can De map-
ped into one System. 370 wsiruction.
AR 4.Q

il A, P, and Q are all in repsters at the time of the operation,
and if P is dead afterwarc. so that it can share a register with
A. If all the quantities ust be in memory, the final code
could become:

L x.P
A xQ
ST x.A

3. MEASUREMENTS
3.1 Results

The PL/ 1L compiler consists of five phases, each of which is
itself a Set of PL/1L programs. It can apply code improve-
ment at four different leve:s. called OPT(0) to OPT(3), with
OPT(3) providing the highest level of optimization. For the
purposes of this paper, az OPT(-1) bas been added which
avoids as much of the code improvemeant as possible, so that
comparisons could be made with totally unenhanced code.
Table | shows .he sequence of code improvement algorithms
applied for :ach optimizauon leval.

The standard PL/1L corapiler is produced by compiling all
the components at OPT(3). A control compier was built by
tecompiling all compoaneas at OPT(0). We found that the
standard compiler ran from 22% to 27% faster than the
control compiler. When using the control compiler, the code
generation phases were frem 14% to 20% slower, while the
lexical apalysis and code improvement phbases were from
26% to 31% slower.

The results of compiling and executing several programs are
shown in Table I. (USEDEF, a component of the compiler,
solves the boolean system of equations given in Section 2.6.
PUZZLE is a program which reconstructs some dissected
plane figures. IPOO is one of the programs used to verify
the Four Color Theorex. and HEAPSORT is an in-place,
in-memory sort.) HEAPSORT is unique among these test
programs in that it is wnitzen in the intersection of PL/1 and
PL/1L. HEAPSORT was also coded in FORTRAN using
the same program structure. The results of using the IBM
PLIOPT and FORTRAN H compilers are also given in Table
1.

3.2 Observations

Perhaps the mos: striking conclusion to be drawn from these
tabies is that eliminatioz of all opumizations by use of
OPT(-1) does not evez save compilation time. The sheer
volume of unenhanced code that must uitimately be
processec for register aliocation and the production of the
final object code consurses more time than is required for
value numbering. :

The pnincipal differenace Setween OPT(0) and the higher
levels of code improvemexz: is that OPT(0) does not perform
global code motion and g.opal common subexpression elimi-
nation. While these cods improvement algonthms decrease
IL code, they often require that values be kept in registers
over loog stretches of code, consequently increasing the
chromatic number of the register interference graph. The
hugher the chromatic nu=>er. the greater the probability of
requinng spill code dunazg register allocation, which is 2 time
sonsuming process. The =ifscis of spilling can be seen in the
cormpiiation times of PUZZLE. and IPOO. =ach of which has
2 subprogram which reguires spilling with OPT(1) but not
with OPT!0). .

If the statistics for the OPT(-1) compilations are ignored. the
largest (ncrementul 2ain 1o oblec: coae efficiency anses when
OPT(i) 1s used in piace of OPT(0), taereby expiorung gobal
relmonstyps in code unprovement. Even though code space
may increase due to spilling. execution efficiency shows im-
provement. Tbe gains achieved by OPT(2) and OPT(3) are
relatively smaller. For programs which do aot require spill
code, OPT(3) offers no advantages over OPT(2).

The statistics for USEDEF, which is a2 subprogram in the
PLAIL compiler, shows the effects of applving these trans-
formations to a program that references complex structures in
a pest of loops. The OPT(0)-produced code runs 71% slow-
er than OPT(1)-produced code, and 85% slower than the
OPT(3) produced code.
The increase in code space which sometimes occurs when
applying a higher optimization level results {rom register
allocation bhaving to insert spill code. However, execution
time decreases even in such cases.

Even PL/1L's OPT(0) produced more time and space effi-
cient code for HEAPSORT than the other compilers did at
their highest optimization level. However, in this example,
the DO-index is not used directly as a subscript, which disa-
bles many of FORTRAN's excelleat capabilities for optimiz-
ing DO-loops.

In experimenting with different orders of applying the code
improvement algorithms, we found that omission of value
aumbering at optirzization levels higher than OPT(0) some-
times producsd better results! The identities discovered and
exploited by value oumbenng destroy some of the formal
identities which are used in the determination of movabie
expressions during global commoning and code motion. To
remedy this defect. when global commoning is applied, it
should be applied at least once before value numbenng is
ever attempted. .

At the time these measurements were made, reassociation
(see Section 2.10) was not yet implemented. In USEDEF,
for exampie, we have observed that this code improvement
technique will reduce the inner loops of the IL program by
50%. The effect on the final code would be even greater,
because the improved I code also has a substanually lower
chromatic number.

Lipear test replacement was also not impiemented in time for
these measurements. As 3 consequence. for a machine such
as the [BM System 370/168 with fast hardware multiplica-
tion. some programs with spill code in inner loops actually
were degraded by strength reduction. When USEDEF was
compiled at OPT(2) without strength reduction. the resultant
code executed in 0.120 sec. On the other hand, for some of
the experimental machines, strength reduction is worthwhile
even without linear test replacemeant.

Constan: propagation did not yieid as much becefit was was
expected. We discovered that some kpown constants, such
as tbose declared in INTTIAL attributes, were not exposed in
the [L. Some of the code generation strategies must be mod-
ified ic our compiler before the benefits of this code im-
provement technique can be assessed.



OPTIMIZATION LEVEL

Cude imerovemernt (ranstormaton

N

dead code elimination x X M
value numbenng X X x
local constant propagation X
globai commoning. code motion X x
dead code elimination X X
strength reduction = x X
macro expansion’ X x| X
dead code eliminauon X i X
value numbering « I X
local constant propagation x | x
globai commoning code motion x ‘ X
register allocation: x
N=R-4* x
NumR<+2° X
Sequence of Code Improvement Transformations
applied at Optimization Levels of Pl./ 1L compiler
+ See Sec. 1.3, €1
* See Sec. 2.12 for definitions of N and R
OPTIMIZATION LEVEL
0 2 3
Compilation Time (sec.) 19.7% 34.24 51.29
USEPEF Code Space (bytes) 8386 6098 5942
360 lines
Execution Time (sec. 230 129 124
Compilation Time <, 10.2! 14.7}
PUZZLE Code Soace 68 1782 | 1698
154 lines
Execution Time 0.73 0.67 0.62
{ Compilation Time 10.33 1731 | 208t
IPOO
204 3216 3156
295 lines Code Sopace 320
Execution Time 328 3.59 3.51
ilati i o 2. 2.5
HEAPSORT Compilation Time 1. | S
PL/IL Code Space 122 | 368 368
8: iines 'Execution Time 2.2 | 202 | 202
| Compilation Time 0.83 I 096
i
HEAPSORT | ode Space -10 | 700
PL/1
iExccunon Time 1.31 4.00
| Compilation Time 0.26 0.33 0.38
HEAPSORT -
; 674 490 442
FORTRAN !Code Space T
iExecution Time .83 2.88 288
i 1 ol two sucprograms require spiii-code
2 2 of six supprograms require spili-code
3 1 of six subprograms reguires spiil-code

3

of Jour suoprograms raguire soill code
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