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Improved Optimization of FORTRAN Object Programs 

For many  years  the FORTRAN H Extended  compiler  has  produced  highly  optimized  object  programs f o r  IBM System1360 
and System1370 computers. A study of the  object  programs  revealed,  however,  that  important  additional  optimizations 
were  possible,  and  the  compiler  has  been  enhanced  accordingly.  First,  the  range of cases  handled  by  the  optimization 
techniques  already  present  in  the  compiler  has  been  extended.  For  example,  more  duplicate  computations are eliminat- 
ed,  and  more  invariant  cornputations  are  moved  from  inner  to  outer  loops.  Second,  several new optimizations  have  been 
added,  with  subscript  computation  and  register  allocation  receiving  particular  attention.  Third,  certain  optimization 
restrictions  have  been  removed.  This  paper  describes  these  improvements  and  reports  their  effects. 

Introduction 
The original versions of the IBM FORTRAN H compiler 
were written between 1963 and 1967 to  support  the IBM 
Systend360 [ 13. They were based on  the pioneering  work 
of Backus [ 2 ] ,  whose group  wrote  the first FORTRAN com- 
pilers for  the IBM 704 in 1957. At the time the FORTRAN H 

compiler  was completed, it was  recognized  throughout 
the  industry as having the most  thorough  analysis of 
source  code of any high-level-language compiler  avail- 
able. The implementation of the object code optimization 
techniques in the FORTRAN H product is described by 
Lowry and Medlock [3]. Later  the FORTRAN H compiler 
was  extended  to include new features available in Sys- 
tend370 and  took  on  the  name FORTRAN H Extended [4]. 
A library  containing  mathematical  functions and inputi 
output  support routines  was  included in a companion 
product called the FORTRAN Mod 2 Library [ 5 ] .  

After many studies of FORTRAN programs in situations 
where the  execution  speed of the  object program was a 
critical factor, we realized that  the FORTRAN H Extended 
compiler did not  always produce  the  expected highly opti- 
mized code.  In 1976 a small study  was started  to  deter- 
mine why certain  inner  loops in FORTRAN programs  were 
handled  quite differently by the compiler  when they  were 
imbedded in different subroutines.  The study  revealed 
that  restrictions within the compiler  often  impeded  the 
optimizations the compiler  was  designed to perform. 
Some  optimizations were performed  incompletely or 

were constrained,  apparently  to  save time  during  com- 
pilation, to  operate only on  subsets of the program. The 
study also  revealed that  several additional  optimizations 
could  improve the compiled  object  programs signifi- 
cantly. 

As a  result of these findings,  a  project to produce a new 
optimizer  for the FORTRAN H Extended compiler was initi- 
ated.  The strategy  was to  incorporate  the existing  rou- 
tines which worked  well, rewrite  those which did not,  and 
write new routines  to perform  additional  optimizations. 
Later  the  effort was extended  to include improvements in 
the FORTRAN library as well. The results  were  made avail- 
able in September 1978 as  the FORTRAN H Extended Opti- 
mization Enhancement [6]. 

This paper begins by describing the objectives  and con- 
straints which govern the new  optimizer. For  the  sake of 
completeness, this is followed by a brief overview of the 
original compiler  and  its optimizer.  The major section of 
the paper  then  describes  the new optimizations and  the 
methods used to  achieve  them.  The paper concludes with 
some measures of the  improvement in optimization. 

Objectives  and  constraints 
The motivation for  an improved  optimizer originally came 
from studying the  computer requirements of several sci- 
entific research projects. Some of these requirements  are 
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Table 1 Instructions  executed in a plasma  physics  program.  Instruction counts  are in millions. 

Instruction  type FORTRAN GI H Extended H Enhanced 

count  percent  count  percent  count  percent 

Fixed  point 70.216 83.5  7.120 38.3  1.372 11.4 
Floating  point 10.994 13.1  9.976 53.7  9.207  76.4 
Branch, link, loop 1.456 1.7 1.435 7.7 1.435 11.9 
Other  instructions 1.459 1.7 .044 0.2 .044 0.4 

Total  instructions 84.126 100.0 18.575 100.0 12.058 100.0 

beyond the scope of any  available  computers [7]. NASA, 
for example, wants  a  special  purpose computer many 
times faster than  any  existing computer in order  to simu- 
late wind tunnel operations. Some scientific installations 
are running  their computers  at  capacity, with application 
programs able  to  absorb  forseeable increases in capacity. 
In a weather model, for  example,  the resolution can al- 
ways  become finer or more  complex physical simulations 
can  be added.  Other scientific activities are producing 
data  at  such  extraordinary  rates that computers  are 
straining to  capture and analyze  the  data. A  particle  ac- 
celerator  can produce  many events  for analysis  during 
each second of operation,  and the  analysis of each  event 
may require  more than a second of computer time on a 
large processor.  Satellites,  such  as  Landsat, produce  a 
continuous stream of images, while computers  are unable 
to  format,  enhance,  and  extract information from the im- 
ages at  the  rate at which they are  created. 

In such  environments,  as well as in day-to-day  inter- 
active  computing, better  object programs are  just  as valu- 
able as  faster  computers.  The effect of optimization on 
object programs  can be considerable. Table 1 shows  the 
number of instructions executed in a plasma physics  pro- 
gram  written  at  the  IBM Palo Alto Scientific Center [8] 
after  the program was compiled with three different com- 
pilers. FORTRAN G1 is regarded as a  fast  compiler in an 
interactive  environment and is not  especially concerned 
with optimization. FORTRAN H Extended is the  standard 
program product, and FORTRAN H Enhanced is the com- 
piler containing  the enhancements described in this pa- 
per. Moving from the essentially nonoptimizing FORTRAN 

G1 to  the best  optimization level of FORTRAN H Extended 
reduced the number of instructio'ns executed by 78%, and 
35% of the remaining instructions were  eliminated with 
the new compiler enhancements. 

The major  objective of the  enhancement project  was to 
produce better optimized  object  programs.  A second  ob- 
jective was to produce a faster FORTRAN library. The Ii- 
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brary  contains mathematical  functions  and  input/output 
routines to  support FORTRAN object  programs  during 
execution. It is not rare  to find a  program  spending 20 or 
30 percent of its time in the library  (evaluating square 
roots, logarithms, exponentials,  etc.) so that improve- 
ments  here are also  valuable.  A third objective  was to 
produce a faster compiler.  A  common  criticism of opti- 
mization is that compilation takes  too much time. If faster 
programs could be compiled in less time,  then the objec- 
tion,  at  least for users of the existing optimizer, would be 
eliminated. 

The primary constraint  on  the project was  our belief 
that  the work would be useless if it were  not incorporated 
into  a product. This meant  that we would have  to work 
within the framework of the existing FORTRAN H Ex- 
tended compiler  and library.  These jointly  contain 65 806 
lines of source  code (excluding comments). It would have 
been  impossible  (and unproductive)  for us to  rewrite them 
entirely. We were interested only in the optimization 
phases of the compiler and  the most  critical  performance 
kernels in the library. The remainder of the  compiler  and 
library would be accepted without  change. 

A user of the  enhanced and  standard products ideally 
should see  no difference between them except perform- 
ance.  It was undesirable to  require a user  to rewrite his 
programs in order  to gain improved  performance.  It  was 
unacceptable to  produce  answers which differed from 
those given by the standard compiler  and  library.  Con- 
sequently, certain  optimizations which could improve the 
performance of object programs  were  not  implemented. 
For  example,  the  expressions A+B+C and A + C + B  could 
not be treated  as identical, even though algebraically they 
are  equivalent,  because reordering of floating-point oper- 
ations may change the numerical  result of the operations. 
Likewise,  the mathematical  approximations  used in eval- 
uating the FORTRAN library functions, and  the order of the 
arithmetic operations with  which the approximations 
were originally implemented,  could  not  be changed. All 661 
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Figure 1 Processing in the FORTRAN H Extended  compiler. 
Enhancements  are  made  mainly in the OFT(2) path. 

new  optimizations, in short,  were required to yield identi- 
cal bit-for-bit results  to  the optimizations  performed by 
the  standard FORTRAN H Extended compiler and  library. 

FORTRAN H Extended  compiler 
The FORTRAN H Extended compiler was  the foundation 
for  the optimization enhancements. Figure 1 shows  the 
general flow of processing in this compiler. The compiler 
is invoked  by a calling program running in the VM/CMS or 
OS/370 environment.  The compiler processes  one  or more 
FORTRAN source  programs, transforming each  source 
module into  an  object module  containing  machine instruc- 
tions for  execution  on  Systed370. Upon completion,  the 
compiler returns  control  to  the calling program.  Before 
the  object modules are  executed,  they  are linked together 
with other  object  modules, including routines from the 
FORTRAN library,  to  form a complete program for  execu- 
tion. 

rect  syntax, and translated into an internal representa- 
tion  consisting of operator-operandl-operand2-operand3 
quadruples ( e . g . ,  C = A + B  becomes +,C,A,B).  Some source 
program constructs  generate more  than one  quadruple. 
For  example,  subscript  expressions  are  expanded into 
sets of multiplications and  additions, and complex  arith- 
metic operations  generate  several ordinary arithmetic op- 
erations.  Temporary internal  variables are  created  to 
carry  the  results of intermediate quadruples  from their 
definitions to  their  references. 

Certain simple optimizations are performed as  the 
quadruples  are  constructed.  For  example, an integer mul- 
tiplication  by  a constant  power of two (e .g . ,  I*4 or I*16) is 
replaced  by a left-shift operation. An exponentiation in- 
volving an integer constant  power ( e . g . ,  A**9) is replaced 
by a series of in-line multiplications.  Some operations in- 
volving minus signs are  converted  to simpler forms;  for 
instance, -(B-C) becomes C-B. Finally, constants em- 
ployed in a subscript expression [for example,  each num- 
ber 7 in A(7,1-7,1+7)] are  often  extracted from the sub- 
script, evaluated as  constant offsets  from the  start of the 
subscripted array,  and  combined into an aggregate  con- 
stant offset which does not require computation  during 
execution. 

At  this  point in the compilation  the quadruples  are 
ready  for general  optimization. (A user may request  that 
optimization  be bypassed  or only partially executed in or- 
der  to  reduce compiler  processing.)  Optimization is per- 
formed on a loop-by-loop basis.  Therefore, before any 
optimization procedures  are  executed,  the  structure of 
the  source program is analyzed.  The loops in the program 
are identified (whether  written  as do-loops or with if- 
statements),  and  the  manner in which the loops are nested 
is determined. 

The  loops  are  then  processed in order  from  the in- 
nermost loop to  the  outermost  loop.  Two  passes through 
the program are made in this manner.  The first, called text 
optimization, attempts  to  transform  the  quadruples into 
sequences which will give the  same results in fewer  oper- 
ations.  The  second, called  register  optimization,  assigns 
registers to  the  operands of the remaining quadruples and 
attempts  to minimize the  number of operand  fetches  and 
stores. A  third pass, called branch optimization, deter- 
mines how the  object program itself will be addressed in 
storage  and  attempts  to provide efficient branching from 
one  part  to  another.  The  object program is generated  after 
optimization simply by transcribing the information  en- 
coded in the  quadruples into  machine  instructions. 

The compiler processes  each FORTRAN source module The  three optimization phases  are described in the fol- 
662 separately.  The  source program is read,  checked  for  cor- lowing sections. 
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Text  optimization 
Text  optimization is an  attempt  to  reduce  the  number of 
arithmetic operations  required  to  execute  the FORTRAN 

source program. Three optimization  procedures are per- 
formed: common expression elimination,  backward 
movement,  and strength reduction.  These  procedures  an- 
alyze the  quadruples  and possibly  replace  them with 
quadruples which produce identical results in fewer  oper- 
ations. 

Common  expression  elimination 
Common expression elimination is an  attempt  to  remove 
duplicate occurrences of a computation from  the pro- 
gram. If the same expression  is computed  more  than 
once, if none of the  operands  are changed between  the 
separate  computations,  and if the first of the  computa- 
tions  must be executed before the  others  are  reached, 
then  the result of the first computation is saved,  the  other 
computations  are  deleted, and  the saved result is used in 
place of the results of the  deleted  computations.  In prac- 
tice  most  eliminated expressions involve the computation 
of subscripts:  each  occurrence of A(I,J,K) in a  loop  gener- 
ates  an  extended and  identical  calculation. 

Duplicate computations  are eliminated quadruple by 
quadruple. Identical quadruples  are located by searches 
backward from  each  quadruple through all quadruples 
which  must  be executed in the  loop before the  subject 
quadruple is reached. If there  are duplicate expressions 
on  two parallel paths,  then they are eliminated  only if the 
expression also occurs  on a  preceding  common path. 

Backward  movement 
Backward  movement is an  attempt  to move invariant 
computations from inner  loops  to  outer loops. If a compu- 
tation is performed in a  loop  and if none of the  operands 
are changed within the  loop,  then, since  the computation 
always produces  the  same  result,  the computation is per- 
formed  outside the  loop before the loop is entered,  the 
computation within the  loop is deleted, and the result of 
the  outer computation is used in place of the result of the 
inner  computation. In  practice most  backward  move- 
ments  involve the  computation of subscripts  for  those  ar- 
ray dimensions  which are invariant in inner loops. 

Concurrent with backward movement,  two  additional 
optimizations are  performed.  First,  an  attempt is made to 
delete assignment statements. When a variable or con- 
stant is assigned to  another  variable, it may be  possible to 
replace all references to  the result  variable with refer- 
ences  to  the variable or constant which has  been  assigned 
to it. If so, then the assignment is deleted. Second, vari- 
ous elementary calculations involving numeric constant 
operands  are  detected  and  executed. Since the  operands 
are numeric constants,  the result can be computed during 

Before reduction After reduction 

DO 1 I=I,N,I 
1 A(9*1)=0.0 

DO 2 I=l,N,I 
2 A(9+1)=0.0 

DO 3 I=I,N,I 
3 A(9-1)=0.0 

DO 1 I=9*1,9*N,9*1 
1 A(I)=O.O 

DO 2 1=9+1,9+N,+1 
2 A(I)=O.O 

DO 3 1=9-1,9-N,-1 
3 A(I)=O.O 

Figure 2 Examples of multiplication, addition, and subtraction 
strength reduction. 

compilation  and the calculation can be replaced  by an  as- 
signment of the numeric constant result. In practice these 
optimizations are performed mainly on intermediate 
quadruples inserted by the  other optimization proce- 
dures. 

Strength  reduction 
Strength reduction is an  attempt  to simplify calculations 
which involve  induction  variables.  Induction  variables 
are  those variables which are  altered only once in a loop 
and which are altered at  that point by being incremented 
or decremented by a constant within the  loop. Do-loop 
indexes  are  the most common example. The value of an 
induction  variable proceeds through an orderly sequence 
as  the loop is executed. A constant times an induction 
variable,  a constant plus an induction  variable,  and  a con- 
stant minus an induction  variable likewise proceed 
through an orderly sequence. A reference to  the result of 
one of these functions would be just  as well served by an 
induction  variable  which  supplied that  sequence  directly. 
Strength  reduction generates new induction  variables to 
supply such  sequences  and  thereby replace functions of 
the original induction  variables. Figure 2 illustrates these 
reductions. In practice  most strength reductions  involve 
induction  variables employed in subscript computations. 

Register  optimization 
Register  optimization is an  attempt  to  reduce  the number 
of operand  fetches  and  stores required to  execute  the 
FORTRAN program. Two optimization  procedures are per- 
formed:  local  register  optimization  and global register op- 
timization. These  procedures analyze the  quadruples re- 
maining after  text optimization  and assign registers to 
each  operand in each quadruple. 

Local  register  optimization 
Local  register  optimization is an attempt to  keep  the re- 
sult of each  quadruple in a  register until that result is ref- 
erenced in a following quadruple. A subset of the  avail- 
able  registers is allocated for this  purpose  (the other regis- 
ters  are reserved  for global register  optimization  and 
branch optimization). As each quadruple is processed, a 
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register is allocated to  contain  the result of the quadruple. 
If no more  registers are available,  then one of the vari- 
ables  currently in a  register is displaced from its  register 
into storage. When the last  reference to  the result is pro- 
cessed, then the register  containing the result is once 
again made available for  other quadruples. 

Global register optimization 
Global register  optimization is an  attempt  to  keep  the 
variables and  constants most  frequently  referenced in a 
loop in registers throughout  execution of the  loop.  The 
variables and  constants  are  sorted based on the number of 
times they  are referenced  within the  loop.  The registers 
reserved  for global allocation,  and any  registers reserved 
but not  required  for  local  allocation, are then  allocated to 
the most  frequently referenced variables  and constants. 
New quadruples  are  inserted  to  fetch the  registers  before 
loop  entry and to  store  the registers at  each loop exit. 
Finally, the  quadruples referring to the global variables 
and  constants  are updated to reflect the global register 
allocations. 

Branch optimization 
Branch  optimization is an  attempt  to  execute all branches 
in the program with direct  branches from the  source  to 
the  target. Direct branches  require  that  the branch  target 
be addressable with a  general purpose register. As many 
as five registers, depending on  object program size,  are 
reserved as  address  registers. (These  registers are not 
available for local or global  register  optimization.) The lo- 
cation of each branch target in the  object program is de- 
termined.  Branches to all branch  targets which are 
spanned by the address registers are implemented with 
single branch  instructions. Branches to  any  targets 
beyond the span of the  address registers  (this happens 
only in huge programs) are implemented by loading an 
address  constant into  a  register  and  branching to  the  ad- 
dress in the register. 

we could  devise no  way, practical for implementation 
within the FORTRAN H Extended compiler, to  improve  the 
assembly language  equivalent to  the new optimizations. 
Furthe;, it was true throughout the project that improve- 
ments not  yet  implemented would make a larger dif- 
ference in performance than refinements  in the opti- 
mizations which were  already pragmatically complete.  In 
any  case practical problems  more  than  theoretical  prob- 
lems were usually the  cause of poorly  optimized object 
programs. 

The  sections below describe  the problems observed in 
the FORTRAN H Extended compiler  and the optimization 
enhancements implemented to  correct  them. 

0 Major optimization  improvements 

Increased number of optimized variables and constants 
Throughout optimization, the compiler  maintains  bit vec- 
tors which record  where variables  and constants  are 
fetched,  stored,  and  busy. (A variable is busy if it  is refer- 
enced before it is redefined.) These  vectors  are  present 
for  each externally and internally  labeled statement in the 
source program. The FORTRAN H Extended compiler  gen- 
erates  the  vectors with 127 entries, called coordinates, 
and  allocates  several global tables of this same size. Vari- 
ables  and  constants  contend  based  on a count of refer- 
ences  for  the first 80 coordinates.  The remaining coordi- 
nates  are used only for  address  constants  and  for  tempo- 
raries  and  constants  generated by the optimizer. 

A variable,  constant,  or  temporary not allocated a 
coordinate is not optimized. This can  severely degrade 
the optimization of large programs, not only because indi- 
vidual variables are not optimized,  but  also because  once 
any nonoptimizable operand is involved in an  expression 
the expression also becomes  nonoptimizable.  Figures 3 
and 4 show  two typical  effects on  the object  program. 

Improvements in optimization 
As a result of examining object  programs  produced by the 
FORTRAN H Extended compiler, we found that significant 
improvement was  possible. Our approach was  pragmatic. 
We  examined the  inner  loops generated by the  compiler, 
located  unnecessary  instructions, determined why the in- 
structions were generated,  and developed methods  to 
eliminate them. When no more  instructions could be elim- 
inated,  even when the  loop  was  programmed in assembly 
language,  then the optimization was considered  satisfac- 
tory. 

Two improvements  were made  to remove  this impedi- 
ment.  First, a coordinate is no longer  required for con- 
stants  and  address  constants.  It  is known that  they  are 
always busy and  never  stored, and it is not necessary  to 
know  where they are  fetched in terms of labeled state- 
ments.  Second,  the size of the bit vectors has  been made 
a function of the number of variables in a source program. 
As many as 991 variables and compiler  temporaries  now 
may be  optimized (the new limit is a function of a storage 
allocation restriction). Very  large subroutines typically 
require  fewer than 700. 

We did not ask whether  the new optimizations were 
perfect in theory.  For  one  reason they  were  clearly im- 

664 provements  over  the existing  optimizations. For  another 

With the FORTRAN H Extended  compiler,  it is hard  to 
tell if poor optimization results  from a problem in an opti- 
mization routine  or from the lack of an optimization 
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coordinate  for an operand involved in the optimization. 
This made it impossible to  evaluate accurately the effect 
of the original optimization procedures and the new pro- 
cedures being developed. After  the bit vectors  were ex- 
panded, it was invariably true  that  poor optimization was 
the result of an optimizer routine. 

Improved  methods  for computing subscripts 
Many of the  observed  unnecessary instructions  were  con- 
cerned with  subscripting. The real work of the FORTRAN 

programs under study  was typically executed with ex- 
pressions involving subscripted array  elements;  the  pro- 
grams had nests of loops to vary  the indexes  on  the  ar- 
rays.  It sometimes  seemed as if more work was done  to 
address  the  array elements  than  was done  once  they  were 
located. 

The  standard FORTRAN compiler  evaluates subscripted 
array references in six steps.  First, numerical constants 
embedded in the  subscripts  are  extracted,  evaluated, and 
combined into an aggregate constant subscript  when the 
program is  translated  into  quadruples.  Second,  the sub- 
script expression remaining in each dimension is eval- 
uated  and converted  to  integer.  Third, each of these eval- 
uated subscripts is multiplied by the span in bytes  repre- 
sented by a unit  subscript in the subscripted  dimension. 
Fourth,  these  products  are  added together to  produce  an 
aggregate computed  subscript.  Fifth,  the  constants ex- 
tracted  from  the subscript and combined to form the ag- 
gregate constant subscript are  added  to  the aggregate 
computed subscript to  produce  the aggregate effective 
subscript.  For an aggregate constant subscript in the 
range 0-4095, this  addition is accomplished implicitly by 
encoding the  constant in the displacement field  of an in- 
dexed machine instruction.  Sixth,  the  address of the  array 
itself is added  to  the aggregate effective subscript to pro- 
duce  the  address of the subscripted  array  element.  This 
addition is always  accomplished implicitly by using the 
base and index  registers of an indexed  machine instruc- 
tion. 

Two new optimization procedures were added  to im- 
prove subscripting. The first, called subscript  commu- 
tation,  reorders  the additions  used in the  fourth  step, 
above, when the separately evaluated  dimension  sub- 
scripts  are combined to form the aggregate computed 
subscript.  Each dimension subscript is examined to  deter- 
mine whether it  is constant  or variable in the  loop under- 
going optimization. The additions of the subscript  dimen- 
sions are then  commuted so that the  constant and the var- 
iable dimensions of each subscript are added separately 
into two  separate  terms,  one  constant  and  one variable. 
The  two  terms  are then  combined with a final addition. 
The evaluation of the  constant term is thereafter removed 
from the loop by backward  movement. 

DO 1 I= l ,N  
1 Z=Z+A(I) 

No  coordinate for Z Coordinate for Z 

LE 2,Z 
AE 2,A(I) 
STE 2,Z 
BXLE I,4,LOOP 

AE 6,A(I) 
BXLE I,4,LOOP 

Figure 3 Effect of optimization coordinate availability on 
global register  optimization. Code is assembly  language  equiva- 
lent to  the instructions generated by the compiler.  Operation 
codes  are  reported  exactly, but operands and  registers  have  been 
given  names for clarity.  Only inner  loop instructions are  shown. 

DO 1 I = l , N  
1  A(I)=X*Y*B(I) 

No  coordinate for X,Y  Coordinate for X,Y 

LE 2 3  
ME 2,Y 
ME 2,B(I) 
STE 2,A(I) 
BXLE I,4,LOOP 

LER 2,6 
ME 2,B(I) 
STE 2,A(I) 
BXLE I,4,LOOP 

Figure 4 Effect of optimization coordinate availability on back- 
ward  movement  optimization. 

DO 1 J = l , N  
1 A(I,J,K)=O.O 

Standard compiler 
LR 2,IJ 
AR 2,K 
STE 6,A(2) 
BXLE  IJ,lO,LOOP 

Enhanced compiler 
STE  6,A+I+K(J) 
BXLE  J,lO,LOOP 

Figure 5 Effect of subscript  commutation  on  an object  pro- 
gram. The  standard compiler  performed  strength reductions for I 
and J but  not  for K.  The  enhanced compiler  combined  I  and  K 
with  the address  constant for A. 

Figure 5 shows  an  example of the improvement pro- 
duced by subscript  commutation. 

The  second of the new subscript optimization proce- 
dures, called subscript optimization,  determines how the 
components of a subscript are combined in steps  four 
through six, above. It attempts  to eliminate two kinds of 
additions from  the loop: the addition in step  four of the 
final constant  and variable terms produced after  subscript 
commutation; and the addition  in step five of negative and 
large  positive  aggregate constant subscripts.  It also  at- 665 
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tempts  to minimize the  number of variables  required for 
computing subscripts within the loop so that  fewer regis- 
ters  are occupied with subscripting. 

Each  subscript is decomposed  to identify four  subscript 
components.  The first is the identity of the  storage block 
containing the subscripted array:  for  arrays in a common 
block,  the identity is the  name of the common block;  for 
arrays in local storage,  the identity is the name of the sub- 
routine;  for  arrays  passed  as  arguments,  the identity is the 
name of the argument. All arrays in a given storage block 
can  be  addressed with a single address  constant merely 
by  varying  a  displacement  (described  next). The  name of 
the  array is therefore ignored,  and  the name of the  storage 
block  containing the  array is used instead.  This permits 
all of the  subscripts within a common block or within lo- 
cal storage  to be  optimized together without the impedi- 
ment of the original array identifiers. 

The  second subscript component is a numeric  dis- 
placement composed of two  pieces. One is the offset of 
the  zeroth element of the  array  from  the  start of the  stor- 
age  block  containing the  array.  The  other  is  the aggregate 
constant  subscript  extracted from the subscript when  the 
subscript  was translated into  quadruples. 

The  third subscript component,  the  constant  index, is 
that  part of the subscript expression which can be identi- 
fied as  constant within the  current loop. 

The  fourth subscript component,  the variable index, is 
the remaining  variable or indeterminate  part of the sub- 
script  expression. For multidimensional arrays  the con- 
stant  index  and variable  index are typically the final con- 
stant  and variable terms  produced by subscript commu- 
tation.  The  four  subscript  components  are identified as 
BASE,  DISP, XCONST, and XVARIA in the discussion  below. 

When the  four  subscript  components  are  combined, 
they yield the  address of the subscripted element.  The 
standard compiler  combines them  as if the  expression 
((XVARIA+XCONST)+DISP)+BASE had been  written.  Any 
variable and  constant index terms  are explicitly added  (no 
attempt is made  to  separate  them). If the displacement is 
less  than  zero or greater  than 4095, then it is added  explic- 
itly to  the  index value. Finally,  the remaining additions 
are  accomplished using the  three  address  operands of an 
indexed  machine instruction.  Two  unnecessary  additions, 
however, may have  been  generated in the loop. 

Subscript optimization  begins by reversing the  order of 
addition. The subscript components  are combined as if 
the  expression XVARIA+(XCONST+(DISP+BASE)) had been 

666 written. If the displacement is  less than zero or greater 
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than 4095, then a new address  constant incorporating the 
displacement is generated or, for  arrays  passed  as argu- 
ments,  the displacement and  the array address  are  added 
into a  new temporary outside the loop. The  constant in- 
dex is then  added to the possibly modified address con- 
stant  outside  the loop. The addition of the variable  index 
is accomplished with the index  register of an indexed ma- 
chine instruction.  The two  possible  additions are elimi- 
nated by this procedure. 

These  changes  are made  only when they appear desir- 
able. All  of the  subscripts in a loop  are considered  during 
this determination.  The  attempt is made to minimize both 
the  number of instructions  and  the number of registers 
required  for subscripting. 

Three  questions  are  asked  and answered  during  sub- 
script optimization. The  most fundamental question is 
whether a variable  index which is eligible for  strength  re- 
duction should be optimized  by  strength  reduction or by 
subscript optimization. The  two  procedures  use different 
methods to eliminate the addition XVARIA+XCONST of 
the variable  index and  the  constant index. Strength re- 
duction  generates a new variable  equal to  the sum 
XVARIA+XCONST for each different constant index XCONST; 

the new variable is used  directly as a subscript. Sub- 
script  optimization generates a new temporary address 
constant (BASE+DISP)+XCONST for  each different constant 
index XCONST; the unchanged  variable  index is used 
directly as a subscript. In both  cases  the addition 
XVARIA+XCONST is deleted from  the loop. 

This first  question is  answered based on the number of 
different constant indexes XCONST added to  the variable 
index XVARIA. If there  are  more than one, then all are 
optimized by subscript  optimization. The reason is that 
strength reduction produces a new induction variable, re- 
quiring initialization outside the loop  and  incrementation 
inside the  loop,  for  each different XCONST. (The enhance- 
ments to strength  reduction described  later, in particular 
the elimination of parallel  induction variables, would sub- 
sequently  delete most of these induction  variables by add- 
ing even  more initialization outside  the loop.) Subscript 
optimization, in contrast,  removes  the addition from  the 
loop  at  the  expense of a single addition (BASE+DISP)+ 

XCONST outside the  loop  for  each different XCONST and 
leaves  the variable  index XVARIA free-standing and ready 
for a single strength reduction. Figure 6 shows the dif- 
ference in an object  program.  If, however,  there is only 
one XCONST, then  strength reduction is used to optimize 
the addition XVARIA+XCONST. This case often results in 
better  code in outer loops because the XCONST often 
represents dimensions of an  array which are  constant in 
the inner loop  but are variable  and eligible for strength 
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reduction in the  outer  loop. This  decision on  where  to 
optimize the subscript expression minimizes the number 
of induction  variables in the  loop and the  initialization 
necessary for the  loop. 

The  second question is whether  the displacement DISP 

should be added explicitly to  the storage block address 
BASE. The  subscripts  are  sorted  into  groups, with all sub- 
scripts in a group having the  same storage block BASE and 
constant index XCONST and with all subscripts in a group 
in ascending  order  based  on  the displacement DISP. The 
groups  are partitioned into subgroups such  that  the dis- 
placements of the first and last subscripts in each  sub- 
group differ by no more  than 4095. Each subgroup  can 
therefore be addressed by a single address  constant 
BASE+DISP generated for  the first subscript in the  sub- 
group.  This minimizes the number of address  constants 
required to  address  the  entire  group.  The pending ques- 
tion-whether to  compute BASE+DISP explicitly-is then 
asked  for each of these subgroup address  constants.  The 
answer is yes if the displacement of any  subscript in the 
subgroup is less  than zero or greater than 4095; other- 
wise, since  the displacement field of an indexed  machine 
instruction  can  be  used in all cases,  the  answer is no. Ex- 
plicit additions  are implemented for common  blocks and 
local storage by generating  relocatable address  constants 
during  compilation (an existing address  constant is used if 
it spans all subscripts in the subgroup)  and for  array argu- 
ments  by  generating temporaries outside of the loop dur- 
ing execution. 

The third  question is whether  or not the  constant  index 
XCONST should  be added to the subgroup address con- 
stant BASE+DISP outside  the loop. The question is asked 
for  each of the subgroups  separately.  The  answer is yes 
if any  subscript in the  subgroup  contains a  variable  index 
XVARIA which is not eligible for strength reduction. If 
any such variable index exists, then the addition of 
XCONST in the  expression XVARIA+XCONST+(BASE+DISP) 

must be performed  explicitly, and performing XCONST+ 

(BASE+DISP) outside the loop is better than performing 
XVARIA+XCONST inside the  loop.  The question is not 
asked if XVARIA is eligible for strength  reduction because, 
as  described  above, XVARIA+XCONST is eliminated by 
strength  reduction. When the question is asked,  however, 
if it is answered with a yes, then the decision to optimize 
eligible XVARIA+XCONSTS with strength  reduction is re- 
voked for  the current XCONST. (There may be  more than 
one eligible XVARIA added  to this XCONST but,  because of 
the first question asked  above, this will be the only 
XCONST added  to each of these XVARIAS.) Otherwise 
XCONST would be eliminated by one  technique in strength 
reduction for  the eligible XVARIAS and by a different tech- 
nique in subscript  optimization for the ineligible XVARIAS. 
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DO 1 I = l , N  
1 A(I,J)=A(I,K)+A(I,L) 

Strength reduction Subscript optimization 

LE 2,A(IK) 
AE 2,A(IL) 
STE 2,A(LI) 
AR IL,4 
AR IK,4 
BXLE IJ,4,LOOP 

LE 2,A+K(I) 
AE 2,A+L(I) 
STE 2,A+J(I) 
BXLE 1,4,LOOP 

Figure 6 Comparison between strength reduction and sub- 
script optimization when more than one constant index is com- 
bined with a variable index.  Both object programs were pro- 
duced by the enhanced compiler. For this illustration strength 
reduction was not permitted to reduce the  parallel induction vari- 
ables. 

DO 1 I = l , N  
1 A(I)=B(I,J)+C(I,J,K) 

Standard compiler 

LE 6,B(IJ) 
LR 2,I 
AR 2,JK 
AE 6,C(2) 
STE 6,A(I) 
AR IJ,4 
BXLE I,4,LOOP 

Enhanced compiler 

LE 6,B+J(I) 
AE 6,C+J+K(I) 
STE 6,A(I) 
BXLE I,4,LOOP 

Figure 7 Effect of subscript optimization. The standard com- 
piler has strength-reduced the subscripts for A and B but not for 
C. The enhanced compiler has combined the J and K subscripts 
with the addresses of B and C. 

This would require both  kinds of initialization outside  the 
loop and  two  address  constants [(BASE+DISP) for 
strength-reduced XVARIAs and (BASE+DISP)+XCONST for 
subscript-optimized XVARIAS] within the  loop. In order 
to eliminate  this  duplication, the decision is made to opti- 
mize all of the XVARIA+XCONST additions for  the  current 
XCONST with subscript  optimization. The decision is  also 
made  effective for any previously  processed subgroups. 

As a result of this optimization,  the new compiler is less 
sensitive to  the number of dimensions in an array when it 
computes  subscripts. Provided that  the number of bytes 
between successively fetched elements is the  same, a 
subscript computed  for a vector  can be used to  address an 
array,  and vice versa. Figure 7 shows the improvement 
this can  produce. 

Improvements  and  extensions to strength  reduction 
Many of the  observed  unnecessary instructions  were con- 
cerned with strength reduction, particularly in support of 
subscripting. The  unnecessary instructions  were attribut- 667 
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DO 1 I = l , N  
1  A(8*(1+4))=0.0 

Standard  compiler 

LR 
AR 

2,I 
2,X4 

SLL 2,3 
SLL 2,2 
STE 6,A(2) 
BXLE  I,N,LOOP 

Enhanced  compiler 

STE 6,A(I) 
BXLE  I,N,LOOP 

Figure 8 Effect of continuing  strength  reduction until no more 
reductions  can  be  performed.  The  standard  compiler,  initially 
finding no multiplication  strength  reductions,  has  prematurely 
terminated  addition  strength  reduction.  The  enhanced  compiler 
has combined I and 4 and executed two subsequent multiplica- 
tion reductions. 

DO 1 I= l ,NMI  
1  A(N-I)=A(N-I)*A(N-I+1) 

Standard  compiler 

LR  2,N 
SR 
SLL 2,2 

2,I 

LE  6,A+0(2) 
ME 6,A+4(2) 
STE 6,A+0(2) 
BXLE 1,4,LOOP 

Enhanced  compiler 

LE 6,A+O(I) 
ME 6,A+4(I) 
STE 6,A+O(I) 
BXH 1,4,LOOP 

Figure 9 Effect of improved  strength  reduction  on  an  effectively 
backwards  do-loop. 

able in part  to problems in the original implementation 
and  subsequent maintenance and in part to additional  re- 
ductions which were  possible but not  programmed. 

The  standard compiler is prepared  to  reduce multiplica- 
tions,  additions, and sometimes subtractions as illus- 
trated in Fig. 2 .  The figure shows how the  reductions  are 
performed in terms of FORTRAN source language vari- 
ables.  Usually,  however,  the reductions are performed 
for compiler  temporary  variables  created to calculate sub- 
scripts.  For  example, a subscript A(1.J) on a 10-by-10 array 
A,  where I is an induction  variable and J is a constant, 
results in two  reductions:  the multiplication 4*1 to com- 
pute  the  byte offset corresponding  to  the subscript I ,  and 
the addition (4*1)+(40*J) to  compute  the byte offset for the 
entire  subscript. 

I+J is reduced, but the implicit multiplication by 4 which 
generates  the  byte subscript on  the array A is not reduced. 
This  problem has been corrected: reduction now cycles 
until no more  reductions  can  be  found.  Figure 8 gives an 
example. 

In  the  standard compiler  a  number of specific reduc- 
tions have been  disabled. The disabled cases  are distin- 
guished by the  nature of the  operands (variables,  con- 
stants, compiler temporaries). This  was done  apparently 
to  compensate  for  errors in optimization. Rather than cor- 
rect an error in the implementation, the  case occasioning 
the  error was  disabled.  Almost all instances of sub- 
traction reduction disappeared because of this mainte- 
nance. It is interesting to  note something  written by 
Lowry and Medlock [3] in 1967: “During debugging there 
was a tendency  for some  optimization features  to become 
disabled.  This disability often  went  unnoticed since  the 
test  cases still ran correctly.”  The problem has been cor- 
rected-for now. 

With these corrections  and certain similar extensions 
the compiler  quite reliably reduces eligible computations. 
One  result is that  backwards do-loops now generate opti- 
mized code. Figure 9 gives an example. 

One  extension in particular is helpful in making the re- 
ductions collapse as illustrated. When a source language 
variable is assigned the result of a  reduction, the  en- 
hanced  compiler attempts  to employ that variable  directly 
as  the new induction  variable. For  example, in the loop 

DO 1 I = I , N  

IJ=I+J 

IK=I+K 

IL=I+L 

1 A(IJ)=A(IK)+A(IL) 

IJ, IK, and IL are used  directly as induction  variables  when 
the I+J ,  I+K,  and I+L additions are reduced. The  standard 
compiler instead obtains a compiler temporary  variable to 
implement  each reduction;  the temporary is assigned into 
the source language variable. The enhanced  technique 
makes further  computations with the source language 
variable eligible for reduction (because it  is now an induc- 
tion variable), while the  standard technique leaves them 

The  standard compiler  performs multiplication reduc- 
irreducible.  This  change can greatly improve programs in 

tions  first and addition and  subtraction reductions sec- using vectors in place of arrays (and using vector  sub- 
which the programmer  has “simplified” subscripting by 

ond.  It  does not return  to multiplication once  the  others script expressions equivalent to the  array  subscript ex- 

complete.  In  the loop common expression  elimination by hand (techniques very 

have been started.  Consequently reduction may be in- pressions) or in which the programmer has‘ performed 

DO 1 I=I,N 
668 I A(I+J)=O.O 

often seen especially in older FORTRAN programs). Figure 
10 gives an example. 
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An attempt is made to  reduce  the number of duplicate 
induction  variables required  to  support inner  loops on 
parallel execution paths. When an  outer loop has more 
than one inner loop,  these inner  loops are separately  opti- 
mized. If the induction parameters  for  the inner  loops are 
identical  and if the inner loops have  no common  preced- 
ing loop with these same  parameters, then the duplicates 
are not detected by common  expression elimination. For 
a normal expression  this usually causes  no penalty in exe- 
cution: only  one instance of the expression will be exe- 
cuted since the  duplicates  are  on parallel paths.  Strength 
reduction,  however, generates initializations outside  the 
loop  and incrementations inside the loop which are  exe- 
cuted regardless of which parallel path is followed. A 
strength  reduction to  support  one of the  paths  therefore 
penalizes all  of the other  paths.  Consequently,  each new 
induction  variable created  to replace an old induction is 
used immediately to replace  any  duplicates of that old in- 
duction on any parallel paths. 

An attempt is made to  reduce  the number of parallel 
induction  variables generated  for  the  current  loop. Paral- 
lel induction  variables are  those which are  incremented 
by the same  number in the  same place.  They maintain a 
constant interval between  their values. For  example,  the 
loop 

DO 1 I=I ,N 

I A(I+J)=A(I+K)+A(I+L) 

will contain three parallel induction  variables after  the ad- 
ditions and multiplications  have  been  reduced. If one of 
the parallel induction variables is used solely for subscript- 
ing, then usually it may be eliminated by one of the  oth- 
ers. Since the effective address of a  subscripted array ele- 
ment  includes the sum of the subscript variable  and the 
address  constant, a  variable may be replaced  by another 
variable in a  subscript if the  address  constant is modified 
by the difference between the two variables.  This dif- 
ference is constant  for parallel induction  variables.  A new 
temporary address  constant,  equal  to  the old address con- 
stant less the  distance  between  the  two induction vari- 
ables, is obtained  for each  array subscripted by the origi- 
nal induction  variable, and the  subscript is replaced with 
the parallel induction  variable. Figure 1 1  shows  an ex- 
ample. 

Integration of local and global register  optimization 
The  standard compiler  performs  two  register  opti- 
mizations, local and  global, in separate passes over  the 
program,  as  previously  indicated.  Local  register  opti- 
mization attempts  to  keep the  result of each quadruple in 
a  register until the  result is referenced in a following quad- 
ruple. The  operation  performed in that quadruple is exe- 
cuted if possible in a register  already  containing an  oper- 

IBM J. RES. I 3EVELOP. VOL. 24 NO. 6 NOVEMBER 1980 

Standard  compiler 

LR 
AR 

I2,I 
I2,X2 

LR I5 ,I 
AR I5,XS 
LR 3 ,I2 
SLL 3,2 
LE  6,A(3) 
LR 2,I5 
SLL 2,2 
STE  6,A(2) 
BXLE 1,4,LOOP 

DO 1 I=l,N 
I2=1+2 
I5=1+5 

1 A(I2)=A(I5) 

Enhanced  compiler 

LE 6,A+I2(I) 
STE 6,A+I5(I) 
BXLE 1,4,LOOP 

Figure 10 Effect of including  source  language  variables in 
strength  reduction. 

DO 1 I= I ,N  
1 A(I+J)=A(I+K)+A(I+L) 

Standard  compiler 

LR 
AR 

2,I 
2,K 

SLL 2,2 
LE 6,A(2) 
LR 
AR 

2,I 
2,L 

SLL 2,2 
AE 6,A(2) 
LR 
AR 

2,I 
2,J 

SLL 2,2 
STE 6,A(2) 
BXLE I,4,LOOP 

Enhanced  compiler 

LE 6,A+K-J(IJ), 
AE 6,A+L-J(IJ) 
STE 6,A(IJ) 
BXLE IJ,4,LOOP 

Figure I1 Effect of eliminating  parallel  induction  variables in 
strength reduction. 

and.  Sequences of computations thereby  become  opti- 
mized into a single register,  as  each intermediate  result 
becomes an  operand of a following quadruple. Global reg- 
ister optimization, however, subsequently  assigns specif- 
ic registers to the  most frequently referenced  variables 
and  constants in each  loop. When these global variables 
appear in local sequences,  then  the local sequences may 
be disrupted.  Operands which were  optimized  into the se- 
quence now may have  to be accessed in registers  outside 
the sequence. 

A new optimization procedure, called global register 
remapping, attempts  to  recapture  the integrity of the local 
optimization after global optimization has been  per- 
formed.  It  revises those optimized sequences which con- 
tain global variable  definitions and references to use ei- 669 
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After  After 
definition 

After  local  After  global 
definition 

remapping  remapping 
optimization  optimization  type 1 type 2 

LE 2,A LE 2,A LE 2,A LE 6,A 
AE 2,B AE 2,B AE 2,B AE 6,B 
AE 2,C AE 2,C AE 2,C AE 6,C 
STE  2,Xt  LER 6,2t+ 
tperhaps 
ttalways 

Figure 12 Effect  of  definition  register  remapping  on  the  object 
program  for X=A+B+C when X is  assigned a global register. 
Store of X will be  generated in local  register  optimization  only if 
it is necessary. 

After  local After  global 
optimization optimization  remapping 
LE  2,X  LE  2,6 AE 6,B 
AE 2,B  AE 2,B 
AE 2,C 

AE 6,C 
AE 2,C 

STE 2,A 
STE  6,A 

STE 2,A 

Figure 13 Effect of reference  register  remapping  on  the  object 
program for A=X+B+C when X is  assigned a global register. 

After reference 

DO 1 I=I,N 
Q=A(I)*B(I) 

1 D(I)=C(I)*Q 
Standard  compiler 

LE 2,A(I) 
LER 6,2 
ME 6,B(I) 
LE 2,C(I) 
MER 2,6 
STE 2,D(I) 
BXLE I,4,LOOP 

Enhanced  compiler 

LE O,A(I) 
ME O,B(I) 
ME O,C(I) 
STE O,D(I) 
BXLE I,4,LOOP 

Figure 14 Effect  of global definition  and  reference  register  re- 
mapping.  The  standard  compiler preserves  the  value  of  the  vari- 
able Q while  the  enhanced  compiler  recognizes that the  variable 
is  effectively a temporary. 

ther  the global registers or  the local registers,  but not 
both, depending on  whether  the value of the global vari- 
able must  be preserved. Definitions and references  are 
treated  separately. 

Definition register  remapping is performed when a 
global variable is defined by a locally allocated  program 
sequence. It attempts  to  compute  the global variable  di- 

is not necessary  to  store  the result into the variable (be- 
cause all references preceding the next  definition  have 
been locally optimized  into registers),  the result is re- 
tained in its local register. If it was not necessary  to place 
the result  into storage,  then it is not  necessary to  preserve 
the result in the global register.  Second, when local allo- 
cation has  determined that it is necessary  to  store  the re- 
sult into  the variable, the  sequence which computes the 
variable is moved from the local  into the global register. 
The  quadruples  are  searched backward to find the begin- 
ning of the sequence-a quadruple which computes the 
local register  but in which neither  source  operand is resi- 
dent in the register  before computation. If an  exceptional 
condition is detected,  then  the sequence (including the 
load  from the local into  the global register) is retained in 
the local  register. The most common exceptional  condi- 
tion is a reference to  the global variable itself during the 
computation  (the  computation  cannot be moved into  the 
global register because  the computation would destroy 
the variable  before the  reference). If no exceptional con- 
ditions  prohibit  remapping, then  the  sequence is moved 
into  the global register. 

Reference  register  remapping is performed  when  a 
global variable is referenced in a locally allocated  pro- 
gram sequence.  It  attempts  to perform the  computation 
which references the global variable in the register  con- 
taining the global variable in order  to avoid a  load-register 
instruction  preceding the  computation. Figure 13 contains 
an  example. 

Reference  remapping is not  always possible and is of- 
ten not  necessary.  It is not necessary when the global var- 
iable is being retained in the locally allocated  register as a 
result of the first kind of definition remapping.  It is not 
necessary when the result of the quadruple  referencing 
the global variable  has  been locally optimized into  a regis- 
ter different from that containing the global variable.  It is 
not  possible if it  is not  permissible to destroy the value of 
the global variable because it  will be referenced  before it 
is redefined. When reference remapping is performed,  the 
quadruples  are  searched forward to find the beginning of 
the  next  sequence using the local register-a quadruple 
which computes  the local  register  but in which neither 
source  operand is resident in the register  before computa- 
tion. The  quadruples  are  then  searched backward to find 
the beginning of the  current  sequence.  The  sequence is 
then moved  from the local into  the global register. 

rectly into  the register in which it will be  retained in order 
to avoid a load-register instruction following the compu- 
tation. Figure 12 contains  an  example. 

Figure 14 gives an  example showing both definition and 
reference remapping. 

Using  linkage  registers for  other  purposes 
Definition remapping is accomplished in one of two After all of the register  optimization procedures have 

670 ways.  First, when  local  allocation  has  determined that it been executed,  certain  general purpose  registers may be 
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completely  unused even though there remain variables 
and constants which could be maintained in registers. 
There  are  two reasons for this. First, under Systemi370 
conventions, registers 14, 15,0, and 1 are used as  subrou- 
tine linkage registers. The FORTRAN compiler reserves 
them for this purpose, using them  also as temporary regis- 
ters  for  address  constants,  subscripts, and computations 
which were not optimized  into  registers by the register 
optimization  routines. In  loops which do not call subrou- 
tines,  these registers may be unused.  Second, registers 
allocated  during local optimization may be freed of all ref- 
erences  as a result of global optimization  and global re- 
mapping. When a computation which was assigned regis- 
ters by local allocation involves  variables which later  are 
assigned  registers by global allocation, it  is possible that 
global remapping may move the entire computation from 
the local registers  into the global registers. If all refer- 
ences  to a register are  remapped, then the register be- 
comes  unused. 

A new optimization procedure, called global register 
scavenging, attempts  to  recover these  unused  registers. 
Global register  scavenging  allocates  any  unused  general 
registers to those address  constants which are not  already 
allocated  registers.  (We did not have time to make the 
registers  available for more  general  optimization.)  Quad- 
ruples  referencing the  constants  are changed to reflect the 
global register  allocations.  This  eliminates  a  register load 
for each reference to  the  selected  constants. 

Removul of unnecessury globul register  initiulizutions 
Global register  optimization, once it has  decided which 
variables and  constants will be allocated global registers, 
inserts quadruples  to initialize the registers with the  se- 
lected  variables and constants.  These  quadruples  are in- 
serted automatically at  two locations. First, they are in- 
serted outside the  loop for each global variable which is 
busy on  entrance into the loop. Second, they are inserted 
within the loop at  each exit from any nested  inner  loop  for 
each global register used differently in that inner  loop. 
The first initialize the register;  the second reinitialize the 
register after its destruction in an inner loop. In both cas- 
es,  however, it  is possible that  the variable in the register 
is never referenced  before the register is initialized, as 
part of the  processing  performed by the  current loop in 
preparation for an inner  loop, with a different variable 
which is a global variable in a global register for  that nest- 
ed inner loop. 

Unnecessary  initializations are most likely to arise  as 
an effect of two  common programming structures.  First, 
in a set of nested  loops  the first statement in each nested 
loop may be the initialization for the next nested  inner 
loop. The initialization usually consists of loading the 
global registers  for the inner  loop. The global registers 
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prepared  for  the loop at  each level are  destroyed immedi- 
ately  when that loop prepares  the global registers for  the 
next  inner loop. Second, in a loop which contains a se- 
quence of several inner  loops,  the  statement following 
each inner loop may be the initialization for  the  next  inner 
loop. The global registers reinitialized for  the  current  loop 
on  exit from the preceding inner loop are  destroyed im- 
mediately when the  current  loop initializes the global reg- 
isters for  the succeeding inner  loop. 

A new optimization procedure, called global register 
purging, attempts  to  locate  and eliminate such unrefer- 
enced initializations. 

Reduced  number of registers  reserved for  brunching 
The  standard compiler reserves from  two to five general 
purpose registers for  addressing  the  code and data in an 
object program.  Registers reserved  for  addressing  the 
program cannot be used for optimizing the program. 
There  are only 16 general purpose registers. Four of these 
are reserved as linkage registers (although they may be 
recovered,  as  described  above, by global register scav- 
enging). Reserving five  of the remaining 12 leaves only 
seven registers for optimization. 

A new optimization procedure, called section-oriented 
branch optimization,  implements  branches with direct 
branch instructions  without  requiring that  the  entire ob- 
ject program be addressable with  a fixed group of address 
registers. Two  or  three  registers, depending on program 
size,  are reserved as program address registers. If the en- 
tire  program  can  be spanned by the reserved address reg- 
isters,  then all branches  are implemented  immediately 
with direct  branches.  Otherwise two registers are  re- 
served  to  address  the  front  end of the  program  (this is 
necessary  because of the internal structure of the  object 
program).  Branches to this part of the  object  program are 
implemented with direct branches. Branches to  the  re- 
maining part of the  object program are implemented  with 
section-oriented branch optimization.  That remaining 
part of the object  program is divided  into sections  each of 
which is separately addressable with  a single address reg- 
ister. The third reserved  address register is used to hold 
the address of the  currently  executing  section.  The initial 
statement in each  section is modified to load the section 
address register with the  address of the  section.  Branches 
into  a  section are implemented with a load of the section 
address for  the  section  containing  the  branch  target  fol- 
lowed by a direct branch  to  the branch  target. Branches 
within a section,  however, which are  far more common 
than branches between sections,  are implemented simply 
with direct  branches. 

The gain in register  optimization should exceed the cost 
of the section address loading. A very large subroutine 671 
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DO 1 I=I,N 
ZR=ZR+AR(I)*BR(I)-AI(I)*BI(I) 

1 ZI=ZI+AR(I)*BI(I)+AI(I)*BR(I) 

Standard  compiler  Enhanced  compiler 

LE 
STE 
LE 
STE 
MER 
AE 
LE 
STE 
LE 
STE 
LER 
MER 
SER 4,O 
STE 4,ZR 

LE 
ME 
AER 
LE 
ME 
SER 
LE 
ME 
AER 
LE 
ME 
AER 
BXLE I,4,LOOP 

LE  4,TEMPl 
MER 4,6 
AE 
ME 2,TEMP4 

4,ZI 

AER 2,4 
STE 2,ZI 
BXLE 1,4,LOOP 

Figure 15 Effect  of  not  using  temporaries  to  eliminate  duplicate 
array  elements.  The  standard  compiler  generates  temporaries  for 
each of the  duplicate  array  references  and  maintains ZR and ZI 
in storage. The  enhanced  compiler  retains ZR and ZI in registers 
and  generates  no stores within the  loop. 

(1321 executable source  cards) from  a weather model was 
compiled both'with and  without  section-oriented branch 
optimization (all other optimizations  were  performed). 
Section-oriented  branching reduced  the num6er of gener- 
al register fetches and stores in the program from 1976 to 
1707 (a 15% reduction) and  the  number of branch  target 
address  constants from 219 (for the branch targets not 
spanned by the five reserved registers) to 6 (one for  each 
of six sections). 

Minor  optimization  improvements 

C(7,M,N), for example, all constants  except  those in the 
rightmost  dimensions  (the N dimensions) of B and c are 
eligible for  extraction. 

Improvements in common  expression  elimination 
In commoh expression elimination, in order  to reduce 
compiler  processing, searches  for duplicate computations 
were  arbitrarily restricted. Only the  preceding 2.5 ex- 
ternally or internally  labeled statements  on  the main line 
execution path were searched  to locate  a  duplicate for a 
quadruple. This limit has been  removed. 

A problem involving duplicate  references to a  sub- 
scripted array element was corrected.  The compiler  ob- 
tains an internal temporary variable to pass the result of a 
duplicate  computation between its initial and  its  sub- 
sequent  occurrences.  The subscripting of an  array in- 
volves at least two  quadruples and is treated  as  an ex- 
pression  subject to elimination so that larger expressions 
such  as 2*A(I) can  be detected  and eliminated. When the 
subscript itself is the only common  expression,  the opti- 
mization causes  the  array element to be fetched into a 
temporary and the  temporary  to be referenced in place of 
the original array element. This is  an improvement if the 
temporary is globally allocated  a  register  because  a  fetch 
will have  been saved  for  each reference to  the  array ele- 
ment. Usually, however, registers are  scarce and  the  tem- 
porary  must be stored.  Therefore this  optimization  often 
results in decreased  performance. Consequently  the en- 
hanced  compiler does not allocate  a  temporary to elimi- 
nate a  duplicate array  subscript. Figure 1.5 shows  an ex- 
ample of the difference this can  make. 

Improvements in backward  movement 
The  standard compiler does not compute  negative con- 
stant numbers. Instead,  when a negative constant is 
needed, it generates a  positive constant and compiles  the 
instructions necessary to load it and  complement it during 
execution. This has been  changed so that the negative 
value is computed during  compilation. 

A number of refinements  were  implemented i n  the exist- 
ing optimization procedures during the  project.  These  re- 
finements  were  triggered by observed problems in the ob- 
ject programs. The  problems were  solved with simple 
changes (sometimes  requiring extensive rewriting) to  the 
existing  optimization procedures. 

Improvements in local  register  optimization 
When no register is available for  the result of a quadruple, 
then  a  variable  must be displaced from a  register  into stor- 
age. The standard  compiler chooses the  variable  already 
fn a  register which is least heavily referenced in the local 
group of source  statements undergoing  optimization.  This 

Improvements in subscript  computation can  severely  degrade  optimization in some cases.  The en- 
Numeric constants  employed in subscript expressions  are hanced  compiler chooses instead the variable whose defi- 
now extracted  into  an aggregate constant subscript for nition is farthest backward  from  the  location where the 
arrays with variable  dimensions as well as  for  arrays with register is required.  This choice  makes  a  register avail- 
constant dimensions. Only the latter are eligible in the  stan- able  for  other optimizations for  the longest  possible  time. 
dard compiler. Constants  are  extracted in leading con- 
stant dimensions  and in the initial variable dimension. When a  variable is displaced from a  register  into stor- 

672 With the dimension  declarations A(N),  B(M,N), and  age, quadruples already  optimized on the  assumption that 
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it is in a  register may no longer  be  correctly  optimized. 
The  standard compiler  ignores this.  The  enhanced  com- 
piler reprocesses  the  quadruples with the  knowledge that 
the displaced  variable  must be fetched from storage. 

All four floating-point registers,  rather  than  just  three, 
are eligible for  optimization. 

Improvements in global  register  optimization 
When a variable is computed immediately preceding an 
inner  loop and is allocated a global register for  that inner 
loop,  an  attempt is made  to  compute the  variable  directly 
into  its global register for the inner loop. 

An attempt is made to  allocate,  as a global register for a 
variable or  constant in an  outer  loop,  that register which 
has  been  most frequently allocated to it  in any nested in- 
ner  loops. 

A better estimate is made of the utility of having each 
variable and  constant in a global register. The  standard 
compiler basically counts  each reference to a  variable or 
constant equally. The  enhanced compiler counts 0, 1, or 2 
depending on whether  the  reference is already  a  register 
reference as  a  result of local allocation,  whether the refer- 
ence would be changed  from  a  storage  reference to a reg- 
ister  reference if the variable  were in a global register,  or 
whether  an  entire machine instruction would disappear if 
the variable  were in a global register. 

A better  estimate is made of the utility of reserving reg- 
isters  for branch-on-index instructions. Branch-on-index 
instructions increment  a  variable by a constant,  compare 
the variable to a  limit, and  branch if the  variable is less 
than  or  equal  to (BXLE) or higher  than (BXH) the limit. This 
is exactly what is required to implement  a  do-loop. A 
branch-on-index  instruction requires  three registers  but 
replaces three  (add,  compare, branch) or five (load,  add, 
store,  compare,  branch)  instructions.  The  standard  com- 
piler allocates  registers to variables  strictly in order of 
utility. If the three  components of the branch-on-index 
instruction are in registers after all registers are allocated, 
then  the branch-on-index  instruction is generated.  The 
enhanced compiler  instead  tentatively reserves  the  three 
registers for  the  instruction. When a  variable requires a 
register, when no other registers are available,  and  when 
any  components of the branch-on-index  instruction  have 
not  yet  been chosen  because  their utilities are individually 
less than  that of the variable under consideration, then a 
choice is made: if the aggregate utility of the remaining 
branch  components,  augmented by an increment to repre- 
sent the  improvement  effected by the branch-on-index in- 
struction itself, exceeds  that of the variables  which would 
be  allocated  registers  based solely on individual utility, 
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Table 2 Instructions compiled for the innermost loops  of sub- 
routine HARM. Only instructions within  the loops, not instruc- 
tions initializing the loops, are included. 

DO-loop  Standard Enhanced Ratio 
label compiler  compiler EnhlStd 

DO 19 
DO 50 
DO 80 
DO 85 
DO 220 
DO 850 
DO 892 
DO 940 
DO 970 

15 
20 
73 
88 

106 
38 
7 

20 
9 

8 
13 
50 
62 
79 
34 
4 
9 
4 

0.53 
0.65 
0.68 
0.70 
0.75 
0.89 
0.57 
0.45 
0.44 

then the registers are  preserved for the branch-on-index 
instruction.  Otherwise they  are broken apart and given to 
the  other variables. 

Measurements of improved  optimization 
The improvement in performance resulting from the im- 
provement in optimization  varies widely. There  are  at 
least  two reasons  for  this.  First, the  improvement in opti- 
mization can vary within each program  and  from  program 
to program.  A demonstration is given in Table 2 .  The 
table shows  the  number of instructions compiled by the 
old and new compilers for  each innermost  do-loop of sub- 
routine HARM (the  fast Fourier transform  program in the 
IBM Scientific Subroutine Package). The  percentage of 
instructions eliminated by the  enhanced optimization 
ranges from 1 1  to 56 percent.  Other programs  show other 
distributions.  In some loops compiled by the  standard 
compiler no instructions  can be eliminated, so no im- 
provement is seen. 

Second,  the improvement in performance  varies for a 
given  program  from  machine to machine. Table 1, which 
compared the  instructions executed in a  plasma  physics 
program  compiled by three  compilers, reveals why. Im- 
provement in optimization  not  only  reduces the number 
of instructions executed, it also  changes  the  nature of the 
instructions  executed. While the number of fixed-point in- 
structions diminishes  rapidly with the improvements in 
optimization, the  number of floating-point instructions re- 
mains relatively constant.  The optimizers are purging the 
subscripting  and  loop-control operations supporting the 
floating-point computations which  perform the real work 
of the  program. Therefore  the improvement in perforrn- 
ance is most apparent on machines  whose floating-point 
operation times are relatively  fast  with respect  to their 673 
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Table 3 Improvement in execution CPU time produced by the enhanced optimizer on different processors. The table entries are the 
execution times for the programs compiled under FORTRAN H Extended at its highest optimization level, O€’T(2), divided by the 
execution times for the programs compiled under FORTRAN H Enhanced at its highest optimization level, OpT(3). 

Program  description  Model 145 Model I58 Model 168 Model I95 

Evaluation of E 1.02 1.02 1.12 1.08 
Evaluation of PI 1.02  1.02 1.12  1.08 
Eigenvalues and eigenvectors 1.08 1.13 1.14 1.48 
Discrete Fourier transform 1.13  1.19 1.19 1.16 
Directed graph analysis 1.01 1.05 0.99 1.03 
Polynomial synthetic division 1.04  1.05 1.11 1.15 
Least-squares solution 1.12 1.36 1.16  1.59 
Least-squares solution 1.13  1.33 1.16 1.61 
Matrix inversion 1.14 1.31 1.23  1.39 
Integration of equations 1.05 I .07 1.11 1.21 
Polynomial least-squares 1.05 1.10 1 .OS 1.28 
Integer sort 1.06 1.08 1.06 1.08 
Plasma physics experiment 1.17  1.19 1.29 
Weather model 1.14 1.32 1 S O  

Table 4 Improvement in compilation and execution CPU time 
produced by the enhanced optimizer on customer programs. Ra- 
tios are FORTRAN H Extended OPT(2) times divided by FOR- 
TRAN H Enhanced OPT(3) times. All runs were on Model  168s. 

Compile Execute 
ratio ratio 

Customer “A” 
Job 1 (data analysis) 1.42  1.09 
Job 2 (8 subroutines) 1.52  1.12 
Job 3 (33 subroutines) 1.21  1.12 
Job 4 (heavy trig functions) 1.12  1.27 
Job 5 (partly under H Extended) 1.36 1.24 
Job 6 (macro preprocessor) 1.14  1.36 

Customer “B” 
Job 1 (geometry fitting) 
Job 2 (Monte Carlo) 
Job 3 (geometry fitting) 
Job 4 (matrix inversion) 

Customer “C” 
Job 1 (37 subroutines) 

Customer “D” 
Job 1 

Customer “E” 
Job 1 

1.60 1.15 
1.64 1.09 
0.94 I .05 
1.80 1.56 

1.48  1.46 

1.27 1.64 

1.48 1.21 

fixed-point operation  times. For the plasma  physics  pro- 
gram, with  its 35% reduction in  instructions executed,  the 
improvements  were 17%, 1%, and 2% on System/370 
Models 145, 158, and 168 (with high-speed multiply), re- 
spectively. 

Programs  representing  a  variety of scientific and math- 
ematical  computations were  timed on several processors. 

These timings were made  under  the VW370 operating sys- 
tem while the machines were  under  no more  than  a mod- 
erate  load,  except  for  the Model 195 timings which  were 
made under OW360 on a heavily loaded  machine. These 
programs make little use of the FORTRAN library and the 
original library  was  used in all cases. Table  3  summarizes 
the improvement in performance.  Information  received 
about  the  performance of the improved optimization (both 
compiler and library) on  customer programs is reported in 
Table 4. 

Optimization of the FORTRAN library 
The goal of the  enhanced library is to reduce the number 
of instructions which  must  be executed  to  evaluate a 
mathematical  function or to  convert a data item between 
external  and internal representations.  The  most  com- 
monly used  mathematical functions  and  the  formatted in- 
put and  output  conversion  routines have  been optimized. 
Internal linkage instructions not  necessary to  the mathe- 
matical  computation or data item  conversion have been 
removed,  and instructions within the computation or con- 
version have been refined so that  the  same  results  are pro- 
duced by  fewer operations. 

The effect of the  enhancements  on  the mathematical li- 
brary is indicated by Table 5. The table  shows the number 
of instructions  required to  execute various  common 
mathematical functions.  The  count includes  only  instruc- 
tions in the library functions; instructions  (usually three) 
in the calling program are  excluded. 

The effect of the  enhancements  on  the input-output li- 
brary is indicated by Table 6. The  table shows the  number 
of instructions required to  execute various  common data 
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element conversions.  The  counts record the processing 
for a single array  element in an  array read or write [for 
example ~ ( 3 )  in ‘WRITE (6,9) ( A ( I ) , I = I , ~ ) ?  or ’WRITE (6,9) A’]. 

Faster  compiler  processing 
The third goal of the project  was to make the compiler 
itself faster.  Once all the new optimizations  were com- 
plete,  the compiler was monitored as it compiled  a group 
of programs.  Each  spot consuming one  percent  or more 
of the compilation  time was reviewed. 

Many of these  were small loops which could be written 
better  for  speed. In other  spots simple equivalent  proce- 
dures could save time. These  latter typically involved the 
creating, searching, or  sorting of linked lists. 

Huge improvements  were  possible in several  places. 
For example,  over  one-third of the  compilation  time in 
programs with large numbers of labeled statements was 
spent in a single compiler procedure. This procedure is 
given a list, the  forward connection  table, which records 
which statements  are  reached from each  statement in the 
program.  It  inverts the list to produce another  list, the 
backward  connection table, which  records  which state- 
ments branch to each  statement in the program. The origi- 
nal algorithm searches  the  forward connection table  once 
for  each labeled statement in the program. The new al- 
gorithm searches it four  times. 

Similarly, much time was spent determining where 
each variable was busy in the program.  This  was done by 
tracing the flow  of the program for  each variable eligible 
for optimization. The compiler now processes 32 vari- 
ables  (convenient because of the logical register opera- 
tions)  at a time. 

Improved  algorithms also were  written for analyzing 
the structure of the program  and  selecting each  loop for 
processing. 

As a  result of these  changes,  the new compiler usually 
is faster than the old even though it does more  opti- 
mization.  Table 7 compares  the compilation times for a 
batch of programs. Note  that  the compiler usually is 
faster  than FORTRAN G1 as well. 

Concluding  remarks 
The new optimizations  and the  other  enhancements dis- 
cussed in this  paper  were  developed as part of a prag- 
matic approach  directed  toward a pragmatic goal-to 
compile  perfect  inner  loops.  This approach  has been  very 
successful in increasing  the  performance of application 
programs. It has produced  a faster compiler,  a faster li- 
brary, and faster  object  programs. 
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Table 5 Comparison of standard  and enhanced mathematical 
libraries. Table entries are the number of instructions required  in 
the library to execute the indicated function when X = 
1.23456789 and Y = (1.23456789, 1.23456789) (counts for other 
arguments  may  vary slightly). Overhead to invoke the function is 
excluded. 

Function Single precision  Double  precision 

Standard  Enhanced  Standard  Enhanced 

SIN(X) 
COS(X) 
EXP(X) 
LOG(X) 
SQRTW) 
x * * x  
Y*Y complex 
Y/Y complex 

47 
48 
53 
49 
36 

131 
29 
46 

31 
32 
45 
35 
27 
81 
13 
25 

54 
54 
65 
55 
42 

151 
29 
46 

38 
37 
47 
41 
33 
89 
13 
25 

Table 6 Comparison of standard  and enhanced data element 
conversion. Table entries are the number of instructions required 
in the library to process one array  data element under the in- 
dicated format (counts may  vary slightly with  data element val- 
ues). Processing for the initiation of format conversion and the 
execution  of the input/output  transfer is excluded. 

Format Input conversion  Output  conversion 

Standard  Enhanced  Standard  Enhanced 

A8 45 15 44 13 
I8 220  34 130  28 
F8.3 (real*4  data) 305  110 246  116 
F8.3 (real*8 data) 316  132 259  135 

Table 7 Comparison of compilation CPU  time for three com- 
pilers. Times are  in seconds. A single program containing 20 187 
cards (14 716 excluding comments) which implement 101 subrou- 
tines was compiled. Times were taken on a Model 145 under VM/ 
370 with compiler parameters  appropriate for interactive com- 
puting. 

Optimization FORTRAN GI H Extended H Enhanced 

O ~ ( 0 )  655  354 210 
OPT( 1) 529 272 
OPT(2) 732  370 
0 ~ 3 )  402 

The development of these improvements  was  aided by 
a powerful interactive  programming  environment: VW370 

and its Conversational  Monitor  System (CMS). 675 

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY 



The compiler  optimization enhancements  are written 
primarily in FORTRAN. The compiler currently  contains 
27 415 FORTRAN and 16 271 assembler  lines of code, ex- 
cluding comments. All of the new optimization logic is 
written in FORTRAN; assembler is used only for bit manip- 
ulation.  Overall 9661 lines of FORTRAN source  code but 
only 1483 lines (most outside  the optimizer) of assembly 
source  code  are new or modified programming. (The FOR- 

TRAN language  implemented in the compiler is augmented 
by some in-line functions  for shifting, masking,  and bit 
manipulation  and by a STRUCTURE statement which, like 
an assembly DSECT or a P U I  BASED structure, provides 
overlays  on  storage.)  The compiler which is shipped as a 
product has  been  compiled under itself at its highest level 
of optimization. 
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