
Randolph G. Scarborough
Harwood G. Kolsky

660

Improved Optimization of FORTRAN Object Programs

For many years the FORTRAN H Extended compiler has produced highly optimized object programs f o r IBM System1360
and System1370 computers. A study of the object programs revealed, however, that important additional optimizations
were possible, and the compiler has been enhanced accordingly. First, the range of cases handled by the optimization
techniques already present in the compiler has been extended. For example, more duplicate computations are eliminat-
ed, and more invariant cornputations are moved from inner to outer loops. Second, several new optimizations have been
added, with subscript computation and register allocation receiving particular attention. Third, certain optimization
restrictions have been removed. This paper describes these improvements and reports their effects.

Introduction
The original versions of the IBM FORTRAN H compiler
were written between 1963 and 1967 to support the IBM
Systend360 [13. They were based on the pioneering work
of Backus [2] , whose group wrote the first FORTRAN com-
pilers for the IBM 704 in 1957. At the time the FORTRAN H

compiler was completed, it was recognized throughout
the industry as having the most thorough analysis of
source code of any high-level-language compiler avail-
able. The implementation of the object code optimization
techniques in the FORTRAN H product is described by
Lowry and Medlock [3]. Later the FORTRAN H compiler
was extended to include new features available in Sys-
tend370 and took on the name FORTRAN H Extended [4].
A library containing mathematical functions and inputi
output support routines was included in a companion
product called the FORTRAN Mod 2 Library [5] .

After many studies of FORTRAN programs in situations
where the execution speed of the object program was a
critical factor, we realized that the FORTRAN H Extended
compiler did not always produce the expected highly opti-
mized code. In 1976 a small study was started to deter-
mine why certain inner loops in FORTRAN programs were
handled quite differently by the compiler when they were
imbedded in different subroutines. The study revealed
that restrictions within the compiler often impeded the
optimizations the compiler was designed to perform.
Some optimizations were performed incompletely or

were constrained, apparently to save time during com-
pilation, to operate only on subsets of the program. The
study also revealed that several additional optimizations
could improve the compiled object programs signifi-
cantly.

As a result of these findings, a project to produce a new
optimizer for the FORTRAN H Extended compiler was initi-
ated. The strategy was to incorporate the existing rou-
tines which worked well, rewrite those which did not, and
write new routines to perform additional optimizations.
Later the effort was extended to include improvements in
the FORTRAN library as well. The results were made avail-
able in September 1978 as the FORTRAN H Extended Opti-
mization Enhancement [6].

This paper begins by describing the objectives and con-
straints which govern the new optimizer. For the sake of
completeness, this is followed by a brief overview of the
original compiler and its optimizer. The major section of
the paper then describes the new optimizations and the
methods used to achieve them. The paper concludes with
some measures of the improvement in optimization.

Objectives and constraints
The motivation for an improved optimizer originally came
from studying the computer requirements of several sci-
entific research projects. Some of these requirements are

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission
to republish other excerpts should be obtained from the Editor.

RANDOLPH G . SCARBOROUGH AND HARWOOD G. KOLSKY IBM J . RES. DEVELOP. . VOL. 24 0 NO. 6 NOVEMBER 1980

Table 1 Instructions executed in a plasma physics program. Instruction counts are in millions.

Instruction type FORTRAN GI H Extended H Enhanced

count percent count percent count percent

Fixed point 70.216 83.5 7.120 38.3 1.372 11.4
Floating point 10.994 13.1 9.976 53.7 9.207 76.4
Branch, link, loop 1.456 1.7 1.435 7.7 1.435 11.9
Other instructions 1.459 1.7 .044 0.2 .044 0.4

Total instructions 84.126 100.0 18.575 100.0 12.058 100.0

beyond the scope of any available computers [7]. NASA,
for example, wants a special purpose computer many
times faster than any existing computer in order to simu-
late wind tunnel operations. Some scientific installations
are running their computers at capacity, with application
programs able to absorb forseeable increases in capacity.
In a weather model, for example, the resolution can al-
ways become finer or more complex physical simulations
can be added. Other scientific activities are producing
data at such extraordinary rates that computers are
straining to capture and analyze the data. A particle ac-
celerator can produce many events for analysis during
each second of operation, and the analysis of each event
may require more than a second of computer time on a
large processor. Satellites, such as Landsat, produce a
continuous stream of images, while computers are unable
to format, enhance, and extract information from the im-
ages at the rate at which they are created.

In such environments, as well as in day-to-day inter-
active computing, better object programs are just as valu-
able as faster computers. The effect of optimization on
object programs can be considerable. Table 1 shows the
number of instructions executed in a plasma physics pro-
gram written at the IBM Palo Alto Scientific Center [8]
after the program was compiled with three different com-
pilers. FORTRAN G1 is regarded as a fast compiler in an
interactive environment and is not especially concerned
with optimization. FORTRAN H Extended is the standard
program product, and FORTRAN H Enhanced is the com-
piler containing the enhancements described in this pa-
per. Moving from the essentially nonoptimizing FORTRAN

G1 to the best optimization level of FORTRAN H Extended
reduced the number of instructio'ns executed by 78%, and
35% of the remaining instructions were eliminated with
the new compiler enhancements.

The major objective of the enhancement project was to
produce better optimized object programs. A second ob-
jective was to produce a faster FORTRAN library. The Ii-

IBM I. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

brary contains mathematical functions and input/output
routines to support FORTRAN object programs during
execution. It is not rare to find a program spending 20 or
30 percent of its time in the library (evaluating square
roots, logarithms, exponentials, etc.) so that improve-
ments here are also valuable. A third objective was to
produce a faster compiler. A common criticism of opti-
mization is that compilation takes too much time. If faster
programs could be compiled in less time, then the objec-
tion, at least for users of the existing optimizer, would be
eliminated.

The primary constraint on the project was our belief
that the work would be useless if it were not incorporated
into a product. This meant that we would have to work
within the framework of the existing FORTRAN H Ex-
tended compiler and library. These jointly contain 65 806
lines of source code (excluding comments). It would have
been impossible (and unproductive) for us to rewrite them
entirely. We were interested only in the optimization
phases of the compiler and the most critical performance
kernels in the library. The remainder of the compiler and
library would be accepted without change.

A user of the enhanced and standard products ideally
should see no difference between them except perform-
ance. It was undesirable to require a user to rewrite his
programs in order to gain improved performance. It was
unacceptable to produce answers which differed from
those given by the standard compiler and library. Con-
sequently, certain optimizations which could improve the
performance of object programs were not implemented.
For example, the expressions A+B+C and A + C + B could
not be treated as identical, even though algebraically they
are equivalent, because reordering of floating-point oper-
ations may change the numerical result of the operations.
Likewise, the mathematical approximations used in eval-
uating the FORTRAN library functions, and the order of the
arithmetic operations with which the approximations
were originally implemented, could not be changed. All 661

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY

Initialize

t

*
t

Read source program

Check syntax

Generate internal
quadruples

Optimize

- 1 I I

1

I Optimize
branches I

f-l Produce object code

Figure 1 Processing in the FORTRAN H Extended compiler.
Enhancements are made mainly in the OFT(2) path.

new optimizations, in short, were required to yield identi-
cal bit-for-bit results to the optimizations performed by
the standard FORTRAN H Extended compiler and library.

FORTRAN H Extended compiler
The FORTRAN H Extended compiler was the foundation
for the optimization enhancements. Figure 1 shows the
general flow of processing in this compiler. The compiler
is invoked by a calling program running in the VM/CMS or
OS/370 environment. The compiler processes one or more
FORTRAN source programs, transforming each source
module into an object module containing machine instruc-
tions for execution on Systed370. Upon completion, the
compiler returns control to the calling program. Before
the object modules are executed, they are linked together
with other object modules, including routines from the
FORTRAN library, to form a complete program for execu-
tion.

rect syntax, and translated into an internal representa-
tion consisting of operator-operandl-operand2-operand3
quadruples (e . g . , C = A + B becomes +,C,A,B). Some source
program constructs generate more than one quadruple.
For example, subscript expressions are expanded into
sets of multiplications and additions, and complex arith-
metic operations generate several ordinary arithmetic op-
erations. Temporary internal variables are created to
carry the results of intermediate quadruples from their
definitions to their references.

Certain simple optimizations are performed as the
quadruples are constructed. For example, an integer mul-
tiplication by a constant power of two (e .g . , I*4 or I*16) is
replaced by a left-shift operation. An exponentiation in-
volving an integer constant power (e . g . , A**9) is replaced
by a series of in-line multiplications. Some operations in-
volving minus signs are converted to simpler forms; for
instance, -(B-C) becomes C-B. Finally, constants em-
ployed in a subscript expression [for example, each num-
ber 7 in A(7,1-7,1+7)] are often extracted from the sub-
script, evaluated as constant offsets from the start of the
subscripted array, and combined into an aggregate con-
stant offset which does not require computation during
execution.

At this point in the compilation the quadruples are
ready for general optimization. (A user may request that
optimization be bypassed or only partially executed in or-
der to reduce compiler processing.) Optimization is per-
formed on a loop-by-loop basis. Therefore, before any
optimization procedures are executed, the structure of
the source program is analyzed. The loops in the program
are identified (whether written as do-loops or with if-
statements), and the manner in which the loops are nested
is determined.

The loops are then processed in order from the in-
nermost loop to the outermost loop. Two passes through
the program are made in this manner. The first, called text
optimization, attempts to transform the quadruples into
sequences which will give the same results in fewer oper-
ations. The second, called register optimization, assigns
registers to the operands of the remaining quadruples and
attempts to minimize the number of operand fetches and
stores. A third pass, called branch optimization, deter-
mines how the object program itself will be addressed in
storage and attempts to provide efficient branching from
one part to another. The object program is generated after
optimization simply by transcribing the information en-
coded in the quadruples into machine instructions.

The compiler processes each FORTRAN source module The three optimization phases are described in the fol-
662 separately. The source program is read, checked for cor- lowing sections.

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Text optimization
Text optimization is an attempt to reduce the number of
arithmetic operations required to execute the FORTRAN

source program. Three optimization procedures are per-
formed: common expression elimination, backward
movement, and strength reduction. These procedures an-
alyze the quadruples and possibly replace them with
quadruples which produce identical results in fewer oper-
ations.

Common expression elimination
Common expression elimination is an attempt to remove
duplicate occurrences of a computation from the pro-
gram. If the same expression is computed more than
once, if none of the operands are changed between the
separate computations, and if the first of the computa-
tions must be executed before the others are reached,
then the result of the first computation is saved, the other
computations are deleted, and the saved result is used in
place of the results of the deleted computations. In prac-
tice most eliminated expressions involve the computation
of subscripts: each occurrence of A(I,J,K) in a loop gener-
ates an extended and identical calculation.

Duplicate computations are eliminated quadruple by
quadruple. Identical quadruples are located by searches
backward from each quadruple through all quadruples
which must be executed in the loop before the subject
quadruple is reached. If there are duplicate expressions
on two parallel paths, then they are eliminated only if the
expression also occurs on a preceding common path.

Backward movement
Backward movement is an attempt to move invariant
computations from inner loops to outer loops. If a compu-
tation is performed in a loop and if none of the operands
are changed within the loop, then, since the computation
always produces the same result, the computation is per-
formed outside the loop before the loop is entered, the
computation within the loop is deleted, and the result of
the outer computation is used in place of the result of the
inner computation. In practice most backward move-
ments involve the computation of subscripts for those ar-
ray dimensions which are invariant in inner loops.

Concurrent with backward movement, two additional
optimizations are performed. First, an attempt is made to
delete assignment statements. When a variable or con-
stant is assigned to another variable, it may be possible to
replace all references to the result variable with refer-
ences to the variable or constant which has been assigned
to it. If so, then the assignment is deleted. Second, vari-
ous elementary calculations involving numeric constant
operands are detected and executed. Since the operands
are numeric constants, the result can be computed during

Before reduction After reduction

DO 1 I=I,N,I
1 A(9*1)=0.0

DO 2 I=l,N,I
2 A(9+1)=0.0

DO 3 I=I,N,I
3 A(9-1)=0.0

DO 1 I=9*1,9*N,9*1
1 A(I)=O.O

DO 2 1=9+1,9+N,+1
2 A(I)=O.O

DO 3 1=9-1,9-N,-1
3 A(I)=O.O

Figure 2 Examples of multiplication, addition, and subtraction
strength reduction.

compilation and the calculation can be replaced by an as-
signment of the numeric constant result. In practice these
optimizations are performed mainly on intermediate
quadruples inserted by the other optimization proce-
dures.

Strength reduction
Strength reduction is an attempt to simplify calculations
which involve induction variables. Induction variables
are those variables which are altered only once in a loop
and which are altered at that point by being incremented
or decremented by a constant within the loop. Do-loop
indexes are the most common example. The value of an
induction variable proceeds through an orderly sequence
as the loop is executed. A constant times an induction
variable, a constant plus an induction variable, and a con-
stant minus an induction variable likewise proceed
through an orderly sequence. A reference to the result of
one of these functions would be just as well served by an
induction variable which supplied that sequence directly.
Strength reduction generates new induction variables to
supply such sequences and thereby replace functions of
the original induction variables. Figure 2 illustrates these
reductions. In practice most strength reductions involve
induction variables employed in subscript computations.

Register optimization
Register optimization is an attempt to reduce the number
of operand fetches and stores required to execute the
FORTRAN program. Two optimization procedures are per-
formed: local register optimization and global register op-
timization. These procedures analyze the quadruples re-
maining after text optimization and assign registers to
each operand in each quadruple.

Local register optimization
Local register optimization is an attempt to keep the re-
sult of each quadruple in a register until that result is ref-
erenced in a following quadruple. A subset of the avail-
able registers is allocated for this purpose (the other regis-
ters are reserved for global register optimization and
branch optimization). As each quadruple is processed, a

IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

register is allocated to contain the result of the quadruple.
If no more registers are available, then one of the vari-
ables currently in a register is displaced from its register
into storage. When the last reference to the result is pro-
cessed, then the register containing the result is once
again made available for other quadruples.

Global register optimization
Global register optimization is an attempt to keep the
variables and constants most frequently referenced in a
loop in registers throughout execution of the loop. The
variables and constants are sorted based on the number of
times they are referenced within the loop. The registers
reserved for global allocation, and any registers reserved
but not required for local allocation, are then allocated to
the most frequently referenced variables and constants.
New quadruples are inserted to fetch the registers before
loop entry and to store the registers at each loop exit.
Finally, the quadruples referring to the global variables
and constants are updated to reflect the global register
allocations.

Branch optimization
Branch optimization is an attempt to execute all branches
in the program with direct branches from the source to
the target. Direct branches require that the branch target
be addressable with a general purpose register. As many
as five registers, depending on object program size, are
reserved as address registers. (These registers are not
available for local or global register optimization.) The lo-
cation of each branch target in the object program is de-
termined. Branches to all branch targets which are
spanned by the address registers are implemented with
single branch instructions. Branches to any targets
beyond the span of the address registers (this happens
only in huge programs) are implemented by loading an
address constant into a register and branching to the ad-
dress in the register.

we could devise no way, practical for implementation
within the FORTRAN H Extended compiler, to improve the
assembly language equivalent to the new optimizations.
Furthe;, it was true throughout the project that improve-
ments not yet implemented would make a larger dif-
ference in performance than refinements in the opti-
mizations which were already pragmatically complete. In
any case practical problems more than theoretical prob-
lems were usually the cause of poorly optimized object
programs.

The sections below describe the problems observed in
the FORTRAN H Extended compiler and the optimization
enhancements implemented to correct them.

0 Major optimization improvements

Increased number of optimized variables and constants
Throughout optimization, the compiler maintains bit vec-
tors which record where variables and constants are
fetched, stored, and busy. (A variable is busy if it is refer-
enced before it is redefined.) These vectors are present
for each externally and internally labeled statement in the
source program. The FORTRAN H Extended compiler gen-
erates the vectors with 127 entries, called coordinates,
and allocates several global tables of this same size. Vari-
ables and constants contend based on a count of refer-
ences for the first 80 coordinates. The remaining coordi-
nates are used only for address constants and for tempo-
raries and constants generated by the optimizer.

A variable, constant, or temporary not allocated a
coordinate is not optimized. This can severely degrade
the optimization of large programs, not only because indi-
vidual variables are not optimized, but also because once
any nonoptimizable operand is involved in an expression
the expression also becomes nonoptimizable. Figures 3
and 4 show two typical effects on the object program.

Improvements in optimization
As a result of examining object programs produced by the
FORTRAN H Extended compiler, we found that significant
improvement was possible. Our approach was pragmatic.
We examined the inner loops generated by the compiler,
located unnecessary instructions, determined why the in-
structions were generated, and developed methods to
eliminate them. When no more instructions could be elim-
inated, even when the loop was programmed in assembly
language, then the optimization was considered satisfac-
tory.

Two improvements were made to remove this impedi-
ment. First, a coordinate is no longer required for con-
stants and address constants. It is known that they are
always busy and never stored, and it is not necessary to
know where they are fetched in terms of labeled state-
ments. Second, the size of the bit vectors has been made
a function of the number of variables in a source program.
As many as 991 variables and compiler temporaries now
may be optimized (the new limit is a function of a storage
allocation restriction). Very large subroutines typically
require fewer than 700.

We did not ask whether the new optimizations were
perfect in theory. For one reason they were clearly im-

664 provements over the existing optimizations. For another

With the FORTRAN H Extended compiler, it is hard to
tell if poor optimization results from a problem in an opti-
mization routine or from the lack of an optimization

RANDOLPH G. SCARBOROUGH AND HARWOOD G . KOLSKY IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

coordinate for an operand involved in the optimization.
This made it impossible to evaluate accurately the effect
of the original optimization procedures and the new pro-
cedures being developed. After the bit vectors were ex-
panded, it was invariably true that poor optimization was
the result of an optimizer routine.

Improved methods for computing subscripts
Many of the observed unnecessary instructions were con-
cerned with subscripting. The real work of the FORTRAN

programs under study was typically executed with ex-
pressions involving subscripted array elements; the pro-
grams had nests of loops to vary the indexes on the ar-
rays. It sometimes seemed as if more work was done to
address the array elements than was done once they were
located.

The standard FORTRAN compiler evaluates subscripted
array references in six steps. First, numerical constants
embedded in the subscripts are extracted, evaluated, and
combined into an aggregate constant subscript when the
program is translated into quadruples. Second, the sub-
script expression remaining in each dimension is eval-
uated and converted to integer. Third, each of these eval-
uated subscripts is multiplied by the span in bytes repre-
sented by a unit subscript in the subscripted dimension.
Fourth, these products are added together to produce an
aggregate computed subscript. Fifth, the constants ex-
tracted from the subscript and combined to form the ag-
gregate constant subscript are added to the aggregate
computed subscript to produce the aggregate effective
subscript. For an aggregate constant subscript in the
range 0-4095, this addition is accomplished implicitly by
encoding the constant in the displacement field of an in-
dexed machine instruction. Sixth, the address of the array
itself is added to the aggregate effective subscript to pro-
duce the address of the subscripted array element. This
addition is always accomplished implicitly by using the
base and index registers of an indexed machine instruc-
tion.

Two new optimization procedures were added to im-
prove subscripting. The first, called subscript commu-
tation, reorders the additions used in the fourth step,
above, when the separately evaluated dimension sub-
scripts are combined to form the aggregate computed
subscript. Each dimension subscript is examined to deter-
mine whether it is constant or variable in the loop under-
going optimization. The additions of the subscript dimen-
sions are then commuted so that the constant and the var-
iable dimensions of each subscript are added separately
into two separate terms, one constant and one variable.
The two terms are then combined with a final addition.
The evaluation of the constant term is thereafter removed
from the loop by backward movement.

DO 1 I= l ,N
1 Z=Z+A(I)

No coordinate for Z Coordinate for Z

LE 2,Z
AE 2,A(I)
STE 2,Z
BXLE I,4,LOOP

AE 6,A(I)
BXLE I,4,LOOP

Figure 3 Effect of optimization coordinate availability on
global register optimization. Code is assembly language equiva-
lent to the instructions generated by the compiler. Operation
codes are reported exactly, but operands and registers have been
given names for clarity. Only inner loop instructions are shown.

DO 1 I = l , N
1 A(I)=X*Y*B(I)

No coordinate for X,Y Coordinate for X,Y

LE 2 3
ME 2,Y
ME 2,B(I)
STE 2,A(I)
BXLE I,4,LOOP

LER 2,6
ME 2,B(I)
STE 2,A(I)
BXLE I,4,LOOP

Figure 4 Effect of optimization coordinate availability on back-
ward movement optimization.

DO 1 J = l , N
1 A(I,J,K)=O.O

Standard compiler
LR 2,IJ
AR 2,K
STE 6,A(2)
BXLE IJ,lO,LOOP

Enhanced compiler
STE 6,A+I+K(J)
BXLE J,lO,LOOP

Figure 5 Effect of subscript commutation on an object pro-
gram. The standard compiler performed strength reductions for I
and J but not for K. The enhanced compiler combined I and K
with the address constant for A.

Figure 5 shows an example of the improvement pro-
duced by subscript commutation.

The second of the new subscript optimization proce-
dures, called subscript optimization, determines how the
components of a subscript are combined in steps four
through six, above. It attempts to eliminate two kinds of
additions from the loop: the addition in step four of the
final constant and variable terms produced after subscript
commutation; and the addition in step five of negative and
large positive aggregate constant subscripts. It also at- 665

RANDOLPH G. SCARBOROUGH AND HARWOOD G . KOLSKY IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

tempts to minimize the number of variables required for
computing subscripts within the loop so that fewer regis-
ters are occupied with subscripting.

Each subscript is decomposed to identify four subscript
components. The first is the identity of the storage block
containing the subscripted array: for arrays in a common
block, the identity is the name of the common block; for
arrays in local storage, the identity is the name of the sub-
routine; for arrays passed as arguments, the identity is the
name of the argument. All arrays in a given storage block
can be addressed with a single address constant merely
by varying a displacement (described next). The name of
the array is therefore ignored, and the name of the storage
block containing the array is used instead. This permits
all of the subscripts within a common block or within lo-
cal storage to be optimized together without the impedi-
ment of the original array identifiers.

The second subscript component is a numeric dis-
placement composed of two pieces. One is the offset of
the zeroth element of the array from the start of the stor-
age block containing the array. The other is the aggregate
constant subscript extracted from the subscript when the
subscript was translated into quadruples.

The third subscript component, the constant index, is
that part of the subscript expression which can be identi-
fied as constant within the current loop.

The fourth subscript component, the variable index, is
the remaining variable or indeterminate part of the sub-
script expression. For multidimensional arrays the con-
stant index and variable index are typically the final con-
stant and variable terms produced by subscript commu-
tation. The four subscript components are identified as
BASE, DISP, XCONST, and XVARIA in the discussion below.

When the four subscript components are combined,
they yield the address of the subscripted element. The
standard compiler combines them as if the expression
((XVARIA+XCONST)+DISP)+BASE had been written. Any
variable and constant index terms are explicitly added (no
attempt is made to separate them). If the displacement is
less than zero or greater than 4095, then it is added explic-
itly to the index value. Finally, the remaining additions
are accomplished using the three address operands of an
indexed machine instruction. Two unnecessary additions,
however, may have been generated in the loop.

Subscript optimization begins by reversing the order of
addition. The subscript components are combined as if
the expression XVARIA+(XCONST+(DISP+BASE)) had been

666 written. If the displacement is less than zero or greater

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY

than 4095, then a new address constant incorporating the
displacement is generated or, for arrays passed as argu-
ments, the displacement and the array address are added
into a new temporary outside the loop. The constant in-
dex is then added to the possibly modified address con-
stant outside the loop. The addition of the variable index
is accomplished with the index register of an indexed ma-
chine instruction. The two possible additions are elimi-
nated by this procedure.

These changes are made only when they appear desir-
able. All of the subscripts in a loop are considered during
this determination. The attempt is made to minimize both
the number of instructions and the number of registers
required for subscripting.

Three questions are asked and answered during sub-
script optimization. The most fundamental question is
whether a variable index which is eligible for strength re-
duction should be optimized by strength reduction or by
subscript optimization. The two procedures use different
methods to eliminate the addition XVARIA+XCONST of
the variable index and the constant index. Strength re-
duction generates a new variable equal to the sum
XVARIA+XCONST for each different constant index XCONST;

the new variable is used directly as a subscript. Sub-
script optimization generates a new temporary address
constant (BASE+DISP)+XCONST for each different constant
index XCONST; the unchanged variable index is used
directly as a subscript. In both cases the addition
XVARIA+XCONST is deleted from the loop.

This first question is answered based on the number of
different constant indexes XCONST added to the variable
index XVARIA. If there are more than one, then all are
optimized by subscript optimization. The reason is that
strength reduction produces a new induction variable, re-
quiring initialization outside the loop and incrementation
inside the loop, for each different XCONST. (The enhance-
ments to strength reduction described later, in particular
the elimination of parallel induction variables, would sub-
sequently delete most of these induction variables by add-
ing even more initialization outside the loop.) Subscript
optimization, in contrast, removes the addition from the
loop at the expense of a single addition (BASE+DISP)+

XCONST outside the loop for each different XCONST and
leaves the variable index XVARIA free-standing and ready
for a single strength reduction. Figure 6 shows the dif-
ference in an object program. If, however, there is only
one XCONST, then strength reduction is used to optimize
the addition XVARIA+XCONST. This case often results in
better code in outer loops because the XCONST often
represents dimensions of an array which are constant in
the inner loop but are variable and eligible for strength

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

reduction in the outer loop. This decision on where to
optimize the subscript expression minimizes the number
of induction variables in the loop and the initialization
necessary for the loop.

The second question is whether the displacement DISP

should be added explicitly to the storage block address
BASE. The subscripts are sorted into groups, with all sub-
scripts in a group having the same storage block BASE and
constant index XCONST and with all subscripts in a group
in ascending order based on the displacement DISP. The
groups are partitioned into subgroups such that the dis-
placements of the first and last subscripts in each sub-
group differ by no more than 4095. Each subgroup can
therefore be addressed by a single address constant
BASE+DISP generated for the first subscript in the sub-
group. This minimizes the number of address constants
required to address the entire group. The pending ques-
tion-whether to compute BASE+DISP explicitly-is then
asked for each of these subgroup address constants. The
answer is yes if the displacement of any subscript in the
subgroup is less than zero or greater than 4095; other-
wise, since the displacement field of an indexed machine
instruction can be used in all cases, the answer is no. Ex-
plicit additions are implemented for common blocks and
local storage by generating relocatable address constants
during compilation (an existing address constant is used if
it spans all subscripts in the subgroup) and for array argu-
ments by generating temporaries outside of the loop dur-
ing execution.

The third question is whether or not the constant index
XCONST should be added to the subgroup address con-
stant BASE+DISP outside the loop. The question is asked
for each of the subgroups separately. The answer is yes
if any subscript in the subgroup contains a variable index
XVARIA which is not eligible for strength reduction. If
any such variable index exists, then the addition of
XCONST in the expression XVARIA+XCONST+(BASE+DISP)

must be performed explicitly, and performing XCONST+

(BASE+DISP) outside the loop is better than performing
XVARIA+XCONST inside the loop. The question is not
asked if XVARIA is eligible for strength reduction because,
as described above, XVARIA+XCONST is eliminated by
strength reduction. When the question is asked, however,
if it is answered with a yes, then the decision to optimize
eligible XVARIA+XCONSTS with strength reduction is re-
voked for the current XCONST. (There may be more than
one eligible XVARIA added to this XCONST but, because of
the first question asked above, this will be the only
XCONST added to each of these XVARIAS.) Otherwise
XCONST would be eliminated by one technique in strength
reduction for the eligible XVARIAS and by a different tech-
nique in subscript optimization for the ineligible XVARIAS.

IBM J. RES. DEVELOP. 0 VOL. 24 NO. 6 NOVEMBER I '980

DO 1 I = l , N
1 A(I,J)=A(I,K)+A(I,L)

Strength reduction Subscript optimization

LE 2,A(IK)
AE 2,A(IL)
STE 2,A(LI)
AR IL,4
AR IK,4
BXLE IJ,4,LOOP

LE 2,A+K(I)
AE 2,A+L(I)
STE 2,A+J(I)
BXLE 1,4,LOOP

Figure 6 Comparison between strength reduction and sub-
script optimization when more than one constant index is com-
bined with a variable index. Both object programs were pro-
duced by the enhanced compiler. For this illustration strength
reduction was not permitted to reduce the parallel induction vari-
ables.

DO 1 I = l , N
1 A(I)=B(I,J)+C(I,J,K)

Standard compiler

LE 6,B(IJ)
LR 2,I
AR 2,JK
AE 6,C(2)
STE 6,A(I)
AR IJ,4
BXLE I,4,LOOP

Enhanced compiler

LE 6,B+J(I)
AE 6,C+J+K(I)
STE 6,A(I)
BXLE I,4,LOOP

Figure 7 Effect of subscript optimization. The standard com-
piler has strength-reduced the subscripts for A and B but not for
C. The enhanced compiler has combined the J and K subscripts
with the addresses of B and C.

This would require both kinds of initialization outside the
loop and two address constants [(BASE+DISP) for
strength-reduced XVARIAs and (BASE+DISP)+XCONST for
subscript-optimized XVARIAS] within the loop. In order
to eliminate this duplication, the decision is made to opti-
mize all of the XVARIA+XCONST additions for the current
XCONST with subscript optimization. The decision is also
made effective for any previously processed subgroups.

As a result of this optimization, the new compiler is less
sensitive to the number of dimensions in an array when it
computes subscripts. Provided that the number of bytes
between successively fetched elements is the same, a
subscript computed for a vector can be used to address an
array, and vice versa. Figure 7 shows the improvement
this can produce.

Improvements and extensions to strength reduction
Many of the observed unnecessary instructions were con-
cerned with strength reduction, particularly in support of
subscripting. The unnecessary instructions were attribut- 667

RANDOLPH G. SCARBOROUGH AND HARWOOD G . KOLSKY

DO 1 I = l , N
1 A(8*(1+4))=0.0

Standard compiler

LR
AR

2,I
2,X4

SLL 2,3
SLL 2,2
STE 6,A(2)
BXLE I,N,LOOP

Enhanced compiler

STE 6,A(I)
BXLE I,N,LOOP

Figure 8 Effect of continuing strength reduction until no more
reductions can be performed. The standard compiler, initially
finding no multiplication strength reductions, has prematurely
terminated addition strength reduction. The enhanced compiler
has combined I and 4 and executed two subsequent multiplica-
tion reductions.

DO 1 I= l ,NMI
1 A(N-I)=A(N-I)*A(N-I+1)

Standard compiler

LR 2,N
SR
SLL 2,2

2,I

LE 6,A+0(2)
ME 6,A+4(2)
STE 6,A+0(2)
BXLE 1,4,LOOP

Enhanced compiler

LE 6,A+O(I)
ME 6,A+4(I)
STE 6,A+O(I)
BXH 1,4,LOOP

Figure 9 Effect of improved strength reduction on an effectively
backwards do-loop.

able in part to problems in the original implementation
and subsequent maintenance and in part to additional re-
ductions which were possible but not programmed.

The standard compiler is prepared to reduce multiplica-
tions, additions, and sometimes subtractions as illus-
trated in Fig. 2 . The figure shows how the reductions are
performed in terms of FORTRAN source language vari-
ables. Usually, however, the reductions are performed
for compiler temporary variables created to calculate sub-
scripts. For example, a subscript A(1.J) on a 10-by-10 array
A, where I is an induction variable and J is a constant,
results in two reductions: the multiplication 4*1 to com-
pute the byte offset corresponding to the subscript I , and
the addition (4*1)+(40*J) to compute the byte offset for the
entire subscript.

I+J is reduced, but the implicit multiplication by 4 which
generates the byte subscript on the array A is not reduced.
This problem has been corrected: reduction now cycles
until no more reductions can be found. Figure 8 gives an
example.

In the standard compiler a number of specific reduc-
tions have been disabled. The disabled cases are distin-
guished by the nature of the operands (variables, con-
stants, compiler temporaries). This was done apparently
to compensate for errors in optimization. Rather than cor-
rect an error in the implementation, the case occasioning
the error was disabled. Almost all instances of sub-
traction reduction disappeared because of this mainte-
nance. It is interesting to note something written by
Lowry and Medlock [3] in 1967: “During debugging there
was a tendency for some optimization features to become
disabled. This disability often went unnoticed since the
test cases still ran correctly.” The problem has been cor-
rected-for now.

With these corrections and certain similar extensions
the compiler quite reliably reduces eligible computations.
One result is that backwards do-loops now generate opti-
mized code. Figure 9 gives an example.

One extension in particular is helpful in making the re-
ductions collapse as illustrated. When a source language
variable is assigned the result of a reduction, the en-
hanced compiler attempts to employ that variable directly
as the new induction variable. For example, in the loop

DO 1 I = I , N

IJ=I+J

IK=I+K

IL=I+L

1 A(IJ)=A(IK)+A(IL)

IJ, IK, and IL are used directly as induction variables when
the I+J , I+K, and I+L additions are reduced. The standard
compiler instead obtains a compiler temporary variable to
implement each reduction; the temporary is assigned into
the source language variable. The enhanced technique
makes further computations with the source language
variable eligible for reduction (because it is now an induc-
tion variable), while the standard technique leaves them

The standard compiler performs multiplication reduc-
irreducible. This change can greatly improve programs in

tions first and addition and subtraction reductions sec- using vectors in place of arrays (and using vector sub-
which the programmer has “simplified” subscripting by

ond. It does not return to multiplication once the others script expressions equivalent to the array subscript ex-

complete. In the loop common expression elimination by hand (techniques very

have been started. Consequently reduction may be in- pressions) or in which the programmer has‘ performed

DO 1 I=I,N
668 I A(I+J)=O.O

often seen especially in older FORTRAN programs). Figure
10 gives an example.

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY IBM J . RES. DEVELOP. VOL. 24 NO 6 NOVEMBER 1980

An attempt is made to reduce the number of duplicate
induction variables required to support inner loops on
parallel execution paths. When an outer loop has more
than one inner loop, these inner loops are separately opti-
mized. If the induction parameters for the inner loops are
identical and if the inner loops have no common preced-
ing loop with these same parameters, then the duplicates
are not detected by common expression elimination. For
a normal expression this usually causes no penalty in exe-
cution: only one instance of the expression will be exe-
cuted since the duplicates are on parallel paths. Strength
reduction, however, generates initializations outside the
loop and incrementations inside the loop which are exe-
cuted regardless of which parallel path is followed. A
strength reduction to support one of the paths therefore
penalizes all of the other paths. Consequently, each new
induction variable created to replace an old induction is
used immediately to replace any duplicates of that old in-
duction on any parallel paths.

An attempt is made to reduce the number of parallel
induction variables generated for the current loop. Paral-
lel induction variables are those which are incremented
by the same number in the same place. They maintain a
constant interval between their values. For example, the
loop

DO 1 I=I ,N

I A(I+J)=A(I+K)+A(I+L)

will contain three parallel induction variables after the ad-
ditions and multiplications have been reduced. If one of
the parallel induction variables is used solely for subscript-
ing, then usually it may be eliminated by one of the oth-
ers. Since the effective address of a subscripted array ele-
ment includes the sum of the subscript variable and the
address constant, a variable may be replaced by another
variable in a subscript if the address constant is modified
by the difference between the two variables. This dif-
ference is constant for parallel induction variables. A new
temporary address constant, equal to the old address con-
stant less the distance between the two induction vari-
ables, is obtained for each array subscripted by the origi-
nal induction variable, and the subscript is replaced with
the parallel induction variable. Figure 1 1 shows an ex-
ample.

Integration of local and global register optimization
The standard compiler performs two register opti-
mizations, local and global, in separate passes over the
program, as previously indicated. Local register opti-
mization attempts to keep the result of each quadruple in
a register until the result is referenced in a following quad-
ruple. The operation performed in that quadruple is exe-
cuted if possible in a register already containing an oper-

IBM J. RES. I 3EVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Standard compiler

LR
AR

I2,I
I2,X2

LR I5 ,I
AR I5,XS
LR 3 ,I2
SLL 3,2
LE 6,A(3)
LR 2,I5
SLL 2,2
STE 6,A(2)
BXLE 1,4,LOOP

DO 1 I=l,N
I2=1+2
I5=1+5

1 A(I2)=A(I5)

Enhanced compiler

LE 6,A+I2(I)
STE 6,A+I5(I)
BXLE 1,4,LOOP

Figure 10 Effect of including source language variables in
strength reduction.

DO 1 I= I ,N
1 A(I+J)=A(I+K)+A(I+L)

Standard compiler

LR
AR

2,I
2,K

SLL 2,2
LE 6,A(2)
LR
AR

2,I
2,L

SLL 2,2
AE 6,A(2)
LR
AR

2,I
2,J

SLL 2,2
STE 6,A(2)
BXLE I,4,LOOP

Enhanced compiler

LE 6,A+K-J(IJ),
AE 6,A+L-J(IJ)
STE 6,A(IJ)
BXLE IJ,4,LOOP

Figure I1 Effect of eliminating parallel induction variables in
strength reduction.

and. Sequences of computations thereby become opti-
mized into a single register, as each intermediate result
becomes an operand of a following quadruple. Global reg-
ister optimization, however, subsequently assigns specif-
ic registers to the most frequently referenced variables
and constants in each loop. When these global variables
appear in local sequences, then the local sequences may
be disrupted. Operands which were optimized into the se-
quence now may have to be accessed in registers outside
the sequence.

A new optimization procedure, called global register
remapping, attempts to recapture the integrity of the local
optimization after global optimization has been per-
formed. It revises those optimized sequences which con-
tain global variable definitions and references to use ei- 669

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY

After After
definition

After local After global
definition

remapping remapping
optimization optimization type 1 type 2

LE 2,A LE 2,A LE 2,A LE 6,A
AE 2,B AE 2,B AE 2,B AE 6,B
AE 2,C AE 2,C AE 2,C AE 6,C
STE 2,Xt LER 6,2t+
tperhaps
ttalways

Figure 12 Effect of definition register remapping on the object
program for X=A+B+C when X is assigned a global register.
Store of X will be generated in local register optimization only if
it is necessary.

After local After global
optimization optimization remapping
LE 2,X LE 2,6 AE 6,B
AE 2,B AE 2,B
AE 2,C

AE 6,C
AE 2,C

STE 2,A
STE 6,A

STE 2,A

Figure 13 Effect of reference register remapping on the object
program for A=X+B+C when X is assigned a global register.

After reference

DO 1 I=I,N
Q=A(I)*B(I)

1 D(I)=C(I)*Q
Standard compiler

LE 2,A(I)
LER 6,2
ME 6,B(I)
LE 2,C(I)
MER 2,6
STE 2,D(I)
BXLE I,4,LOOP

Enhanced compiler

LE O,A(I)
ME O,B(I)
ME O,C(I)
STE O,D(I)
BXLE I,4,LOOP

Figure 14 Effect of global definition and reference register re-
mapping. The standard compiler preserves the value of the vari-
able Q while the enhanced compiler recognizes that the variable
is effectively a temporary.

ther the global registers or the local registers, but not
both, depending on whether the value of the global vari-
able must be preserved. Definitions and references are
treated separately.

Definition register remapping is performed when a
global variable is defined by a locally allocated program
sequence. It attempts to compute the global variable di-

is not necessary to store the result into the variable (be-
cause all references preceding the next definition have
been locally optimized into registers), the result is re-
tained in its local register. If it was not necessary to place
the result into storage, then it is not necessary to preserve
the result in the global register. Second, when local allo-
cation has determined that it is necessary to store the re-
sult into the variable, the sequence which computes the
variable is moved from the local into the global register.
The quadruples are searched backward to find the begin-
ning of the sequence-a quadruple which computes the
local register but in which neither source operand is resi-
dent in the register before computation. If an exceptional
condition is detected, then the sequence (including the
load from the local into the global register) is retained in
the local register. The most common exceptional condi-
tion is a reference to the global variable itself during the
computation (the computation cannot be moved into the
global register because the computation would destroy
the variable before the reference). If no exceptional con-
ditions prohibit remapping, then the sequence is moved
into the global register.

Reference register remapping is performed when a
global variable is referenced in a locally allocated pro-
gram sequence. It attempts to perform the computation
which references the global variable in the register con-
taining the global variable in order to avoid a load-register
instruction preceding the computation. Figure 13 contains
an example.

Reference remapping is not always possible and is of-
ten not necessary. It is not necessary when the global var-
iable is being retained in the locally allocated register as a
result of the first kind of definition remapping. It is not
necessary when the result of the quadruple referencing
the global variable has been locally optimized into a regis-
ter different from that containing the global variable. It is
not possible if it is not permissible to destroy the value of
the global variable because it will be referenced before it
is redefined. When reference remapping is performed, the
quadruples are searched forward to find the beginning of
the next sequence using the local register-a quadruple
which computes the local register but in which neither
source operand is resident in the register before computa-
tion. The quadruples are then searched backward to find
the beginning of the current sequence. The sequence is
then moved from the local into the global register.

rectly into the register in which it will be retained in order
to avoid a load-register instruction following the compu-
tation. Figure 12 contains an example.

Figure 14 gives an example showing both definition and
reference remapping.

Using linkage registers for other purposes
Definition remapping is accomplished in one of two After all of the register optimization procedures have

670 ways. First, when local allocation has determined that it been executed, certain general purpose registers may be

RANDOLPH G . SCARBOROUGH AND HARWOOD G. KOLSKY IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

completely unused even though there remain variables
and constants which could be maintained in registers.
There are two reasons for this. First, under Systemi370
conventions, registers 14, 15,0, and 1 are used as subrou-
tine linkage registers. The FORTRAN compiler reserves
them for this purpose, using them also as temporary regis-
ters for address constants, subscripts, and computations
which were not optimized into registers by the register
optimization routines. In loops which do not call subrou-
tines, these registers may be unused. Second, registers
allocated during local optimization may be freed of all ref-
erences as a result of global optimization and global re-
mapping. When a computation which was assigned regis-
ters by local allocation involves variables which later are
assigned registers by global allocation, it is possible that
global remapping may move the entire computation from
the local registers into the global registers. If all refer-
ences to a register are remapped, then the register be-
comes unused.

A new optimization procedure, called global register
scavenging, attempts to recover these unused registers.
Global register scavenging allocates any unused general
registers to those address constants which are not already
allocated registers. (We did not have time to make the
registers available for more general optimization.) Quad-
ruples referencing the constants are changed to reflect the
global register allocations. This eliminates a register load
for each reference to the selected constants.

Removul of unnecessury globul register initiulizutions
Global register optimization, once it has decided which
variables and constants will be allocated global registers,
inserts quadruples to initialize the registers with the se-
lected variables and constants. These quadruples are in-
serted automatically at two locations. First, they are in-
serted outside the loop for each global variable which is
busy on entrance into the loop. Second, they are inserted
within the loop at each exit from any nested inner loop for
each global register used differently in that inner loop.
The first initialize the register; the second reinitialize the
register after its destruction in an inner loop. In both cas-
es, however, it is possible that the variable in the register
is never referenced before the register is initialized, as
part of the processing performed by the current loop in
preparation for an inner loop, with a different variable
which is a global variable in a global register for that nest-
ed inner loop.

Unnecessary initializations are most likely to arise as
an effect of two common programming structures. First,
in a set of nested loops the first statement in each nested
loop may be the initialization for the next nested inner
loop. The initialization usually consists of loading the
global registers for the inner loop. The global registers

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER IY80

prepared for the loop at each level are destroyed immedi-
ately when that loop prepares the global registers for the
next inner loop. Second, in a loop which contains a se-
quence of several inner loops, the statement following
each inner loop may be the initialization for the next inner
loop. The global registers reinitialized for the current loop
on exit from the preceding inner loop are destroyed im-
mediately when the current loop initializes the global reg-
isters for the succeeding inner loop.

A new optimization procedure, called global register
purging, attempts to locate and eliminate such unrefer-
enced initializations.

Reduced number of registers reserved for brunching
The standard compiler reserves from two to five general
purpose registers for addressing the code and data in an
object program. Registers reserved for addressing the
program cannot be used for optimizing the program.
There are only 16 general purpose registers. Four of these
are reserved as linkage registers (although they may be
recovered, as described above, by global register scav-
enging). Reserving five of the remaining 12 leaves only
seven registers for optimization.

A new optimization procedure, called section-oriented
branch optimization, implements branches with direct
branch instructions without requiring that the entire ob-
ject program be addressable with a fixed group of address
registers. Two or three registers, depending on program
size, are reserved as program address registers. If the en-
tire program can be spanned by the reserved address reg-
isters, then all branches are implemented immediately
with direct branches. Otherwise two registers are re-
served to address the front end of the program (this is
necessary because of the internal structure of the object
program). Branches to this part of the object program are
implemented with direct branches. Branches to the re-
maining part of the object program are implemented with
section-oriented branch optimization. That remaining
part of the object program is divided into sections each of
which is separately addressable with a single address reg-
ister. The third reserved address register is used to hold
the address of the currently executing section. The initial
statement in each section is modified to load the section
address register with the address of the section. Branches
into a section are implemented with a load of the section
address for the section containing the branch target fol-
lowed by a direct branch to the branch target. Branches
within a section, however, which are far more common
than branches between sections, are implemented simply
with direct branches.

The gain in register optimization should exceed the cost
of the section address loading. A very large subroutine 671

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY

DO 1 I=I,N
ZR=ZR+AR(I)*BR(I)-AI(I)*BI(I)

1 ZI=ZI+AR(I)*BI(I)+AI(I)*BR(I)

Standard compiler Enhanced compiler

LE
STE
LE
STE
MER
AE
LE
STE
LE
STE
LER
MER
SER 4,O
STE 4,ZR

LE
ME
AER
LE
ME
SER
LE
ME
AER
LE
ME
AER
BXLE I,4,LOOP

LE 4,TEMPl
MER 4,6
AE
ME 2,TEMP4

4,ZI

AER 2,4
STE 2,ZI
BXLE 1,4,LOOP

Figure 15 Effect of not using temporaries to eliminate duplicate
array elements. The standard compiler generates temporaries for
each of the duplicate array references and maintains ZR and ZI
in storage. The enhanced compiler retains ZR and ZI in registers
and generates no stores within the loop.

(1321 executable source cards) from a weather model was
compiled both'with and without section-oriented branch
optimization (all other optimizations were performed).
Section-oriented branching reduced the num6er of gener-
al register fetches and stores in the program from 1976 to
1707 (a 15% reduction) and the number of branch target
address constants from 219 (for the branch targets not
spanned by the five reserved registers) to 6 (one for each
of six sections).

Minor optimization improvements

C(7,M,N), for example, all constants except those in the
rightmost dimensions (the N dimensions) of B and c are
eligible for extraction.

Improvements in common expression elimination
In commoh expression elimination, in order to reduce
compiler processing, searches for duplicate computations
were arbitrarily restricted. Only the preceding 2.5 ex-
ternally or internally labeled statements on the main line
execution path were searched to locate a duplicate for a
quadruple. This limit has been removed.

A problem involving duplicate references to a sub-
scripted array element was corrected. The compiler ob-
tains an internal temporary variable to pass the result of a
duplicate computation between its initial and its sub-
sequent occurrences. The subscripting of an array in-
volves at least two quadruples and is treated as an ex-
pression subject to elimination so that larger expressions
such as 2*A(I) can be detected and eliminated. When the
subscript itself is the only common expression, the opti-
mization causes the array element to be fetched into a
temporary and the temporary to be referenced in place of
the original array element. This is an improvement if the
temporary is globally allocated a register because a fetch
will have been saved for each reference to the array ele-
ment. Usually, however, registers are scarce and the tem-
porary must be stored. Therefore this optimization often
results in decreased performance. Consequently the en-
hanced compiler does not allocate a temporary to elimi-
nate a duplicate array subscript. Figure 1.5 shows an ex-
ample of the difference this can make.

Improvements in backward movement
The standard compiler does not compute negative con-
stant numbers. Instead, when a negative constant is
needed, it generates a positive constant and compiles the
instructions necessary to load it and complement it during
execution. This has been changed so that the negative
value is computed during compilation.

A number of refinements were implemented i n the exist-
ing optimization procedures during the project. These re-
finements were triggered by observed problems in the ob-
ject programs. The problems were solved with simple
changes (sometimes requiring extensive rewriting) to the
existing optimization procedures.

Improvements in local register optimization
When no register is available for the result of a quadruple,
then a variable must be displaced from a register into stor-
age. The standard compiler chooses the variable already
fn a register which is least heavily referenced in the local
group of source statements undergoing optimization. This

Improvements in subscript computation can severely degrade optimization in some cases. The en-
Numeric constants employed in subscript expressions are hanced compiler chooses instead the variable whose defi-
now extracted into an aggregate constant subscript for nition is farthest backward from the location where the
arrays with variable dimensions as well as for arrays with register is required. This choice makes a register avail-
constant dimensions. Only the latter are eligible in the stan- able for other optimizations for the longest possible time.
dard compiler. Constants are extracted in leading con-
stant dimensions and in the initial variable dimension. When a variable is displaced from a register into stor-

672 With the dimension declarations A(N), B(M,N), and age, quadruples already optimized on the assumption that

RANDOLPH G. SCARBOROUGH AND HARWOOD G . KOLSKY 1BM 1. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER I980

it is in a register may no longer be correctly optimized.
The standard compiler ignores this. The enhanced com-
piler reprocesses the quadruples with the knowledge that
the displaced variable must be fetched from storage.

All four floating-point registers, rather than just three,
are eligible for optimization.

Improvements in global register optimization
When a variable is computed immediately preceding an
inner loop and is allocated a global register for that inner
loop, an attempt is made to compute the variable directly
into its global register for the inner loop.

An attempt is made to allocate, as a global register for a
variable or constant in an outer loop, that register which
has been most frequently allocated to it in any nested in-
ner loops.

A better estimate is made of the utility of having each
variable and constant in a global register. The standard
compiler basically counts each reference to a variable or
constant equally. The enhanced compiler counts 0, 1, or 2
depending on whether the reference is already a register
reference as a result of local allocation, whether the refer-
ence would be changed from a storage reference to a reg-
ister reference if the variable were in a global register, or
whether an entire machine instruction would disappear if
the variable were in a global register.

A better estimate is made of the utility of reserving reg-
isters for branch-on-index instructions. Branch-on-index
instructions increment a variable by a constant, compare
the variable to a limit, and branch if the variable is less
than or equal to (BXLE) or higher than (BXH) the limit. This
is exactly what is required to implement a do-loop. A
branch-on-index instruction requires three registers but
replaces three (add, compare, branch) or five (load, add,
store, compare, branch) instructions. The standard com-
piler allocates registers to variables strictly in order of
utility. If the three components of the branch-on-index
instruction are in registers after all registers are allocated,
then the branch-on-index instruction is generated. The
enhanced compiler instead tentatively reserves the three
registers for the instruction. When a variable requires a
register, when no other registers are available, and when
any components of the branch-on-index instruction have
not yet been chosen because their utilities are individually
less than that of the variable under consideration, then a
choice is made: if the aggregate utility of the remaining
branch components, augmented by an increment to repre-
sent the improvement effected by the branch-on-index in-
struction itself, exceeds that of the variables which would
be allocated registers based solely on individual utility,

IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Table 2 Instructions compiled for the innermost loops of sub-
routine HARM. Only instructions within the loops, not instruc-
tions initializing the loops, are included.

DO-loop Standard Enhanced Ratio
label compiler compiler EnhlStd

DO 19
DO 50
DO 80
DO 85
DO 220
DO 850
DO 892
DO 940
DO 970

15
20
73
88

106
38
7

20
9

8
13
50
62
79
34
4
9
4

0.53
0.65
0.68
0.70
0.75
0.89
0.57
0.45
0.44

then the registers are preserved for the branch-on-index
instruction. Otherwise they are broken apart and given to
the other variables.

Measurements of improved optimization
The improvement in performance resulting from the im-
provement in optimization varies widely. There are at
least two reasons for this. First, the improvement in opti-
mization can vary within each program and from program
to program. A demonstration is given in Table 2 . The
table shows the number of instructions compiled by the
old and new compilers for each innermost do-loop of sub-
routine HARM (the fast Fourier transform program in the
IBM Scientific Subroutine Package). The percentage of
instructions eliminated by the enhanced optimization
ranges from 1 1 to 56 percent. Other programs show other
distributions. In some loops compiled by the standard
compiler no instructions can be eliminated, so no im-
provement is seen.

Second, the improvement in performance varies for a
given program from machine to machine. Table 1, which
compared the instructions executed in a plasma physics
program compiled by three compilers, reveals why. Im-
provement in optimization not only reduces the number
of instructions executed, it also changes the nature of the
instructions executed. While the number of fixed-point in-
structions diminishes rapidly with the improvements in
optimization, the number of floating-point instructions re-
mains relatively constant. The optimizers are purging the
subscripting and loop-control operations supporting the
floating-point computations which perform the real work
of the program. Therefore the improvement in perforrn-
ance is most apparent on machines whose floating-point
operation times are relatively fast with respect to their 673

RANDOLPH G. SCARBOROUGH AND HARWOOD G . KOLSKY

674

RANDOLPH

Table 3 Improvement in execution CPU time produced by the enhanced optimizer on different processors. The table entries are the
execution times for the programs compiled under FORTRAN H Extended at its highest optimization level, O€’T(2), divided by the
execution times for the programs compiled under FORTRAN H Enhanced at its highest optimization level, OpT(3).

Program description Model 145 Model I58 Model 168 Model I95

Evaluation of E 1.02 1.02 1.12 1.08
Evaluation of PI 1.02 1.02 1.12 1.08
Eigenvalues and eigenvectors 1.08 1.13 1.14 1.48
Discrete Fourier transform 1.13 1.19 1.19 1.16
Directed graph analysis 1.01 1.05 0.99 1.03
Polynomial synthetic division 1.04 1.05 1.11 1.15
Least-squares solution 1.12 1.36 1.16 1.59
Least-squares solution 1.13 1.33 1.16 1.61
Matrix inversion 1.14 1.31 1.23 1.39
Integration of equations 1.05 I .07 1.11 1.21
Polynomial least-squares 1.05 1.10 1 .OS 1.28
Integer sort 1.06 1.08 1.06 1.08
Plasma physics experiment 1.17 1.19 1.29
Weather model 1.14 1.32 1 S O

Table 4 Improvement in compilation and execution CPU time
produced by the enhanced optimizer on customer programs. Ra-
tios are FORTRAN H Extended OPT(2) times divided by FOR-
TRAN H Enhanced OPT(3) times. All runs were on Model 168s.

Compile Execute
ratio ratio

Customer “A”
Job 1 (data analysis) 1.42 1.09
Job 2 (8 subroutines) 1.52 1.12
Job 3 (33 subroutines) 1.21 1.12
Job 4 (heavy trig functions) 1.12 1.27
Job 5 (partly under H Extended) 1.36 1.24
Job 6 (macro preprocessor) 1.14 1.36

Customer “B”
Job 1 (geometry fitting)
Job 2 (Monte Carlo)
Job 3 (geometry fitting)
Job 4 (matrix inversion)

Customer “C”
Job 1 (37 subroutines)

Customer “D”
Job 1

Customer “E”
Job 1

1.60 1.15
1.64 1.09
0.94 I .05
1.80 1.56

1.48 1.46

1.27 1.64

1.48 1.21

fixed-point operation times. For the plasma physics pro-
gram, with its 35% reduction in instructions executed, the
improvements were 17%, 1%, and 2% on System/370
Models 145, 158, and 168 (with high-speed multiply), re-
spectively.

Programs representing a variety of scientific and math-
ematical computations were timed on several processors.

These timings were made under the VW370 operating sys-
tem while the machines were under no more than a mod-
erate load, except for the Model 195 timings which were
made under OW360 on a heavily loaded machine. These
programs make little use of the FORTRAN library and the
original library was used in all cases. Table 3 summarizes
the improvement in performance. Information received
about the performance of the improved optimization (both
compiler and library) on customer programs is reported in
Table 4.

Optimization of the FORTRAN library
The goal of the enhanced library is to reduce the number
of instructions which must be executed to evaluate a
mathematical function or to convert a data item between
external and internal representations. The most com-
monly used mathematical functions and the formatted in-
put and output conversion routines have been optimized.
Internal linkage instructions not necessary to the mathe-
matical computation or data item conversion have been
removed, and instructions within the computation or con-
version have been refined so that the same results are pro-
duced by fewer operations.

The effect of the enhancements on the mathematical li-
brary is indicated by Table 5. The table shows the number
of instructions required to execute various common
mathematical functions. The count includes only instruc-
tions in the library functions; instructions (usually three)
in the calling program are excluded.

The effect of the enhancements on the input-output li-
brary is indicated by Table 6. The table shows the number
of instructions required to execute various common data

G. SCARBOROUGH AND HARWOOD G. KOLSKY IBM J. RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

element conversions. The counts record the processing
for a single array element in an array read or write [for
example ~ (3) in ‘WRITE (6,9) (A (I) , I = I , ~) ? or ’WRITE (6,9) A’].

Faster compiler processing
The third goal of the project was to make the compiler
itself faster. Once all the new optimizations were com-
plete, the compiler was monitored as it compiled a group
of programs. Each spot consuming one percent or more
of the compilation time was reviewed.

Many of these were small loops which could be written
better for speed. In other spots simple equivalent proce-
dures could save time. These latter typically involved the
creating, searching, or sorting of linked lists.

Huge improvements were possible in several places.
For example, over one-third of the compilation time in
programs with large numbers of labeled statements was
spent in a single compiler procedure. This procedure is
given a list, the forward connection table, which records
which statements are reached from each statement in the
program. It inverts the list to produce another list, the
backward connection table, which records which state-
ments branch to each statement in the program. The origi-
nal algorithm searches the forward connection table once
for each labeled statement in the program. The new al-
gorithm searches it four times.

Similarly, much time was spent determining where
each variable was busy in the program. This was done by
tracing the flow of the program for each variable eligible
for optimization. The compiler now processes 32 vari-
ables (convenient because of the logical register opera-
tions) at a time.

Improved algorithms also were written for analyzing
the structure of the program and selecting each loop for
processing.

As a result of these changes, the new compiler usually
is faster than the old even though it does more opti-
mization. Table 7 compares the compilation times for a
batch of programs. Note that the compiler usually is
faster than FORTRAN G1 as well.

Concluding remarks
The new optimizations and the other enhancements dis-
cussed in this paper were developed as part of a prag-
matic approach directed toward a pragmatic goal-to
compile perfect inner loops. This approach has been very
successful in increasing the performance of application
programs. It has produced a faster compiler, a faster li-
brary, and faster object programs.

BM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

Table 5 Comparison of standard and enhanced mathematical
libraries. Table entries are the number of instructions required in
the library to execute the indicated function when X =
1.23456789 and Y = (1.23456789, 1.23456789) (counts for other
arguments may vary slightly). Overhead to invoke the function is
excluded.

Function Single precision Double precision

Standard Enhanced Standard Enhanced

SIN(X)
COS(X)
EXP(X)
LOG(X)
SQRTW)
x * * x
Y*Y complex
Y/Y complex

47
48
53
49
36

131
29
46

31
32
45
35
27
81
13
25

54
54
65
55
42

151
29
46

38
37
47
41
33
89
13
25

Table 6 Comparison of standard and enhanced data element
conversion. Table entries are the number of instructions required
in the library to process one array data element under the in-
dicated format (counts may vary slightly with data element val-
ues). Processing for the initiation of format conversion and the
execution of the input/output transfer is excluded.

Format Input conversion Output conversion

Standard Enhanced Standard Enhanced

A8 45 15 44 13
I8 220 34 130 28
F8.3 (real*4 data) 305 110 246 116
F8.3 (real*8 data) 316 132 259 135

Table 7 Comparison of compilation CPU time for three com-
pilers. Times are in seconds. A single program containing 20 187
cards (14 716 excluding comments) which implement 101 subrou-
tines was compiled. Times were taken on a Model 145 under VM/
370 with compiler parameters appropriate for interactive com-
puting.

Optimization FORTRAN GI H Extended H Enhanced

O ~ (0) 655 354 210
OPT(1) 529 272
OPT(2) 732 370
0 ~ 3) 402

The development of these improvements was aided by
a powerful interactive programming environment: VW370

and its Conversational Monitor System (CMS). 675

RANDOLPH G. SCARBOROUGH AND HARWOOD G. KOLSKY

The compiler optimization enhancements are written
primarily in FORTRAN. The compiler currently contains
27 415 FORTRAN and 16 271 assembler lines of code, ex-
cluding comments. All of the new optimization logic is
written in FORTRAN; assembler is used only for bit manip-
ulation. Overall 9661 lines of FORTRAN source code but
only 1483 lines (most outside the optimizer) of assembly
source code are new or modified programming. (The FOR-

TRAN language implemented in the compiler is augmented
by some in-line functions for shifting, masking, and bit
manipulation and by a STRUCTURE statement which, like
an assembly DSECT or a P U I BASED structure, provides
overlays on storage.) The compiler which is shipped as a
product has been compiled under itself at its highest level
of optimization.

Cited and general references
1. IBM System1360 and System1370 FORTRAN IV Language,

Order No. GC28-6515, available through the local IBM
branch office.

2. J . W. Backus, R. J. Beeber, S. Best, R. Goldberg, L. M.
Haibt, H. L. Herrick, R. A. Nelson, D. Sayre, P. B. Sheri-
dan, H. Stem, I. Ziller, R. A. Hughes, and R. Nutt, “The
FORTRAN automatic system,” Proc. Western Joint Com-
puter Conf. 11, 188-198 (1957). Reprinted in Programming
Systems and Languages, S. Rosen, Ed., McGraw-Hill Book
Co., Inc., New York, 1967, pp. 29-47.

3. E. S. Lowry and C. W. Medlock, “Object Code Opti-
mization,” Commun. ACM 12, 13-22 (1969).

4. IBM System1360 OS FORTRAN IV (H Extended) Compiler
Programmer’s Guide, Order No. SC28-6852; IBM FOR-
TRAN IV (H Extended) Compiler and FORTRAN Library
(Mod I I) for OS and VMl370 (CMS) Installation Reference
Material, Order No. SC28-6861; available through the local
IBM branch office.

5. IBM System1360 FORTRAN IV Library Mathematical and
Service Subprograms, Order No. GC28-6816, available
through the local IBM branch office.

6. FORTRAN H Extended Optimization Enhancement IUP
No. 57%-PKR, Order No. SH20-2100 (Sept. 1978), available
through the local IBM branch office.

676

7. P. Lykos and J. White, “An Assessment of Future Com-
puter System Needs for Large-Scale Computation,” Tech.
Memo. 78613, NASA, Washington, DC 20546, 1980.

8. J . Gazdag, “Numerical Solution of the Vlasov Equation with
the Accurate Space Derivative Method,” J . Comput. Phys.

9. A. V. Aho and J. D. Ullman, “The Theory of Parsing, Trans-
lation, and Compiling,” Prentice-Hall, Inc., Englewood
Cliffs, NJ, Vol. I, 1972, Vol. 11, 1973.

10. F. E. Allen and J. Cocke, “A catalogue of optimizing trans-
formations,” Design and Optimization of Compilers, R.
Rustin, Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ,

11. F. E. Allen, “Program optimization,” Annual Review in Au-
tomatic Programming, Vol. 5, Pergamon Press, Inc., Elms-
ford, NY, 1969, pp. 239-307.

12. T. E. Cheatham, Jr., “The Theory and Construction of
Compilers,” Computer Associates, Wakefield, MA, 1967.

13. J. Cocke and J. T. Schwartz, “Programming Languages and
Their Compilers: Preliminary Notes,” Courant Institute of
Mathematical Sciences, New York, 1970.

14. R. W. Floyd, “The syntax of programming languages-a
survey,” IEEE Trans. Electron. Computers EC-13, 346-353
(1964). Reprinted in Programming Systems and Languages,
S. Rosen, Ed., McGraw-Hill Book Co., Inc., New York,
1967.

15. D. Gries, Compiler Construction for Digital Computers,
John Wiley & Sons, Inc., New York, 1971.

16. D. E. Knuth, The Art of Computer Programming, Volume I :
Fundamental Algorithms, Addison-Wesley Publishing Co.,
Inc., Reading, MA, 1968.

17. P. M. Lewis 11, D. J. Rosenkrantz, and R. E. Steams, Com-
piler Design Theory, Addison-Wesley Publishing Co., Inc.,
Reading, MA, 1976.

19, 77-89 (1975).

1972, pp. 1-30.

Received April 3, 1980; revised June 17, 1980

The authors are located at the IBM Palo Alto ScientiJic
Center, 1530 Page Mill Road, Palo Al to , Cal(fiwniu
94304.

1 RANDOLPH G . SCARBOROUGH AND HARWOOD G . KOLSKY IBM J . RES. DEVELOP. VOL. 24 NO. 6 NOVEMBER 1980

