
Lazy Strength Reduction�Jens Knoop y Oliver R�uthing y Bernhard Ste�en zAbstractWe present a bit-vector algorithm that uniformly combines code motion and strengthreduction, avoids superuous register pressure due to unnecessary code motion, and is ase�cient as standard unidirectional analyses. The point of this algorithm is to combine theconcept of lazy code motion of [1] with the concept of unifying code motion and strengthreduction of [2, 3, 4]. This results in an algorithm for lazy strength reduction, which consistsof a sequence of unidirectional analyses, and is unique in its transformational power.Keywords: Data ow analysis, program optimization, partial redundancy elimination, codemotion, strength reduction, bit-vector data ow analyses.1 MotivationCode motion improves the runtime e�ciency of a program by avoiding unnecessary recom-putations of a value at runtime. Strength reduction improves runtime e�ciency by reducing\expensive" recomputations to less expensive ones, e.g., by reducing computations involvingmultiplication to computations involving only addition. Common to both techniques is replac-ing the original computations of a program by auxiliary variables (registers) that are initializedat suitable program points. In the case of strength reduction, they are additionally updatedat certain points. The similarity between strength reduction and code motion suggests thecombination of both techniques, an idea which was �rst realized by an algorithm of Joshi andDhamdhere [2, 3] that enhances the code motion algorithm of Morel and Renvoise [5] to capturestrength reduction.In this paper we combine Joshi and Dhamdhere's approach with the idea of lazy code mo-tion presented in [1]. This results in an algorithm for lazy strength reduction, which uniformlycombines code motion and strength reduction, and avoids any unnecessary register pressure. Infact, in contrast to previous algorithms, it does not insert multiplications and additions on thesame path, minimizes the lifetimes of moved computations, and limits the insertion of multipleadditions on a path to a minimum. Moreover, as our algorithm is composed of a sequence ofunidirectional bit-vector analyses, it is as e�cient as the standard unidirectional analyses (cf.[6, 7, 8, 9, 10, 11, 12, 13, 14, 15]), which drastically improves on the results about the originalbidirectional algorithms of [2, 3, 4].The illustration of the essential new features of our algorithm requires a rather complexprogram structure. In the example of Figure 1, which is a slight modi�cation of an exampleof [3], our lazy strength reduction algorithm is unique in yielding the result shown in Figure 2.This transformation is exceptional for the following reasons: It replaces the multiplications of�In Journal of Programming Languages 1 , 1 (1993), 71 - 91.yInstitut f�ur Informatik und Praktische Mathematik, Christian-Albrechts-Universit�at, Preu�erstra�e 1-9,D-2300 Kiel 1, Germany. Part of the work was done while the �rst author was supported by the DeutscheForschungsgemeinschaft grant La 426/9-2. The second author is supported by the Deutsche Forschungsgemein-schaft grant La 426/11-1.zLehrstuhl f�ur Informatik II, Rheinisch-Westf�alische Technische Hochschule Aachen, Ahornstra�e 55, D-5100Aachen, Germany. 1

i � 10 at node 13 and 14 by moving them to node 7 and 8 and inserting a single addition atnode 9. In the \right" part of the loop this reduces the original multiplications to an addition.Furthermore, it does not touch the computation of i � 10 at node 21 that cannot be movedpro�tably. The example will be discussed in more detail during the development of the paper.1 ?2 3?
 	6��?4 i := i+ 1 5 6 i := i+ 5
 �? ? 	�?7 8 9
 �? ? 	�?10 11 12 i := i+ 2
� �?

	�?
 �?
��?

13 a := i � 10 14 b := i � 10 15 i := i+ 1	�?
�? 	�?
6

16 i := m=l 17 m := m � l	

6

	�? ?
 	618 i := i+ 319 i := m � l?20 ?21 c := i � 10?22
	

� �?

Figure 1: The Motivating ExampleRelated WorkThe point of Morel and Renvoise's code motion algorithm [5] is to place computations as earlyas possible in a program, while guaranteeing that every inserted computation is used on everyterminating program path leaving the insertion point. In order to capture strength reduction,2

1 ?2 3?
 	6��?4 i := i+ 1 5 6 i := i+ 5
 �? ? 	�?7 h := i � 10 8 h := i � 10 9 h := h+80
 �? ? 	�?10 11 12 i := i+ 2
� �?

	�?
 �?
��?

13 a := h 14 b := h 15 i := i+ 1	�?
�? 	�?
6

16 i := m=l 17 m := m � l	

6

	�? ?
 	618 i := i+ 319 i := m � l?20 ?21 c := i � 10?22
	

� �?

Figure 2: The Lazy Strength Reduction TransformationJoshi and Dhamdhere's algorithms [2, 3, 4] allow the values of inserted computations to beupdated before their use by the addition of constants, while maintaining the strategy of placingcomputations as early as possible. This strategy, however, moves computations even if it isunnecessary, i.e., there is no runtime gain, and therefore causes superuous register pressure,which is a major problem in practice.1Recently the problem of unnecessary code motion was addressed in [1], where an algorithmfor lazy code motion was presented. In contrast to all previous code motion algorithms (cf.[17, 18, 19, 20, 5, 21]), this algorithm places computations as late as possible in a program,while maintaining computational optimality.2 It is unique in that it avoids any unnecessary1In [16] unnecessary code motion is called redundant.2Here, computational optimality means that a program cannot be improved by means of semantics preservingcode motion (see [1] for details). 3

code motion, and therefore any unnecessary register pressure.There are also other, conceptually di�erent, approaches to strength reduction. For examplethe algorithms of [22, 23, 24] are restricted to loops and require explicit detection of inductionvariables. Thus, in the example of Figure 1 they would not do anything, since i is not aninduction variable (cf. [25]). In contrast, the semantically based algorithm for code motionand strength reduction of [26] works for arbitrary program and term structures, but does notcapture the laziness e�ect. This also holds for the (signi�cantly di�erent) approach of [27, 28, 29],namely �nite di�erencing, whose major achievement is the generalization of strength reductionto nonnumerical applications.Structure of the PaperAfter the preliminary de�nitions in Section 2, and a brief summary of the basic version of thecode motion algorithm of [1] together with its extension to strength reduction along the lines of[2] in Section 3, we arrive at the central Section 4, where the lazy strength reduction algorithmis developed. This development is split into three steps which successively enhance the power ofthe algorithm by adding new predicates that guarantee new properties of the resulting program.The paper closes with Section 5 containing our conclusions.2 PreliminariesWe consider terms t 2 T, which are inductively built of variables x 2 V, constants c 2 C,and operators op 2 Op. As usual, we represent an imperative program as a directed owgraphG=(N;E; s; e) with node set N and edge set E. Nodes n 2 N represent assignments of theform x := t. Edges (m;n) 2 E denote the nondeterministic branching structure of G.3 s ande denote the unique start node and end node of G, which are both assumed to represent theempty statement skip and not to possess any predecessors and successors, respectively. Everynode n 2 N is assumed to lie on a path from s to e. Finally, succ(n)=df fm j (n;m) 2 E gand pred(n)=df fm j (m;n) 2 E g denote the sets of all immediate successors and predecessorsof a node n, respectively.Candidate Expressions for Strength ReductionWe demonstrate our approach of uniformly combining lazy code motion and strength reductionby means of the classical application of strength reduction, which reduces multiplications toadditions. Therefore, we assume two binary operators, + and �, in Op, which we interpreteas ordinary addition and multiplication, respectively. Terms of the form v � c with v 2 V andc 2 C are called candidate expressions for strength reduction, because they may give rise to atransformation that eliminates the multiplication. In the following we will develop our algorithmfor an arbitrary but �xed candidate expression v�c, which allows us to keep our notation simple.Use, Transparency, and SR-TransparencyFor every node n � x := t we de�ne three local predicates indicating, whether v � c is used ormodi�ed by the assignment of node n. Here, SubTerms (t) denotes the set of all subterms of t,e.g., SubTerms (a+ ((v � c)� b))= f a; v; c; b; v � c; (v � c)� b; a+ ((v � c)� b) g.43We do not assume any structural restrictions on G. In fact, every algorithm computing the �xed-pointsolution of a unidirectional bit-vector data ow analysis problem may be used to compute the predicates involvedin the lazy strength reduction transformation (cf. [25]). However, application of the e�cient techniques of[6, 7, 8, 9, 10, 11, 12, 13, 14, 15] requires that G satis�es the structural restrictions imposed by these algorithms.4Flowgraphs composed of basic blocks can be treated entirely in the same fashion by replacing the predicateUsed by the predicate Antloc (cf. [5]), indicating whether the computation of t is locally anticipatable at node4

� Used (n)=df v � c 2 SubTerms (t)� Transp (n)=df x 6� v� SR-Transp(n)=df Transp (n) _ t � v + d with d 2 CIn addition to Transp, the predicate SR-Transp is also valid at those nodes where the e�ectof an assignment on the value of v � c can be dealt with by means of an update assignmentcommon to strength reduction (cf. Section 3.2). Such nodes will be indicated by the predicateInjured .5 Additionally, we de�ne a function E� : N!! by8n 2 N: E� (n)=df (c � d if Injured (n) with n � v := v + d0 otherwisewhich provides the amount of updating that is necessary in order to pass node n.6Inserting Synthetic NodesIn order to exploit the full power of our algorithm for lazy strength reduction, we assume thatin the owgraph G to be considered from now on, every edge leading to a node with morethan one predecessor has been split by inserting a synthetic node.7 Inserting synthetic nodes iscommon for code motion optimizations (cf. [17, 16, 18, 19, 1, 20, 31, 32, 26]) and discussed inmore details in Section A.1.3 Simple Strength ReductionIn this section we present a simple algorithm for strength reduction, which evolves straightfor-wardly as a uniform extension of the basic version of the code motion algorithm of [1]. Section3.1, therefore, recalls the essentials of this code motion algorithm, while Section 3.2 presentsthe modi�cations to capture strength reduction, and Section 3.3 presents a discussion of thede�ciencies of simple strength reduction.3.1 Code Motion: Down-Safety and EarliestnessThe point of the basic version of the code motion algorithm of [1] is to place computationsas early as possible within a program while maintaining its semantics. This is achieved bymoving computations to program points where they are down-safe and earliest. Intuitively,down-safe means that the inserted value is used on every terminating program path startingwith the insertion point. This guarantees that the program semantics is preserved,8 and earliestmeans that a placement at an \earlier" position would either not be down-safe or would notalways deliver the required value. This is su�cient in order to guarantee that the number ofcalculations at runtime cannot be reduced any further by means of a safe placement. Clearly,the code motion transformation, which we apply to the candidate expression v � c here, worksfor arbitrary program terms.n. 5In the terminology of [14], assignments of the form v := v+ d do not kill the value of v � c, but injure it, i.e.,establishing the new value of v � c requires only a \small", cheap to perform modi�cation of the current value.In [30] the term wounded is used instead of injured.6Note that for any node n satisfying Injured the value E� (n) can be computed at compile time, since c andd are both constants in C.7In order to keep the presentation of the motivating example simple, we omit synthetic nodes that are notrelevant for the lazy strength reduction transformation.8In particular, a down-safe placement does not change the potential for runtime errors, e.g., \division by 0"or \overow". 5

3.1.1 Down-Safetyv � c can safely be placed at the entry of a node n 2 N , if it is used on every terminatingprogram path starting with n before v is modi�ed. These down-safe computation points forv�c are characterized by the greatest solution of Equation System 3.1, which speci�es a backwardanalysis of G.9Equation System 3.1 (D-SAFE)D-SAFE(n) = 8>><>>: false if n=eUsed (n) _ (Transp (n) ^ Qm2succ(n)D-SAFE(m)) otherwise3.1.2 EarliestnessPlacing computations as \early" as possible is su�cient to obtain computationally optimal pro-grams, i.e., programs that cannot be further improved by means of a safe placement (cf. [1]).The program points enjoying the earliestness property are characterized by the least solution ofEquation System 3.2, which is obtained by means of a forward analysis of G. Here, D-SafeCM 10denotes the greatest solution of Equation System 3.1.Equation System 3.2 (EARLIEST)EARLIEST(n) = 8>>>>>><>>>>>>: true if n= sPm2pred(n)(:Transp (m) _(:D-SafeCM(m) ^ EARLIEST(m))) otherwiseLet EarliestCM denote the least solution of Equation System 3.2, which is based upon thefollowing intuition (cf. Section A.2 for an illustration). A placement of v � c at the entry of anode n is \earliest" if there is a path from s to n on which any prior computation of v � c� would not provide the same value as in n due to a subsequent modi�cationor� would not be down-safe.3.1.3 The Code Motion TransformationDenoting the program points satisfying both D-SafeCM and EarliestCM by InsertCM, thefollowing three-step procedure results in a computationally optimal program, i.e., in a programthat cannot be improved by means of a safe code motion transformation for v � c (cf. [1]).1. Introduce a new auxiliary variable h for v � c2. Insert at the entry of every node satisfying InsertCM the assignment h := v � c3. Replace every (original) occurrence of v � c in G by hTable 1: The Safe-Earliest Transformation9In [2, 3, 4] down-safety is called anticipability.10CM stands for Code Motion. 6

3.2 Strength Reduction as Re�ned Code MotionCode motion moves the computation v � c backwards as long as v is not modi�ed within anode, i.e., as long as Transp is satis�ed. The point of strength reduction is to weaken thistransparency requirement, and to move v � c as long as its value can be updated simply byadding a constant to the current value, i.e., as long as SR-Transp is satis�ed, or equivalently, aslong as the value of v � c is only injured. Subsequently, the injured values can be cured simplyby adding the constant E� (n) to it.This change to the notion of transparency also a�ects the notion of safety: For strengthreduction we allow v � c to be placed at the entry of a node n 2 N if it is used on everyterminating program path starting with n before the value is killed. In order to determinethese program points, it is su�cient to replace the predicate Transp in Equation System 3.1 bySR-Transp.11 This directly leads to the de�nition of SR-down-safe and SR-earliest computationpoints for strength reduction.3.2.1 SR-Down-Safety and SR-Earliestnessv � c can be placed SR-down-safely at the entry of all nodes satisfying the predicateD-SafeSRwhich denotes the greatest solution of Equation System 3.1, where Transp is replaced bySR-Transp. Analogously, the least solution of Equation System 3.2, where SR-Transp andD-SafeSR are used instead of Transp and D-SafeCM, respectively, is denoted byEarliestSREarliestSR speci�es the earliest computation points with respect to D-SafeSR.12 Programpoints satisfying both D-SafeSR and EarliestSR are the computation points of the simplestrength reduction transformation and are denoted by the predicate InsertSSR.3.2.2 UpdatingSimilar to the code motion transformation, the simple strength reduction transformation alsostores the value of v � c in an auxiliary variable h, and replaces all (original) occurrences ofv � c by h. However, strength reduction additionally requires inserting update assignments forh in some of the nodes satisfying the predicate Injured de�ned in Section 2. These nodes arecharacterized by the least solution of Equation System 3.3, which is obtained by means of abackward analysis of G.Equation System 3.3 (UPDATE)UPDATE(n)=Used (n) _ Xm2succ(n)(:InsertSSR(m)^UPDATE(m))11In contrast to the strong safety requirement of code motion this modi�cation may lead to the introduction ofnew values on a path, and therefore may enlarge the potential of runtime errors (cf. [26]).12Here and in the following, the indices \CM" and \SR" are used in order to distinguish the code motion andstrength reduction version of down-safe and earliest.
7

3.2.3 The Simple Strength Reduction TransformationDenoting the least solution of Equation System 3.3 by UpdateSSR, the predicate InsUpdSSRde�ned as the conjunction of the predicates Injured and UpdateSSR characterizes those programpoints where the auxiliary variable must be updated. Together, the predicates InsertSSR andInsUpdSSR induce the simple strength reduction transformation.1. Introduce a new auxiliary variable h for v � c2. Insert at the entry of every node satisfying(a) InsertSSR the assignment h := v � c(b) InsUpdSSR the assignment h := h+ E� (n) 133. Replace every (original) occurrence of v � c in G by hTable 2: The Simple Strength Reduction TransformationFigure 3 shows the result of this transformation for the owgraph of Figure 1, which wouldalso be delivered by the algorithm of [2]. In fact, the simple strength reduction transformationand the transformation of [2] coincide. However, the algorithm proposed here is a compositionof three unidirectional analyses computing one predicate each, whereas the algorithm of [2] isbidirectional and requires more than twice as many predicates.3.3 De�ciencies of the Simple Strength Reduction TransformationThe strength reduction algorithm developed so far is particularly simple: It straightforwardlyevolves from an extension of a code motion algorithm, and it requires no more than threepredicates. However, like the algorithm of [2], it su�ers from the following de�ciencies:1. Multiplication-Addition Deficiency:There may be paths, on which both multiplications and additions are inserted. In theexample of Figure 3 this happens on the path (13;16;10;4;7;11), where a multiplicationis inserted in node 10 and an addition in node 4. In this example, this even impairs theruntime e�ciency of this path, since only one multiplication is saved, but a multiplicationand an addition are inserted.2. Lifetime Deficiency:The lifetimes of moved computations may be unnecessarily long due to unnecessary codemotion. For example in the owgraph of Figure 3 the initialization of h at node 1 isunnecessarily early and should be delayed to node 8 in order to avoid unnecessary registerpressure. Moreover, rather than being moved to node 20, the computation of i � 10 atnode 21 should not be touched at all, because a pro�table movement is impossible.3. Multiple-Addition Deficiency:There may be paths, on which unnecessarily many additions are inserted. Consider forexample the path (14;17;15;12;6;9;11). There, the costs for the three inserted additionsmay easily exceed the costs for the saved multiplication, and therefore even impair theruntime e�ciency.13If both InsertSSR and InsUpdSSR hold, the initialization statement h := v � c must precede the updateassignment h := h+ E� (n).
8

1 h := i � 10?2 3?
 	6��?4 h := h+10i := i+ 1 5 6 h := h+50i := i+ 5
 �? ? 	�?7 8 9
 �? ? 	�?10 h := i � 10 11 12 i := i+ 2h := h+20
� �?

	�?
 �?
��?

13 a := h 14 b := h 15 i := i+ 1h := h+10	�?
�? 	�? 6
16 i := m=l 17 m := m � l	

6
	�? ?
 	618 h := h+30i := i+ 319 i := m � l?20 h := i � 10?21 c := h?22

	

� �?

Figure 3: The Simple Strength Reduction Transformation4 Lazy Strength ReductionIn this section we stepwise re�ne the simple strength reduction transformation in order to over-come the three de�ciencies mentioned in Section 3.3.4.1 First Re�nement: Avoiding the Multiplication-Addition De�ciency4.1.1 Critical Program PointsIn order to avoid insertions of multiplications and additions on the same path, we determinethe set of critical program points. Intuitively, a program point is critical, if there is a v � c-free9

program path from this point to a modi�cation of v. The idea of our modi�cation is to movecritical insertion points in the direction of the control ow to \earliest" noncritical positions.Technically, the set of critical program points is characterized by the least solution of Equa-tion System 4.1, whose computation requires a backward analysis of G.Equation System 4.1 (CRITICAL)CRITICAL(n) = :Used (n) ^ (:Transp (n) _ Xm2succ(n)CRITICAL(m))4.1.2 Substituting Critical Insertion PointsLet Critical denote the least solution of Equation System 4.1. The existence of critical inser-tion points for v � c (i.e., of nodes n satisfying the predicate CritInsSSR(n)=df InsertSSR(n)^ Critical(n)) characterizes the situations in which the simple strength reduction transforma-tion would insert multiplications as well as additions on some program paths. In these situations,the critical computations of v � c must be replaced by noncritical ones. This is realized by mov-ing them in the direction of control ow until all paths to a �rst use of v � c are transparentfor v instead of only SR-transparent. Technically, this is accomplished by determining the leastsolution of Equation System 4.2, which speci�es a forward analysis of G.Equation System 4.2 (SUBST-CRIT)SUBST-CRIT(n) = CritInsSSR(n) _ Xm2pred(n)(:Used (m) ^ SUBST-CRIT(m))We denote the least solution of Equation System 4.2 by Subst-Crit. Code motion insertionpoints14 satisfying Subst-Crit are, in fact, the \earliest" substitutes of critical insertion pointsof the simple strength reduction transformation guaranteeing that multiplications and additionsare not simultaneously inserted on program paths.4.1.3 The First Re�nementLet InsertFstRef be de�ned by8n2N: InsertFstRef(n)=df (InsertSSR(n)^:Critical(n)) _ (InsertCM(n)^ Subst-Crit(n))and let UpdateFstRef be de�ned as the least solution of Equation System 3.3 using InsertFstRefin place of InsertSSR. With InsUpdFstRef de�ned analogously as in the simple strength re-duction transformation, i.e., 8n 2 N: InsUpdFstRef(n)=df Injured (n)^ UpdateFstRef(n), thefollowing three-step procedure speci�es the �rst re�nement, which overcomes the multiplication-addition de�ciency (cf. Section 3.3).1. Introduce a new auxiliary variable h for v � c2. Insert at the entry of every node satisfying(a) InsertFstRef the assignment h := v � c(b) InsUpdFstRef the assignment h := h+ E� (n)3. Replace every (original) occurrence of v � c in G by hTable 3: The First Re�nement14I.e., nodes satisfying InsertCM. 10

Figure 4 shows the result of this transformation for the owgraph of Figure 1, which coincideswith the result of the bidirectional algorithm of [3] that enhances the algorithm of [2]. Here, theinitialization of h at node 10, and the update assignments at nodes 4 and 18 of Figure 3 arereplaced by a single initialization of h at node 7. However, as in Figure 3, the lifetimes of movedcomputations are still unnecessarily long, and on path (14;17;15;12;6;9;11) unnecessarilymany update assignments for h are inserted.1 h := i � 10?2 3?
 	6��?4 i := i+ 1 5 6 h := h+50i := i+ 5
 �? ? 	�?7 h := i � 10 8 9
 �? ? 	�?10 11 12 i := i+ 2h := h+20
� �?

	�?
 �?
��?

13 a := h 14 b := h 15 i := i+ 1h := h+10	�?
�? 	�? 6
16 i := m=l 17 m := m � l	

6
	�? ?
 	618 i := i+ 319 i := m � l?20 h := i � 10?21 c := h?22

	

� �?

Figure 4: The First Re�nement
11

4.2 Second Re�nement: Avoiding the Lifetime De�ciencyIn this section we re�ne the strength reduction transformation further in order to overcome thelifetime de�ciency mentioned in Section 3.3.4.2.1 LatestnessIn order to minimize the lifetimes of moved computations, they must be placed as late as possible,while maintaining the bene�ts of the algorithm developed so far. Intuitively, this requires tomove computations from their earliest down-safe noncritical computation points in the directionof control ow to \later" computation points. Technically, this is realized by determining thegreatest solution of Equation System 4.3, which requires a forward analysis of G.Equation System 4.3 (DELAY)DELAY(n) = InsertFstRef(n) _ 8<: false if n= sQm2pred(n)(:Used (m) ^ DELAY(m)) otherwiseThe intuition behind the de�nition of DELAY is to move computations from their earliestdown-safe noncritical computation points as far as possible in the direction of control ow.Thus, InsertFstRef implies DELAY. This movement must stop in nodes n that have apredecessor m containing a computation of v � c, or for which the process of moving is notsuccessful, i.e., where DELAY(m) does not hold. In the �rst case, we would miss replacing anoriginal occurrence of v � c, and in the second case a partial redundancy would be introducedinto the program.Latest Computation PointsLet Delay denote the greatest solution of Equation System 4.3. Then we de�ne8n 2 N: Latest(n)=df Delay(n) ^ (Used (n) _ : Ym2succ(n) Delay(m))The second re�nement does not a�ect the insertion of update assignments. Thus, InsUpdSndRefcoincides with the version from the �rst re�nement, i.e., InsUpdSndRef=df InsUpdFstRef. To-gether Latest and InsUpdSndRef specify a program transformation, where the resulting pro-gram is of the same computational complexity as that of the �rst re�nement. However, it ismore economic with respect to the lifetimes of auxiliary variables, as shown in Figure 5. Note,however, that the owgraph of Figure 5 still contains an unnecessary initialization of h in node21, which is only used in the insertion node itself.4.2.2 IsolationIn order to avoid unnecessary initializations as in node 21 of Figure 5, we determine all programpoints where an inserted computation would be isolated, i.e., where an inserted computationwould only be used in the insertion node itself (cf. [1]). This is achieved by determining thegreatest solution of Equation System 4.4, which speci�es a backward analysis of G. Note thatthis analysis does not depend on the number of occurrences of the candidate expression inan insertion node itself, since expression evaluation without multiple calculations of commonsubexpressions is well understood in code generation (cf. [33]).12

1 ?2 3?
 	6��?4 i := i+ 1 5 6 h := h+50i := i+ 5
 �? ? 	�?7 h := i � 10 8 h := i � 10 9
 �? ? 	�?10 11 12 i := i+ 2h := h+20
� �?

	�?
 �?
��?

13 a := h 14 b := h 15 i := i+ 1h := h+10	�?
�? 	�? 6
16 i := m=l 17 m := m � l	

6
	�? ?
 	618 i := i+ 319 i := m � l?20 ?21 h := i � 10c := h?22

	

� �?

Figure 5: The Latest-UpdateSndRef TransformationEquation System 4.4 (ISOLATED)ISOLATED(n) = Ym2succ(n)(Latest(m) _ (:Used (m)^ ISOLATED(m))
4.2.3 The Second Re�nementNodes satisfying Latest and :Isolated, where Isolated denotes the greatest solution ofEquation System 4.4, specify the optimal computation points for v �c in G, and are denoted bythe predicate InsertSndRef. In contrast to the preceding strength reduction transformations,13

the occurrences of v � c satisfying Latest and Isolated are no longer replaced by h, becausetheir corresponding initializations of h are suppressed for e�ciency reasons. All other originaloccurrences of v � c, however, are redundant with respect to the computation points given byInsertSndRef, and can be eliminated. This is indicated by the predicate DeleteSndRef.Now the second re�nement is obtained by the following three-step procedure, which trans-forms the owgraph of Figure 1 into the one shown in Figure 6. In fact, our algorithm is uniquein performing this transformation.1. Introduce a new auxiliary variable h for v � c2. Insert at the entry of every node satisfying(a) InsertSndRef the assignment h := v � c(b) InsUpdSndRef the assignment h := h+ E� (n)3. Replace every (original) occurrence of v � c in nodes satisfying DeleteSndRef by hTable 4: The Second Re�nement4.3 Third Re�nement: Avoiding the Multiple-Addition De�ciencyThe owgraph of Figure 6 still contains unnecessarily many update assignments for h (seepath (14;17;15;12;6;9;11)). Inside extended basic blocks 15, however, the e�ect of additivemodi�cations of v onto the value of v � c can be accumulated in update assignments insertedat use sites of v � c or at the end of the blocks. The e�ect of such accumulation is illustrated bymeans of the di�erences in Figure 7 and 8, where it is assumed that the original righthand sideterm of the assignments at node 1 and 2 is i � 10. Figure 7 shows the result of inserting anupdate assignment for every additive modi�cation of i, as it is realized by the strength reductiontransformation developed so far, and which still su�ers from the multiple-addition de�ciency. Incontrast, Figure 8 shows the result of accumulating the e�ects of the update assignments.Our algorithm for lazy strenth reduction is unique in overcoming the multiple-addition-de�ciency by accumulating the e�ects of update assignments. In [3] for every modi�cation ofthe candidate expression, an update assignment is inserted. However, in contrast to [2] theinsertion of update assignments is controlled by a machine-dependent parameter indicating,which number of updates is faster than a recomputation of the value. If this number is exceededon a path, a recomputation of the value is inserted instead of the sequence of updates. In [4] thisparameter is set to 1. Thus, in the example of Figure 1 Dhamdhere's algorithm would insertthe assignment h := i � 10 instead of h := h+ 80 in node 9, and therefore would not achieveany strength reduction.164.3.1 AccumulationThe accumulation of update assignments requires the predicate Accumulating that character-izes the set of program points, where an accumulating update assignment must potentially beinserted.8n 2 N: Accumulating(n)=df UpdateSndRef(n) ^ (Used (n) _ ExitExtdBscBlck (n))15A basic block is a maximal sequence of code, where at most the �rst node has more than one predecessor,and at most the last node more than one successor (cf. [25]). An extended basic block is a maximal sequence ofcode, in which at most the �rst node has more than one predecessor, and all sons of nodes with more than onesuccessor have a unique predecessor. Thus, an extended basic block is a maximal tree of nodes, such that controlcan enter the tree only at its root, and a basic block is a maximal tree with just one leaf (cf. [30]).16In fact, in the example of Figure 1 the algorithm of [4] delivers the result of the �rst re�nement except thatthe updates in the right part of the loop are replaced by the multiplication in node 9.14

1 ?2 3?
 	6��?4 i := i+ 1 5 6 h := h+50i := i+ 5
 �? ? 	�?7 h := i � 10 8 h := i � 10 9
 �? ? 	�?10 11 12 i := i+ 2h := h+20
� �?

	�?
 �?
��?

13 a := h 14 b := h 15 i := i+ 1h := h+10	�?
�? 	�? 6
16 i := m=l 17 m := m � l	

6
	�? ?
 	618 i := i+ 319 i := m � l?20 ?21 c := i � 10?22

	

� �?

Figure 6: The Second Re�nementHere, the predicate ExitExtdBscBlck characterizes exit nodes of extended basic blocks. It isde�ned by8n 2 N: ExitExtdBscBlck (n)=df (n= e) _ Xm2succ(n)EntryExtdBscBlck (m)where EntryExtdBscBlck characterizes entry nodes of extended basic blocks:8n 2 N: EntryExtdBscBlck (n)=df (n= s) _ Xm2pred(n) jpred(succ(m))j> 1The accumulation process has to be terminated in nodes satisfying the predicateEntryExtdBscBlck or having a predecessor satisfying Used . Denoting these nodes by the pred-15

h := h+20i := i+ 2 h := h+40i := i+ 4? ?h := h+30i := i+ 3 h := h+10i := i+ 1? ?
 �? 	�?
 �?h := h+20i := i+ 2 h := h+10i := i+ 1? ?1 a := h h := h+30i := i+ 3? ?
 �?
 �? ?h := i � 10?2 a := h?	

� �?

	

� �?

Figure 7: Illustration of the Multiple-Addition De�ciencyicate AccumTerm, the function AccumE� : N!! determines the accumulated e�ect of asequence of update assignments.8n 2 N: AccumE� (n)=df 8><>: 0 if :UpdateSndRef(n)E� (n) if UpdateSndRef(n) ^ AccumTerm(n)E� (n) +AccumE� (m) otherwise (pred(n)= fmg)Remark 4.5 In the example of Figure 8, we can even accumulate the e�ect of consecutiveextended basic blocks in single update assignments, as shown in Figure 11 in Section A.4. Thepoint here is that in all predecessors of the entry nodes of \sibling" extended basic blocks thesame update assignment is inserted (in Figure 8: h := h + 50). This pattern can be capturedin general by means of a re�ned version of the Accumulating predicate introduced above.4.3.2 Third Re�nement: The Complete TransformationThe third re�nement a�ects only the insertion points of update assignments. Thus, the pred-icates characterizing the nodes where the auxiliary variable must be initialized, and where anoriginal occurrence of v � c can be deleted coincide with the corresponding predicates in thesecond re�nement, i.e., InsertLSR=df InsertSndRef and DeleteLSR=df DeleteSndRef. Updateassignments must be inserted in nodes satisfying the predicate InsUpdLSR. This predicate istrue for nodes n satisfying the predicate Accumulating with AccumE� (n) 6= 0.16

i := i+ 2 i := i+ 4? ?i := i+ 3 i := i+ 1? ?h := h+50 h := h+50
 �? 	�?
 �?i := i+ 2 i := i+ 1? ?1 h := h+20a := h i := i+ 3? ?h := h+40
 �?
 �? ?h := i � 10?2 a := h?	

� �?

	

� �?

Figure 8: Accumulation of the E�ects of Update AssignmentsThe Lazy Strength Reduction TransformationThe lazy strength reduction transformation, which overcomes all three de�ciencies mentionedin Section 3.3, proceeds in three steps.1. Introduce a new auxiliary variable h for v � c2. Insert at the entry of every node satisfying(a) InsertLSR the assignment h := v � c(b) InsUpdLSR the assignment h := h+AccumE� (n)3. Replace every (original) occurrence of v � c in nodes satisfying DeleteLSR by hTable 5: The Lazy Strength Reduction TransformationTable 6 in Section A.3 summarizes the values of the predicates considered during the developmentof the lazy strength reduction algorithm for the term i � 10 in the owgraph in Figure 1.Application of the lazy strength reduction transformation to the owgraph in Figure 1 resultsin the promised owgraph in Figure 2, which in fact is free of all the de�ciencies discussed above.5 ConclusionsWe have presented a bit-vector algorithm for lazy strength reduction, which is unique in itstransformational power in that it uniformly combines code motion and strength reduction, and17

completely avoids superuous register pressure due to unnecessary code motion. Moreover, likeits underlying algorithm for lazy code motion ([1]), it is composed of a sequence of unidirectionalanalyses. This allows us to apply the e�cient algorithms for unidirectional bit-vector analysesto deal with all program terms simultaneously (cf. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) as wellas to interleave strength reduction and copy propagation using the slotwise approach of [18].Additionally, its modular structure supports further extensions. For example, following the linesof [34, 20] it is straightforward to generalize this algorithm to programs with (mutually) recursiveprocedures, global and local variables, and formal (value) parameters.References[1] J. Knoop, O. R�uthing, and B. Ste�en. Lazy code motion. In Proc. ACM SIGPLANConference on Programming Language Design and Implementation'92, volume 27,7 of ACMSIGPLAN Notices, pages 224 { 234, San Francisco, CA, June 1992.[2] S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformationfor global program optimization { part I. International Journal of Computer Mathematics,11:21 { 41, 1982.[3] S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformationfor global program optimization { part II. International Journal of Computer Mathematics,11:111 { 126, 1982.[4] D. M. Dhamdhere. A new algorithm for composite hoisting and strength reduction optimi-sation (+ Corrigendum). International Journal of Computer Mathematics, 27:1 { 14 (+ 31{ 32), 1989.[5] E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.Communications of the ACM, 22(2):96 { 103, 1979.[6] A. V. Aho and J. D. Ullman. Node listings for reducible ow graphs. In Proc. 7th ACMSymposium on the Theory of Computing, pages 177 { 185, Albuquerque, NM, 1975.[7] S. L. Graham and M. N. Wegman. A fast and usually linear algorithm for global owanalysis. Journal of the ACM, 23(1):172 { 202, 1976.[8] M. S. Hecht and J. D. Ullman. Analysis of a simple algorithm for global ow problems.In Conf. Record of the 1st ACM Symposium on the Principles of Programming Languages,pages 207 { 217, Boston, MA, 1973.[9] M. S. Hecht and J. D. Ullman. A simple algorithm for global data ow analysis problems.SIAM Journal on Computing, 4(4):519 { 532, 1977.[10] K. Kennedy. Node listings applied to data ow analysis. In Conf. Record of the 2nd ACMSymposium on the Principles of Programming Languages, pages 10 { 21, Palo Alto, CA,1975.[11] J. B. Kam and J. D. Ullman. Global data ow analysis and iterative algorithms. Journalof the ACM, 23(1):158 { 171, 1976.[12] R. E. Tarjan. Applications of path compression on balanced trees. Journal of the ACM,26(4):690 { 715, 1979.[13] R. E. Tarjan. A uni�ed approach to path problems. Journal of the ACM, 28(3):577 { 593,1981. 18

[14] R. E. Tarjan. Fast algorithms for solving path problems. Journal of the ACM, 28(3):594 {614, 1981.[15] J. D. Ullman. Fast algorithms for the elimination of common subexpressions. Acta Infor-matica, 2(3):191 { 213, 1973.[16] D. M. Dhamdhere. Practical adaptation of the global optimization algorithm of Morel andRenvoise. ACM Transactions on Programming Languages and Systems, 13(2):291 { 294,1991. Technical Correspondence.[17] D. M. Dhamdhere. A fast algorithm for code movement optimization. ACM SIGPLANNotices, 23(10):172 { 180, 1988.[18] D. M. Dhamdhere, B. K. Rosen, and F. K. Zadeck. How to analyze large programs e�cientlyand informatively. In Proc. ACM SIGPLAN Conference on Programming Language Designand Implementation'92, volume 27, 7 of ACM SIGPLAN Notices, pages 212 { 223, SanFrancisco, CA, June 1992.[19] K.-H. Drechsler and M. P. Stadel. A solution to a problem with Morel and Renvoise's\Global optimization by suppression of partial redundancies". ACM Transactions on Pro-gramming Languages and Systems, 10(4):635 { 640, 1988. Technical Correspondence.[20] J. Knoop and B. Ste�en. Optimal interprocedural partial redundancy elimination. Extendedabstract. In Addenda to Proc. 4th Conference on Compiler Construction (CC), pages 36 {39, Paderborn, Germany, 1992. Published as Tech. Rep. No. 103, Department of ComputerScience, University of Paderborn.[21] B. Ste�en. Data ow analysis as model checking. In Proc. TACS, Lecture Notes in ComputerScience 526, pages 346 { 364, Sendai, Japan, 1991. Springer-Verlag.[22] F. E. Allen, J. Cocke, and K. Kennedy. Reduction of operator strength. In S. S. Muchnickand N. D. Jones, editors, Program Flow Analysis: Theory and Applications, chapter 3,pages 79 { 101. Prentice Hall, Englewood Cli�s, NJ, 1981.[23] J. Cocke and K. Kennedy. An algorithm for reduction of operator strength. Communicationsof the ACM, 20(11):850 { 856, 1977.[24] J. Cai and R. Paige. Look ma, no hashing, and no arrays neither. In Conf. Record ofthe 18th ACM Symposium on the Principles of Programming Languages, pages 143 { 154,Orlando, FL, 1991.[25] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier, North-Holland, 1977.[26] B. Ste�en, J. Knoop, and O. R�uthing. E�cient code motion and an adaption to strengthreduction. In Proc. 4th International Joint Conference on Theory and Practice of Soft-ware Development (TAPSOFT), Lecture Notes in Computer Science 494, pages 394 { 415,Brighton, UK, 1991. Springer-Verlag.[27] R. Paige. Formal Di�erentiation - A Program Synthesis Technique. UMI Research Press,1981.[28] R. Paige. Transformational programming { applications to algorithms and systems. InConf. Record of the 10th ACM Symposium on the Principles of Programming Languages,pages 73 { 87, Austin, TX, 1983.
19

[29] R. Paige and S. Koenig. Finite di�erencing of computable expressions. ACM Transactionson Programming Languages and Systems, 4(3):402 { 454, 1982.[30] B. K. Rosen. Degrees of availability as an introduction to the general theory of data owanalysis. chapter 2, pages 55 { 76.[31] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant com-putations. In Conf. Record of the 15th ACM Symposium on the Principles of ProgrammingLanguages, pages 12 { 27, San Diego, CA, 1988.[32] B. Ste�en, J. Knoop, and O. R�uthing. The value ow graph: A program representationfor optimal program transformations. In Proc. 3rd European Symposium on Programming(ESOP), Lecture Notes in Computer Science 432, pages 389 { 405, Copenhagen, Denmark,1990. Springer-Verlag.[33] A. V. Aho, S. C. Johnson, and J.D. Ullman. Code generation for expressions with commonsubexpressions. Journal of the ACM, 24(1):146 { 160, 1977.[34] J. Knoop and B. Ste�en. The interprocedural coincidence theorem. In Proc. 4th Conferenceon Compiler Construction (CC), Lecture Notes in Computer Science 641, pages 125 { 140,Paderborn, Germany, 1992. Springer-Verlag.A AppendixA.1 Critical EdgesIn order to exploit the full power of our lazy strength reduction algorithm, \critical" edges, i.e.,edges leading from nodes with more than one successor to nodes with more than one predecessor,must be removed from the owgraph, since they may block the process of code motion andstrength reduction (cf. [17, 16, 18, 19, 1, 20, 31, 32, 26]), as illustrated in Figure 9.a) b)BBN BBN BBN2 ������
1 x := a+ bBBBBBBN3 y := a+ b?

BBN BBN BBN2 ��4 h := a+ b��
1 h := a+ bx := h BBBBBN3 y := h?Figure 9: Critical EdgesIn Figure 9(a) the computation of \a+ b" at node 3 is partially redundant with respect to thecomputation of \a+b" at node 1. However, this partial redundancy cannot safely be eliminatedby moving the computation of \a+ b" to its preceding nodes, because this may introduce a newcomputation on a path leaving node 2 on the right branch. On the other hand, it can safely beeliminated after inserting a synthetic node 4 in the critical edge (2;3), as illustrated in Figure9(b). Inserting a synthetic node on every edge leading to a node with more than one predecessorcertainly implies that all critical edges are removed, and additionally, it allows us to insert allcomputations uniformly at the entries of nodes.20

A.2 Illustrating Earliestnesss=12 3 45 v := v=w 6 x := v � c78 y := v � c 91011 z := v � ce=12

	�?
 �???
? ? ???

	�?
 �
	�?

 �? 	�???
D-SafeCM D-SafeCMD-SafeCM

D-SafeCM
D-SafeCMD-SafeCM

EarliestCM
EarliestCMEarliestCM

EarliestCM
EarliestCMEarliestCM
EarliestCMEarliestCM EarliestCM

Figure 10: Illustrating Down-Safety and EarliestnessFigure 10 shows the predicate values of EarliestCM for a small example. This illustrates thatEarliestCM is valid at the start node and additionally at those nodes that are reachable by apath on which a prior computation of v � c would not be down-safe or delivers a di�erent valuedue to a subsequent modi�cation of v. Of course, v � c cannot be placed earlier than in thestart node, which justi�es Earliest(1). Moreover, every computation of v � c in a node onthe paths (1;2) and (1;3;7) would not be down-safe. Thus EarliestCM(f2;3;4;5;7;9;12g)holds. Finally, evaluating v � c at node 1, 2 and 5 delivers a di�erent value as in node 8. Thisyields Earliest(8).

21

A.3 Relevant Predicate Values for the Motivating ExampleNode NumberPredicate 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22D-SafeCM 1 1 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0 0 1 1 0EarliestCM 1 0 0 1 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0InsertCM 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0D-SafeSR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0EarliestSR 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0InsertSSR 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0Critical 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 1 0 0 0Subst-Crit 0 0 0 1 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0InsertFstRef 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0Delay 1 1 1 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0Latest 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0Isolated 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 1 1UpdateSndRef 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 0 0 1 0InsertSndRef 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0Accumulating 0 0 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0 0 0 0 1 0InsertLSR 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0InsUpdLSR 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0DeleteLSR 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0Table 6: Relevant Predicate Values for the Motivating Example

22

A.4 Re�ned Accumulationi := i+ 2 i := i+ 4? ?i := i+ 3 i := i+ 1? ?
 �? 	�?
 �?i := i+ 2 i := i+ 1? ?1 h := h+70a := h i := i+ 3? ?h := h+90
 �?
 �? ?h := i � 10?2 a := h?	

� �?

	

� �?

Figure 11: Re�ned Accumulation of the E�ects of Update Assignments

23

