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Abstract

We present a bit-vector algorithm that uniformly combines code motion and strength
reduction, avoids superfluous register pressure due to unnecessary code motion, and is as
efficient as standard unidirectional analyses. The point of this algorithm is to combine the
concept of lazy code motion of [1] with the concept of unifying code motion and strength
reduction of [2, 3, 4]. This results in an algorithm for lazy strength reduction, which consists
of a sequence of unidirectional analyses, and is unique in its transformational power.

Keywords: Data flow analysis, program optimization, partial redundancy elimination, code
motion, strength reduction, bit-vector data flow analyses.

1 Motivation

Code motion improves the runtime efficiency of a program by avoiding unnecessary recom-
putations of a value at runtime. Strength reduction improves runtime efficiency by reducing
“expensive” recomputations to less expensive ones, e.g., by reducing computations involving
multiplication to computations involving only addition. Common to both techniques is replac-
ing the original computations of a program by auxiliary variables (registers) that are initialized
at suitable program points. In the case of strength reduction, they are additionally updated
at certain points. The similarity between strength reduction and code motion suggests the
combination of both techniques, an idea which was first realized by an algorithm of Joshi and
Dhamdhere [2, 3] that enhances the code motion algorithm of Morel and Renvoise [5] to capture
strength reduction.

In this paper we combine Joshi and Dhamdhere’s approach with the idea of lazy code mo-
tion presented in [1]. This results in an algorithm for lazy strength reduction, which uniformly
combines code motion and strength reduction, and avoids any unnecessary register pressure. In
fact, in contrast to previous algorithms, it does not insert multiplications and additions on the
same path, minimizes the lifetimes of moved computations, and limits the insertion of multiple
additions on a path to a minimum. Moreover, as our algorithm is composed of a sequence of
unidirectional bit-vector analyses, it is as efficient as the standard unidirectional analyses (cf.
[6, 7, 8,9, 10, 11, 12, 13, 14, 15]), which drastically improves on the results about the original
bidirectional algorithms of [2, 3, 4].

The illustration of the essential new features of our algorithm requires a rather complex
program structure. In the example of Figure 1, which is a slight modification of an example
of [3], our lazy strength reduction algorithm is unique in yielding the result shown in Figure 2.
This transformation is exceptional for the following reasons: It replaces the multiplications of
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1+ 10 at node 13 and 14 by moving them to node 7 and 8 and inserting a single addition at
node 9. In the “right” part of the loop this reduces the original multiplications to an addition.
Furthermore, it does not touch the computation of ¢ * 10 at node 21 that cannot be moved
profitably. The example will be discussed in more detail during the development of the paper.
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Figure 1: The Motivating Example

Related Work

The point of Morel and Renvoise’s code motion algorithm [5] is to place computations as early
as possible in a program, while guaranteeing that every inserted computation is used on every
terminating program path leaving the insertion point. In order to capture strength reduction,
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Figure 2: The Lazy Strength Reduction Transformation

Joshi and Dhamdhere’s algorithms [2, 3, 4] allow the values of inserted computations to be
updated before their use by the addition of constants, while maintaining the strategy of placing
computations as early as possible. This strategy, however, moves computations even if it is
unnecessary, i.e., there is no runtime gain, and therefore causes superfluous register pressure,
which is a major problem in practice.!

Recently the problem of unnecessary code motion was addressed in [1], where an algorithm
for lazy code motion was presented. In contrast to all previous code motion algorithms (cf.
[17, 18, 19, 20, 5, 21]), this algorithm places computations as late as possible in a program,
while maintaining computational optimality.? It is unique in that it avoids any unnecessary

'In [16] unnecessary code motion is called redundant.
*Here, computational optimality means that a program cannot be improved by means of semantics preserving
code motion (see [1] for details).



code motion, and therefore any unnecessary register pressure.

There are also other, conceptually different, approaches to strength reduction. For example
the algorithms of [22, 23, 24] are restricted to loops and require explicit detection of induction
variables. Thus, in the example of Figure 1 they would not do anything, since ¢ is not an
induction variable (cf. [25]). In contrast, the semantically based algorithm for code motion
and strength reduction of [26] works for arbitrary program and term structures, but does not
capture the laziness effect. This also holds for the (significantly different) approach of [27, 28, 29],
namely finite differencing, whose major achievement is the generalization of strength reduction
to nonnumerical applications.

Structure of the Paper

After the preliminary definitions in Section 2, and a brief summary of the basic version of the
code motion algorithm of [1] together with its extension to strength reduction along the lines of
[2] in Section 3, we arrive at the central Section 4, where the lazy strength reduction algorithm
is developed. This development is split into three steps which successively enhance the power of
the algorithm by adding new predicates that guarantee new properties of the resulting program.
The paper closes with Section 5 containing our conclusions.

2 Preliminaries

We consider terms t € T, which are inductively built of variables © € V, constants ¢ € C,
and operators op € Op. As usual, we represent an imperative program as a directed flowgraph
G =(N, E,s,e) with node set N and edge set E. Nodes n € N represent assignments of the
form z:=t. Edges (m,n) € E denote the nondeterministic branching structure of G.> s and
e denote the unique start node and end node of G, which are both assumed to represent the
empty statement skip and not to possess any predecessors and successors, respectively. Every
node n € N is assumed to lie on a path from s to e. Finally, succ(n)=4 {m|(n,m) € E}
and pred(n)=g {m|(m,n) € E'} denote the sets of all immediate successors and predecessors
of a node n, respectively.

Candidate Expressions for Strength Reduction

We demonstrate our approach of uniformly combining lazy code motion and strength reduction
by means of the classical application of strength reduction, which reduces multiplications to
additions. Therefore, we assume two binary operators, 4+ and %, in Op, which we interprete
as ordinary addition and multiplication, respectively. Terms of the form v % ¢ with v € V and
¢ € C are called candidate expressions for strength reduction, because they may give rise to a
transformation that eliminates the multiplication. In the following we will develop our algorithm
for an arbitrary but fixed candidate expression v*c, which allows us to keep our notation simple.

Use, Transparency, and SR-Transparency

For every node n = z:=t we define three local predicates indicating, whether v % ¢ is used or
modified by the assignment of node n. Here, SubTerms(t) denotes the set of all subterms of ¢,
e.g., SubTerms(a+ ((v*c)—b))={a,v,e,b,v*c,(vxec)—ba+ ((vxe)—b)}.2

3We do not assume any structural restrictions on G. In fact, every algorithm computing the fixed-point
solution of a unidirectional bit-vector data flow analysis problem may be used to compute the predicates involved
in the lazy strength reduction transformation (cf. [25]). However, application of the efficient techniques of
[6,7,8,9,10, 11, 12, 13, 14, 15] requires that G satisfies the structural restrictions imposed by these algorithms.
“Flowgraphs composed of basic blocks can be treated entirely in the same fashion by replacing the predicate
Used by the predicate Antloc (cf. [5]), indicating whether the computation of ¢ is locally anticipatable at node



o Used(n)=gf v *c € SubTerms(t)
o Transp (n)=g x # v
o SR-Transp(n)=q Transp(n) Vt=v+d with d € C

In addition to Transp, the predicate SR-Transp is also valid at those nodes where the effect
of an assignment on the value of v * ¢ can be dealt with by means of an update assignment
common to strength reduction (cf. Section 3.2). Such nodes will be indicated by the predicate
Injured > Additionally, we define a function Eff : N - w by

Vn € N. Eff(n)=q4 { g*d if Injured (n) with n=v:=v+d

otherwise

which provides the amount of updating that is necessary in order to pass node n.5

Inserting Synthetic Nodes

In order to exploit the full power of our algorithm for lazy strength reduction, we assume that
in the flowgraph G to be considered from now on, every edge leading to a node with more
than one predecessor has been split by inserting a synthetic node.” Inserting synthetic nodes is
common for code motion optimizations (cf. [17, 16, 18, 19, 1, 20, 31, 32, 26]) and discussed in
more details in Section A.1.

3 Simple Strength Reduction

In this section we present a simple algorithm for strength reduction, which evolves straightfor-
wardly as a uniform extension of the basic version of the code motion algorithm of [1]. Section
3.1, therefore, recalls the essentials of this code motion algorithm, while Section 3.2 presents
the modifications to capture strength reduction, and Section 3.3 presents a discussion of the
deficiencies of simple strength reduction.

3.1 Code Motion: Down-Safety and Earliestness

The point of the basic version of the code motion algorithm of [1] is to place computations
as early as possible within a program while maintaining its semantics. This is achieved by
moving computations to program points where they are down-safe and earliest. Intuitively,
down-safe means that the inserted value is used on every terminating program path starting
with the insertion point. This guarantees that the program semantics is preserved,® and earliest
means that a placement at an “earlier” position would either not be down-safe or would not
always deliver the required value. This is sufficient in order to guarantee that the number of
calculations at runtime cannot be reduced any further by means of a safe placement. Clearly,
the code motion transformation, which we apply to the candidate expression v * ¢ here, works
for arbitrary program terms.

n.

®In the terminology of [14], assignments of the form v := v+ d do not kill the value of v * ¢, but injure it, i.e.,
establishing the new value of v * ¢ requires only a “small”, cheap to perform modification of the current value.
In [30] the term wounded is used instead of injured.

5Note that for any node n satisfying Injured the value Eff(n) can be computed at compile time, since ¢ and
d are both constants in C.

"In order to keep the presentation of the motivating example simple, we omit synthetic nodes that are not
relevant for the lazy strength reduction transformation.

8Tn particular, a down-safe placement does not change the potential for runtime errors, e.g., “division by 0”
or “overflow”.



3.1.1 Down-Safety

v % ¢ can safely be placed at the entry of a node n € N, if it is used on every terminating
program path starting with n before v is modified. These down-safe computation points for
v*c are characterized by the greatest solution of Equation System 3.1, which specifies a backward
analysis of G.°

Equation System 3.1 (D-SAFE)

false if n=e

D-SAFE(n) =
() Used(n) V (Transp(n) A [ D-SAFE(m)) otherwise

mesuce(n)

3.1.2 Earliestness

Placing computations as “early” as possible is sufficient to obtain computationally optimal pro-
grams, i.e., programs that cannot be further improved by means of a safe placement (cf. [1]).
The program points enjoying the earliestness property are characterized by the least solution of
Equation System 3.2, which is obtained by means of a forward analysis of G. Here, D-Safecy '*
denotes the greatest solution of Equation System 3.1.

Equation System 3.2 (EARLIEST)

true if n=s

EARLIEST(n) = > ( )(ﬂTmnsp (m) v
mepred(n

(—D-Safecy(m) A EARLIEST(m))) otherwise

Let Earliestcy denote the least solution of Equation System 3.2, which is based upon the
following intuition (cf. Section A.2 for an illustration). A placement of v *x ¢ at the entry of a
node n is “earliest” if there is a path from s to n on which any prior computation of v % ¢

e would not provide the same value as in n due to a subsequent modification
or

e would not be down-safe.

3.1.3 The Code Motion Transformation

Denoting the program points satisfying both D-Safecy and Earliestcy by Insertcy, the
following three-step procedure results in a computationally optimal program, i.e., in a program
that cannot be improved by means of a safe code motion transformation for v ¢ (cf. [1]).

1. Introduce a new auxiliary variable h for v * ¢
2. Insert at the entry of every node satisfying Insertcy the assignment h:= v x ¢

3. Replace every (original) occurrence of v *x ¢ in G by h

Table 1: The Safe-Earliest Transformation

°In [2, 3, 4] down-safety is called anticipability.
10cM stands for Code Motion.



3.2 Strength Reduction as Refined Code Motion

Code motion moves the computation v * ¢ backwards as long as v is not modified within a
node, i.e., as long as Transp is satisfied. The point of strength reduction is to weaken this
transparency requirement, and to move v % ¢ as long as its value can be updated simply by
adding a constant to the current value, i.e., as long as SR-Transp is satisfied, or equivalently, as
long as the value of v * ¢ is only injured. Subsequently, the injured values can be cured simply
by adding the constant Eff(n) to it.

This change to the notion of transparency also affects the notion of safety: For strength
reduction we allow v * ¢ to be placed at the entry of a node n € N if it is used on every
terminating program path starting with n before the value is killed. In order to determine
these program points, it is sufficient to replace the predicate Transp in Equation System 3.1 by
SR-Transp.'! This directly leads to the definition of SR-down-safe and SR-earliest computation
points for strength reduction.

3.2.1 SR-Down-Safety and SR-Earliestness

v * ¢ can be placed SR-down-safely at the entry of all nodes satisfying the predicate
D-Safegp

which denotes the greatest solution of Equation System 3.1, where Transp is replaced by
SR-Transp. Analogously, the least solution of Equation System 3.2, where SR-Transp and
D-Safegy are used instead of Transp and D-Safecy, respectively, is denoted by

Earliestgp

Earliestgy specifies the earliest computation points with respect to D-Safesg.!? Program

points satisfying both D-Safesg and Earliestgg are the computation points of the simple
strength reduction transformation and are denoted by the predicate Insertgsg.

3.2.2 Updating

Similar to the code motion transformation, the simple strength reduction transformation also
stores the value of v * ¢ in an auxiliary variable h, and replaces all (original) occurrences of
v * ¢ by h. However, strength reduction additionally requires inserting update assignments for
h in some of the nodes satisfying the predicate Injured defined in Section 2. These nodes are
characterized by the least solution of Equation System 3.3, which is obtained by means of a
backward analysis of G.

Equation System 3.3 (UPDATE)

UPDATE(n)=Used(n) V>  ( —Insertssa(m) A\ UPDATE(m))

mesuce(n)

n contrast to the strong safety requirement of code motion this modification may lead to the introduction of
new values on a path, and therefore may enlarge the potential of runtime errors (cf. [26]).

2Here and in the following, the indices “CM” and “SR” are used in order to distinguish the code motion and
strength reduction version of down-safe and earliest.



3.2.3 The Simple Strength Reduction Transformation

Denoting the least solution of Equation System 3.3 by Updateggp, the predicate InsUpdggp

defined as the conjunction of the predicates Injured and Updateggy characterizes those program
points where the auxiliary variable must be updated. Together, the predicates Insertssg and
InsUpdggp induce the simple strength reduction transformation.

1. Introduce a new auxiliary variable h for v * ¢
2. Insert at the entry of every node satisfying

(a) Insertggg the assignment h:= v x*¢
(b) InsUpdggy the assignment h:= h + Eff(n)!?

3. Replace every (original) occurrence of v *¢ in G by h

Table 2: The Simple Strength Reduction Transformation

Figure 3 shows the result of this transformation for the flowgraph of Figure 1, which would
also be delivered by the algorithm of [2]. In fact, the simple strength reduction transformation
and the transformation of [2] coincide. However, the algorithm proposed here is a composition
of three unidirectional analyses computing one predicate each, whereas the algorithm of [2] is
bidirectional and requires more than twice as many predicates.

3.3

Deficiencies of the Simple Strength Reduction Transformation

The strength reduction algorithm developed so far is particularly simple: It straightforwardly

evolves from an extension of a code motion algorithm, and it requires no more than three
predicates. However, like the algorithm of [2], it suffers from the following deficiencies:

1.

3.

Multiplication-Addition Deficiency:

There may be paths, on which both multiplications and additions are inserted. In the
example of Figure 3 this happens on the path (13,16,10,4,7,11), where a multiplication
is inserted in node 10 and an addition in node 4. In this example, this even impairs the
runtime efficiency of this path, since only one multiplication is saved, but a multiplication
and an addition are inserted.

. Lifetime Deficiency:

The lifetimes of moved computations may be unnecessarily long due to unnecessary code
motion. For example in the flowgraph of Figure 3 the initialization of h at node 1 is
unnecessarily early and should be delayed to node 8 in order to avoid unnecessary register
pressure. Moreover, rather than being moved to node 20, the computation of ¢ 10 at
node 21 should not be touched at all, because a profitable movement is impossible.

Multiple-Addition Deficiency:

There may be paths, on which unnecessarily many additions are inserted. Consider for
example the path (14,17,15,12,6,9,11). There, the costs for the three inserted additions
may easily exceed the costs for the saved multiplication, and therefore even impair the
runtime efficiency.

13If both Insertggg and InsUpdggg hold, the initialization statement h:= v x ¢ must precede the update
assignment h:=h + Eff(n).
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Figure 3: The Simple Strength Reduction Transformation

4 Lazy Strength Reduction

In this section we stepwise refine the simple strength reduction transformation in order to over-
come the three deficiencies mentioned in Section 3.3.

4.1 First Refinement: Avoiding the Multiplication-Addition Deficiency
4.1.1 Critical Program Points

In order to avoid insertions of multiplications and additions on the same path, we determine
the set of critical program points. Intuitively, a program point is critical, if there is a v * c-free



program path from this point to a modification of v. The idea of our modification is to move
critical insertion points in the direction of the control flow to “earliest” noncritical positions.

Technically, the set of critical program points is characterized by the least solution of Equa-
tion System 4.1, whose computation requires a backward analysis of G.

Equation System 4.1 (CRITICAL)

CRITICAL(n) = -Used(n) A ( =Transp(n) V Z CRITICAL(m) )

mesucc(n)

4.1.2 Substituting Critical Insertion Points

Let Critical denote the least solution of Equation System 4.1. The existence of critical inser-
tion points for vx ¢ (i.e., of nodes n satisfying the predicate CritInsssgr(n)=4 Insertssr(n)
A Critical(n)) characterizes the situations in which the simple strength reduction transforma-
tion would insert multiplications as well as additions on some program paths. In these situations,
the critical computations of v *c¢ must be replaced by noncritical ones. This is realized by mov-
ing them in the direction of control flow until all paths to a first use of v * ¢ are transparent
for v instead of only SR-transparent. Technically, this is accomplished by determining the least
solution of Equation System 4.2, which specifies a forward analysis of G.

Equation System 4.2 (SUBST-CRIT)

SUBST-CRIT(n) = Critlnsssa(n) V 3. (~Used(m) A SUBST-CRIT(m))
mepred(n)

We denote the least solution of Equation System 4.2 by Subst-Crit. Code motion insertion
points'* satisfying Subst-Crit are, in fact, the “earliest” substitutes of critical insertion points
of the simple strength reduction transformation guaranteeing that multiplications and additions
are not simultaneously inserted on program paths.

4.1.3 The First Refinement

Let Insertpstrer be defined by
Vné€N. Insertrstres(n)=4r (Insertgsp(n) A =Critical(n)) V (Insertcu(n) A Subst-Crit(n))

and let Updatepg pes De defined as the least solution of Equation System 3.3 using Insertgstres
in place of Insertgsg. With InsUpdggipes defined analogously as in the simple strength re-
duction transformation, i.e., Vn € N.InsUpdpgpes(n)=af Injured(n) A Updatepgipes(n), the
following three-step procedure specifies the first refinement, which overcomes the multiplication-
addition deficiency (cf. Section 3.3).

1. Introduce a new auxiliary variable h for v * ¢
2. Insert at the entry of every node satisfying

(a) Insertrstres the assignment h:=wvxc
(b) InsUpdpgipes the assignment h:=h + Eff(n)

3. Replace every (original) occurrence of v *¢ in G by h

Table 3: The First Refinement

1e., nodes satisfying Insertgy.

10



Figure 4 shows the result of this transformation for the flowgraph of Figure 1, which coincides
with the result of the bidirectional algorithm of [3] that enhances the algorithm of [2]. Here, the
initialization of h at node 10, and the update assignments at nodes 4 and 18 of Figure 3 are
replaced by a single initialization of h at node 7. However, as in Figure 3, the lifetimes of moved
computations are still unnecessarily long, and on path (14,17,15,12,6,9,11) unnecessarily
many update assignments for h are inserted.
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Figure 4: The First Refinement
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4.2 Second Refinement: Avoiding the Lifetime Deficiency

In this section we refine the strength reduction transformation further in order to overcome the
lifetime deficiency mentioned in Section 3.3.

4.2.1 Latestness

In order to minimize the lifetimes of moved computations, they must be placed as late as possible,
while maintaining the benefits of the algorithm developed so far. Intuitively, this requires to
move computations from their earliest down-safe noncritical computation points in the direction
of control flow to “later” computation points. Technically, this is realized by determining the
greatest solution of Equation System 4.3, which requires a forward analysis of G.

Equation System 4.3 (DELAY)

false if n=s
DELAY(n) = Insertrstres(n) V [ (—Used(m) AN DELAY(m)) otherwise
méepred(n)

The intuition behind the definition of DELAY is to move computations from their earliest
down-safe noncritical computation points as far as possible in the direction of control flow.
Thus, Insertpstrer implies DELAY. This movement must stop in nodes n that have a
predecessor m containing a computation of v * ¢, or for which the process of moving is not
successful, i.e., where DELAY (m) does not hold. In the first case, we would miss replacing an
original occurrence of v * ¢, and in the second case a partial redundancy would be introduced
into the program.

Latest Computation Points

Let Delay denote the greatest solution of Equation System 4.3. Then we define

Vn € N. Latest(n)=g4 Delay(n) A ( Used (n) V — H Delay(m))

mesucc(n)

The second refinement does not affect the insertion of update assignments. Thus, InsUpdg,4pes
coincides with the version from the first refinement, i.e., InsUpdg,gpes=df InsUpdpgipes. TO-
gether Latest and InsUpdg,4pes SPecify a program transformation, where the resulting pro-
gram is of the same computational complexity as that of the first refinement. However, it is
more economic with respect to the lifetimes of auxiliary variables, as shown in Figure 5. Note,
however, that the flowgraph of Figure 5 still contains an unnecessary initialization of h in node
21, which is only used in the insertion node itself.

4.2.2 Isolation

In order to avoid unnecessary initializations as in node 21 of Figure 5, we determine all program
points where an inserted computation would be isolated, i.e., where an inserted computation
would only be used in the insertion node itself (cf. [1]). This is achieved by determining the
greatest solution of Equation System 4.4, which specifies a backward analysis of G. Note that
this analysis does not depend on the number of occurrences of the candidate expression in
an insertion node itself, since expression evaluation without multiple calculations of common
subexpressions is well understood in code generation (cf. [33]).

12



( J——
__ J
h
h :=h+50
5 ] 8l i=its
7T h:=ix10] 8|h:=ix10| 9] |
\ J
t1:=14 2
o ] 11 2| h—nt20
t:=1+4+1
15 h:=h+10
\ J
N
19| i :=m=xl
20 ]
h:=:x10
2 2h
22
Figure 5: The Latest-Updatespgres Transformation
Equation System 4.4 (ISOLATED)
ISOLATED(n) = [I (ratest(m) v (~Used(m) A\ISOLATED(m))

mesucc(n)

4.2.3 The Second Refinement

Nodes satisfying Latest and —Isolated, where Isolated denotes the greatest solution of
Equation System 4.4, specify the optimal computation points for v*c¢ in G, and are denoted by
the predicate Insertspgrer. In contrast to the preceding strength reduction transformations,

13



the occurrences of v * ¢ satisfying Latest and Isolated are no longer replaced by h, because
their corresponding initializations of h are suppressed for efficiency reasons. All other original
occurrences of v * ¢, however, are redundant with respect to the computation points given by
Insertsndref, and can be eliminated. This is indicated by the predicate Deletesnpgrest-

Now the second refinement is obtained by the following three-step procedure, which trans-
forms the flowgraph of Figure 1 into the one shown in Figure 6. In fact, our algorithm is unique
in performing this transformation.

1. Introduce a new auxiliary variable h for v * ¢
2. Insert at the entry of every node satisfying

(a) Insertspdrer the assignment h:= v xc
(b) InsUpdgpgpes the assignment h:=h + Eff(n)

3. Replace every (original) occurrence of v x ¢ in nodes satisfying Deletegpdrer by h

Table 4: The Second Refinement

4.3 Third Refinement: Avoiding the Multiple-Addition Deficiency

The flowgraph of Figure 6 still contains unnecessarily many update assignments for h (see
path (14,17,15,12,6,9,11)). Inside extended basic blocks'®, however, the effect of additive
modifications of v onto the value of v * ¢ can be accumulated in update assignments inserted
at use sites of v*c¢ or at the end of the blocks. The effect of such accumulation is illustrated by
means of the differences in Figure 7 and 8, where it is assumed that the original righthand side
term of the assignments at node 1 and 2 is 7% 10. Figure 7 shows the result of inserting an
update assignment for every additive modification of %, as it is realized by the strength reduction
transformation developed so far, and which still suffers from the multiple-addition deficiency. In
contrast, Figure 8 shows the result of accumulating the effects of the update assignments.

Our algorithm for lazy strenth reduction is unique in overcoming the multiple-addition-
deficiency by accumulating the effects of update assignments. In [3] for every modification of
the candidate expression, an update assignment is inserted. However, in contrast to [2] the
insertion of update assignments is controlled by a machine-dependent parameter indicating,
which number of updates is faster than a recomputation of the value. If this number is exceeded
on a path, a recomputation of the value is inserted instead of the sequence of updates. In [4] this
parameter is set to 1. Thus, in the example of Figure 1 Dhamdhere’s algorithm would insert
the assignment h := ¢ % 10 instead of h := h 4 80 in node 9, and therefore would not achieve
any strength reduction.'6

4.3.1 Accumulation

The accumulation of update assignments requires the predicate Accumulating that character-
izes the set of program points, where an accumulating update assignment must potentially be
inserted.

Vn € N. Accumulating(n)=g4 Updategygpes(n) A (Used(n) V EzxitExtdBscBlck(n))

15 A basic block is a maximal sequence of code, where at most the first node has more than one predecessor,
and at most the last node more than one successor (cf. [25]). An eztended basic block is a maximal sequence of
code, in which at most the first node has more than one predecessor, and all sons of nodes with more than one
successor have a unique predecessor. Thus, an extended basic block is a maximal ¢ree of nodes, such that control
can enter the tree only at its root, and a basic block is a maximal tree with just one leaf (cf. [30]).

'®In fact, in the example of Figure 1 the algorithm of [4] delivers the result of the first refinement except that
the updates in the right part of the loop are replaced by the multiplication in node 9.

14
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Here, the predicate FxitEztdBscBlck characterizes exit nodes of extended basic blocks. It is
defined by

Vn € N. EzitExtdBscBlck(n) =4 (n=e) V Z EntryExtdBscBlck (m)

mesucc(n)

where FEntryEztdBscBlck characterizes entry nodes of extended basic blocks:

Vn € N. EntryEztdBscBlck(n)=g4 (n=s) V. > |pred(succ(m))|>1
mepred(n)

The accumulation process has to be terminated in nodes satisfying the predicate
EntryFExtdBscBlck or having a predecessor satisfying Used. Denoting these nodes by the pred-

15



h:=h+20 h:=h+40
7:=19+ 2 1:=1+4
h:=h+30 h:=h+10
1:=1+3 t:=1+1
h:=h+20 h:=h+10
t:=1+2 1:=1+1
I::l h:=h+30
1 a:=h 2:2'::—_3
| I | [hi=ix10]
k N
a:h:l

N

Figure 7: Illustration of the Multiple-Addition Deficiency

icate AccumTerm, the function AccumEff : N —w determines the accumulated effect of a
sequence of update assignments.

0 if ~Updategpgpes(n)
Vn e N. AccumEff(n)=4 § Eff(n) if Updateg gpee(n) A AccumTerm(n)
Eff(n) + AccumEff(m) otherwise (pred(n)={m} )

Remark 4.5 In the example of Figure 8, we can even accumulate the effect of consecutive
extended basic blocks in single update assignments, as shown in Figure 11 in Section A.4. The
point here is that in all predecessors of the entry nodes of “sibling” extended basic blocks the
same update assignment is inserted (in Figure 8: h:= h 4 50). This pattern can be captured
in general by means of a refined version of the Accumulating predicate introduced above.

4.3.2 Third Refinement: The Complete Transformation

The third refinement affects only the insertion points of update assignments. Thus, the pred-
icates characterizing the nodes where the auxiliary variable must be initialized, and where an
original occurrence of v * ¢ can be deleted coincide with the corresponding predicates in the
second refinement, i.e., Insertrsp=gf Insertsndresr and Deletersp=gf Deletespgresr. Update
assignments must be inserted in nodes satisfying the predicate InsUpd;gqg. This predicate is
true for nodes n satisfying the predicate Accumulating with AccumEff(n) # 0.
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Figure 8: Accumulation of the Effects of Update Assignments

The Lazy Strength Reduction Transformation

The lazy strength reduction transformation, which overcomes all three deficiencies mentioned
in Section 3.3, proceeds in three steps.

1. Introduce a new auxiliary variable h for v * ¢
2. Insert at the entry of every node satisfying

(a) Insertrgg the assignment h:=wvx*¢
(b) InsUpd;gp the assignment h:=h + AccumEff(n)

3. Replace every (original) occurrence of v * ¢ in nodes satisfying Deletersg by h

Table 5: The Lazy Strength Reduction Transformation

Table 6 in Section A.3 summarizes the values of the predicates considered during the development

of the lazy strength reduction algorithm for the term ¢ * 10 in the flowgraph in Figure 1.
Application of the lazy strength reduction transformation to the flowgraph in Figure 1 results

in the promised flowgraph in Figure 2, which in fact is free of all the deficiencies discussed above.

5 Conclusions

We have presented a bit-vector algorithm for lazy strength reduction, which is unique in its
transformational power in that it uniformly combines code motion and strength reduction, and
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completely avoids superfluous register pressure due to unnecessary code motion. Moreover, like
its underlying algorithm for lazy code motion ([1]), it is composed of a sequence of unidirectional
analyses. This allows us to apply the efficient algorithms for unidirectional bit-vector analyses
to deal with all program terms simultaneously (cf. [6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) as well
as to interleave strength reduction and copy propagation using the slotwise approach of [18].
Additionally, its modular structure supports further extensions. For example, following the lines

of [34, 20] it is straightforward to generalize this algorithm to programs with (mutually) recursive
procedures, global and local variables, and formal (value) parameters.
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Appendix

Critical Edges

In order to exploit the full power of our lazy strength reduction algorithm, “critical” edges, i.e.,
edges leading from nodes with more than one successor to nodes with more than one predecessor,
must be removed from the flowgraph, since they may block the process of code motion and
strength reduction (cf. [17, 16, 18, 19, 1, 20, 31, 32, 26]), as illustrated in Figure 9.

a)

\ vy \

1| z:=a+b 2 1|l h:=a+0b 2
=h

\ T

———————————

Figure 9: Critical Edges

In Figure 9(a) the computation of “a+b" at node 3 is partially redundant with respect to the
computation of “a+40b” at node 1. However, this partial redundancy cannot safely be eliminated
by moving the computation of “a+b” to its preceding nodes, because this may introduce a new
computation on a path leaving node 2 on the right branch. On the other hand, it can safely be
eliminated after inserting a synthetic node 4 in the critical edge (2,3), as illustrated in Figure

9(b)

. Inserting a synthetic node on every edge leading to a node with more than one predecessor

certainly implies that all critical edges are removed, and additionally, it allows us to insert all
computations uniformly at the entries of nodes.
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A.2 Illustrating Earliestness

s=1 Earliestey
D-Safecy
2 Earliestey 3 Earliestey 4
Earliestgy

5| v:=v/w |Earliestcy 6| z:=vx*c |D-Safecy
7 Earliestcy

N
D-Safecy D-Safecy
8| y:=vx*xc 9
Earliestcey Earliestcey
10 D-Safecy
11| z:=wv*xc |D-Safecy
J

e=12 Earliestgy
Figure 10: Illustrating Down-Safety and Earliestness

Figure 10 shows the predicate values of Earliestcy for a small example. This illustrates that
Earliestgy is valid at the start node and additionally at those nodes that are reachable by a
path on which a prior computation of v * ¢ would not be down-safe or delivers a different value
due to a subsequent modification of v. Of course, v * ¢ cannot be placed earlier than in the
start node, which justifies Earliest(1). Moreover, every computation of v * ¢ in a node on
the paths (1,2) and (1,3,7) would not be down-safe. Thus Earliesteu({2,3,4,5,7,9,12})
holds. Finally, evaluating v * ¢ at node 1, 2 and 5 delivers a different value as in node 8. This
yields Earliest(8).
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A.3 Relevant Predicate Values for the Motivating Example
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Table 6: Relevant Predicate Values for the Motivating Example
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A.4 Refined Accumulation

4 7

=1+ 2 1:=1+4

N
Figure 11: Refined Accumulation of the Effects of Update Assignments
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