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The problem of representing mathematical processes 

is considered in the context of digital computer 
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I.  Introduction 

In this report we intend to examine the problem of 

representing mathematical processes. We shall consider 

this problem in the context of digital computer soft- 

ware and hardware — both because the availability of such 

computational machinery makes this the most useful avenue 

of approach and because this computational machinery has 

played such an important role in shaping the way in 

which people think about mathematical processes.  In this 

context representations of mathematical processes are 

normally called algorithms.  The word 'algorithm', how- 

ever, tends to have a much narrower meaning, and the 

restrictions implied by the use of this word are built 

into the languages in which algorithms are commonly 

formulated. We shall begin by examining briefly the 

function of these standard representational forms. We 

shall try to determine exactly what representational 

restrictions they impose, and where these seem un- 

justifiable, we will propose alternative representational 

forms. 

II.  Conventional Algorithmic Representations 

Let us consider a typical computing situation. A human 

being has some (perhaps relatively imprecise) notion of 

a mapping from some domain of inputs to some range of 
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outputs; this mapping presumably takes form in his mind 

as a sequence of transformations on the inputs. He 

formulates this mapping precisely as an algorithm in 

some computer-oriented language like FORTRAN. A com- 

piler then translates this definition of the mapping into 

a program which drives some computer in such a way that 

it performs the desired mapping. This procedure involves 

a series of translations ~ from human notion to al- 

gorithmic language to hardware states. For these trans- 

lations to be feasible there must be a reasonable simi- 

larity between the way in which human beings structure 

mappings, the structure of the algorithmic language, and 

the structure of the computing machinery. 

'•:> 
The problem is that in designing languages to express 

algorithms (and computers to perform them), we have two 

— often conflicting — aims. The first of these aims 

is to provide human beings with the most convenient 

representational medium possible for the definition of 

mappings. The second is to provide a representational 

form which can be conveniently translated into the most 

efficient hardware implementation possible with respect 

to space and time (i.e., how much equipment is required 

for how long). 

With respect to the first aim, a number of criticisms 
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can be made of algorithmic languages. For purposes of 

this discussion, however, we shall assume at the outset 

that, at least for a large and interesting class of prob- 

lems, these languages — particularly with respect to 

their fundamental conceptual organization — provide the 

most convenient possible representational medium for the 

definition of input/output mappings by human beings.  We 

will concern ourselves instead with the second function 

of algorithmic languages — that of providing a satis- 

factory source representation for the translation into 

the most efficient possible hardware implementation.  We 

shall argue that from this point of view the fundamental 

conceptual view of mathematical processes which underlies 

standard algorithmic languages (and machine design) is 

unsatisfactory. Ws shall propose a representational form 

with a different conceptual groundwork and demonstrate the 

feasibility of translation from standard algorithmic 

languages into this representational form. We shall try 

to indicate both how this representational form might 

enable us to exploit current computing machinery more 

efficiently and, more importantly, what implications it 

might have for the design and exploitation of more power- 

ful machinery. 

We shall begin by examining in some detail the view of 

mathematical processes which provides the foundation for 
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algorithmic languages and machine design. Let us 

consider, for example, a flowblock diagram of an al- 

gorithm defined in some language like FORTRAN. The 

j diagram is a directed graph whose nodes are the flow- 
i 

blocks; each flowblock contains a totally ordered set of 

FORTRAN statements. The flowblocks are connected by 

directed arcs; each arc is an output of exactly one flow- 

block, and an input to exactly one flowblock. Cycles and 

loops are permitted. Each flowblock has at least one 

input arc and at least one output arc with the exception 

of a unique flowblock called entry, which has no input 

arc, and a unique flowblock called exit, which has no 

output arc. Since this diagram is to be a representation 

of a process, it is meaningless without some sort of 

simulation rule. This is provided by creating an entity 

called control. Control can be thought of as a unique 

token which moves through the diagram in discrete steps, 

residing at any given time at exactly one statement.  To 

begin simulation of the algorithm, control is placed on 

the first statement of the entry flowblock. Within a 

flowblock, control moves from one statement to its 

immediate successor (the statements within a flowblock 

are always totally ordered); from the last statement of 

a flowblock, control may move along any one of the output 

arcs to the first statement of some other (or the same) 

flowblock. Each time control resides at a statement, 
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that statement is executed exactly once. When control 

arrives at the last statement of the exit flowblock, 

the simulation is completed. We now have a rough picture 

of an algorithm functioning:  a unique entity named control 

wanders through a "flow diagram" bringing to life one 

statement at a time as it drifts by.  The two most 

interesting features of this picture are (1) that at 

any given time during a simulation, control resides at 

exactly one statement and (2) that in the course of one 

simulation, control may visit the same statement many 

times. 

We must now examine the individual statements.  In order 

to avoid unnece^ary complications, let us invent a 

simplified version of FORTRAN which permits: 

(1) two types of I/O statements:  the word 'READ* followed 

by exactly one variable-name, and the word 'WRITE' followed 

by exactly one variable-name; 

(2) assignment statements, consisting of exactly one 

variable-name followed by *=' followed by either one 

variable-name (or one integer) or else by two variable- 

names (or two integers, or one variable-name and one 

integer) separated by an arithmetic or Boolean operator; 

(3) control statements of two types:  'GO TO* followed by 

a statement-name, and 'IF' followed by a variable-name 
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followed by three statement-names. 

Let us look first at a typical assignment statement: 

A=B+C. The *ariable-names (A , B , and C in this 

example) act as "placeholders" for values. We could 

translate this statement as follows: add the value 

currently assigned to B and the value currently assigned 

to C ; assign the result to A . Hence, we call A the 

result and B and C the operands. Once control en- 

counters this statement, A will continue to "stand for" 

the value assigned to it by the execution of the state- 

ment until control encounters another assignment to A 

(or re-encounters the same assignment to A ).  In other 

words, any variable-name occurring on the right side of 

an assignment statement (i.e., as an operand) represents 

the result of the most recently executed assignment to 

that variable-name.  Because the same variable-name may 

be designated as the result in several different statements, 

and because control may pass to the same statement more 

than once, a given variable-name may represent many 

different values during one performance of the algorithm,, 

However, the fact that control can reside at only one 

statement at a time guarantees that at any given time 

during the performance of an algorithm, a given variable- 

name represents (at most) one value (since there can be at 

most one most-recently-encountered assignment to that 
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variable-name). Note that the concepts control and 

variable are interdependent. 

Initially, at least, we can think of I/O statements as 

"incomplete" assignment statements. A READ statement 

assigns a value to a variable-name; a WRITE statement 

uses a variable-name as an operand. 

Control statements do not directly affect the values of 

variables.  Instead they determine the path of control 

from one flowblock to another.  In particular an IF state- 

ment uses the current value of some variable (which we may 

think of as the operand of the IF_ statement) as the 

criterion for determining v/hich of several alternative 

"paths" (i.e., output arcs from the flowblock) control 

will take.  Consequently, such statements are commonly 

called "decisions". 

We now have a conceptually complete model of an algorithm. 

If we eliminate the two-dimensional aspects of this picture 

by arranging the statements in a list, we have a typical 

algorithm definition in an algorithmic language.  One 

statement in the list can be designated the initial state- 

ment and another the terminal statement.  To "run" the 

algorithm we place our "control token" on the initial 

statement.  Control then moves down the list executing 
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one statement at a time; some of the statements may be 

control statements whose execution may cause control to 

be sent to some statement other than the immediately 

subsequent statement; when control arrives at the ter- 

minal statement, the "run" is completed. Hardware per- 

formance of an algorithm is pictured with the seme 

conceptual machinery. A program consists cf a set of 

instructions, each of which occupies one location in 

memory. Memory is totally ordered — each location has 

a unique successor. There is a control counter which 

(roughly speaking) always contains the memory address of 

the next instruction to be executed and there is some 

sort of central processor which executes the instructions 

one at a time. Each time an instruction is executed, the 

address in the control counter is incremented so that it 

contains the address of the next location in memory. The 

execution of a transfer instruction, however, may place 

the address of some other memory location in the control 

counter. An instructio- which specifies the execution of 

some arithmetic or logical operation may designate a 

memory location whose contents are to be used as an operand; 

or an instruction may designate a memory location in which 

the result of some such operation is to be stored. Thus 

memory locations may be used very naturally in a way 

analogous to variable-names in an algorithmic language 

representation.  In general, the translation from 
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algorithmic language to hardware will be relatively 

straightforward. 

III. Part-Part Matching 

This conceptual machinery for representing mathematical 

processes is in some respects extremely powerful.  The 

fact that during one performance of an algorithm the same 

statement may be executed many times and that the same 

instance of a variable-name may represent a different 

value each time, means that a relatively small set of 

statements may represent an arbitrarily long sequence of 

different computations.  In hardware terms this means 

that a relatively small computing device can be programmed 

to perform a relatively Jong and varied sequence of oper- 

ations.  Let us illustrate more clearly, with the help of 

a simple example, exactly how this conciseness is achieved. 

Consider the following algorithm consisting of five state- 

ments : 

READ A 

READ B 

A=A-B 

A=A*B 

WRITE A 
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Suppose that the input domain is defined as follows: 

the possible input values of A are the integers 1, 2, 

and 3; the possible input values of B are the integers 

1 and 2. The algorithm could then be thought of as 

representing the following mapping: 

3,2 

However, the algorithm defines the mapping as a sequence 

of arithmetic transformations on an ordered input pair so 

that from this point of view we may think of the algorithm 

as representing a set of computational histories — one 

for each input pair in the domain, as follows: 

INPUT 1,1 INPUT 1,2 INPUT 2,1 INPUT 2,2 INPUT 3,1 INPUT 3,2 

0=1-1 -1-1-2 1-2-1 0-2-2 2-3-1 1-3-2 

0=0*1 -2—1*2 1-1*1 0-0*2 2-2*1 2-1*2 

OUTPUT 0 OUTPUT -2 OUTPUT 1 OUTPUT 0 OUTPUT 2 OUTPUT 2 

The algorithmic definition provides one representation for 
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all of these computational histories by what we will call 

part-  t matching;  "parts" of different computational 

histories are "matched" to each other in such a way that 

all the computational histories may be "overlaid" and 

given one representation. Each variable name then re- 

presents a set of mutually exclusive values (for example, 

in any given performance of the algorithm, B represents 

either 1 or 2), and each statement therefore represents 

some set of mutually exclusive computations (for example, 

A-B represents either 1-1 or 1-2 or 2-1, etc.,).  Let us 

next examine the role of control with the help of a slightly 

more complicated example: 

1 READ A 

2 READ B 

3 B»B*B 

4 A=A-B 

5 IF A 6,8,4 

^ 

\ 

r 
8 WRITE A 

9 WRITE E 

1 
6 B=B+A 

7 IF B 8,8,6 

"7  
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I-I 
We will now take for granted the kind of part-part 

matching discussed in the preceding paragraphs and con- 

sider only the range of "control histories" which this 

algorithm represents.  By "control histories" we mean 

the set of possible paths from entry to exit.  (Each 

"control history" may of course represent many computa- 

tional histories.)  Given some finite domain of input 

values, we could in principle represent each possible 

control history as a directed graph as follows: (sea 

next page) 
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If we took such a set of all possible histories as our 

starting point, we could view the task of producing 

an algorithmic language definition of the algorithm as 

a process of further part-part matching: we first 

"fold up" each of the individual histories by matching 

different parts of the same history to each other, as 

follows: 

I S 

! 

1, 2, 3, i, • • • j, 
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In history j , for example, we have matched operation 

Sj with operation 52; since operation 5, had operation 

4j as its successor and operation 5, had operation 6. 

as its successor, in the foided-up representation of 

the history operation 5 has both operation 4 and operation 

6 as successors. We can now "overlay" all the folded up 

histories by similarly matching parts of different 

histories to each other. We match, for example, operation 

5 in history 2 with operation 5 in history j . The 

result of this part-part matching is of course equivalent 

to a flow diagram of an algorithmic language definition 

of the algorithm. 
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IV.  Fundamental Restrictions Implicit in 
Conventional Representational Forms 

Clearly, the part-part matching information implicit in 

standard algorithmic definitions is extremely useful, 

and we will want to retain it in any alternative 

representational form we might propose.  Specifically, 

this information leads to a very efficient use of space. 

Roughly speaking, standard algorithmic formulations 

approach maximum efficiency with respect to space and 

minimum efficiency with respect to time.  They make very 

inefficient use of time because, very simply, they require 

that only one thing be done at a time.  The notion of 

control as a unique "entity" which passes from one 

statement or instruction to another forces a total 

ordering on all the computations in the performance of 

an algorithm; every history will necessarily consist of 

a totally ordered sequence of operations.  Consider the 

following two sequences of statements: 

A=B-C A=B-C 

X=A2 Y=/Ä 

Y=A X=A2 

Z=X+Y Z=X+Y 

These two sequences are computationally equivalent; an 

algorithm writer would nevertheless be forced to choose 
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one of them arbitrarily. Assuming we had adequate com- 

puting machinery, however, we could make more efficient 

use of time by performing the second and third statements 

concurrently. We might then find it useful to exhibit 

this possibility explicitly by representing these four 

statements as a partial ordering defined by the data 

dependencies. 

♦ 

In general an algorithm consists of a set of partially 

ordered operations, where the partial ordering is 

determined by the data dependencies. We can obviously 

increase efficiency with respect to time by performing 
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unordered operations concurrently. 

Furthermore, once we admit the possibility of exploiting 

partial ordering information by performing different 

operations concurrently, it emerges that other arbitrary 

restrictions have been implicitly imposed by the standard 

representational forms. Consider, for example, the 

following net model of a three-stage process: 

next input may 
be provided 

1st stage not 
in progress 

input available 

-initiation of 1st stage 

1st stage in progress 

.completion of 1st stage 
initiation of 2nd stage 

2nd stage 

3rd stage 

i 

next output may 
be provided 

output available 
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The three stages are totally ordered, which would seem 

to exclude any possibility of concurrent operation. Let 

us assume that each stage takes one unit of time; it 

will therefore take three units of time for each mapping 

of an input to an output.  On the other hand, if we 

further assume that inputs can be provided (and outputs 

accepted) by the environment at the rate of one per 

time unit, then as soon as the first stage has finished 

with the first input, it may accept the next input.  Thus 

the inputs can be pipelined so that all three stages are 

operating concurrently.  The throughput rate would then 

approach one output per time unit.  If we could abandon 

the notion of control we might similarly be able to 

represent the possibility of pipelining in an algorithmic 

context.  Suppose, for example, that the net diagram above 

is a model of a program loop, with the process stages 

representing the individual instructions and the ordering 

relations corresponding to the data dependencies within 

the loop.  Then, despite the fact that the instruction 

executions (within any one iteration of the loop) must 

be totally ordered, all the instructions may be performed 

concurrently (by overlapping executions from successive 

iterations) so that the throughput rate is limited only 

by the duration of the most time-consuming single instruc- 

tion.  Similarly we could represent the possibility of 

pipelining the algorithm as a whole — that is, the 



-   .'T   ■      .,TJ ■.■:.   ■ j V**?7* rUtSHf+tXtiJr 

20. 

possibility of an algorithm or program working on more 

than one input set concurrently. 

Another interesting restriction implicit in the standard 

view of algorithms is that of doing only what must 

necessarily be done. Consider the following example: 

A-B+C 

I» (A/327)-57 

IF I n,n,m 

n 

r 
A*A' 

^ 

m A-/K 

I I » I 

If the computation of I is extremely lengthy we might 

profitably "defer the decision". That is, whixe we are 

computing I and then "making the decision", we might 

concurrently pursue both of the alternative branches — 

even though one of them will turn out to have been 

"unnecessary". We could then use the result of the 

decision to choose which of the alternative values of A 

we wished to retain. 
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fl Given the possibility of concurrent operation, we might 

also wish to question the automatic one-one mapping of 

variable names to equipment locations. Two uses of the 

same variable name might be entirely unrelated in terms 

of data dependency and thus potentially concurrent if 

mapped to different equipment locations.  Other types of 

space/time trade-offs might also become more interesting. 

A computation which is a "bottleneck" in the performance 

of an algorithm might be "duplicated" in a hardware 

representation. 

Many such possibilities for taking advantage of partial 

ordering information and potential concurrent operation 

are already exploited to a limited extent on both the 

hardware and software levels. At the level of individual 

instruction execution there is normally a very high 

degree of concurrent operation, of course.  However, at 

what we might call the "programmable level" of machine 

operation there is very little.  Machines like the CDC 6600, 

the CDC 7600, and the IBM 360/91 permit some concurrent 

execution of instructions.  The CDC 7600 furthermore, has 

functional units which may be pipelined (so that a given 

functional unit may be working on several instructions at 

a time).  Programs for these machines, however, must consist 

of totally ordered sets of instructions, and the central 

processor decodes the instructions sequentially; furthermore 
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the register and functional unit reservation schemes 

impose further restrictions on parallel operation. 

Consequently, potential concurrency is exploited to a 

very limited degree and only very locally. Many machines 

allow concurrent I/O processing, and there are a number 

of machine designs which allow several central processors 

to pursue loosely related computational paths concurrently. 

The 360/91 allows a kind of decision-deferral or "look- 

ahead" which involves pursuing the "most likely" branch 

provisionally before a conditional branch instruction has 

actually been executed. 

Frequently, even though machine operation is sequential, 

one sequence of operations will be more efficient than 

another, computationally equivalent sequence (for example, 

because it requires less intermediate storage} so that, 

on the software level, there are a number of optimization 

techniques which use partial ordering information for 

resequencing. The same kind of information may also 

expose redundant computations — caused either by several 

redundant expressions or by an expression which is in- 

variant within a loop. Again, these techniques are applied 

independently and (except for recognition of invariance 

within a loop) only locally — usually within a single flow- 

block. All of these procedures, both hardware and software, 

are closely related:  they are piecemeal attempts to provide 

p—- 
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more efficient hardware implementations by circumventing 

arbitrary restrictions imposed by the representational 

forms in which algorithms are defined.  No consistent 

alobal exploitation of these possibilities can be 

achieved, however/ because the necessary information is 

inaccessible in such representations. 

V.  Partial Ordering 

Many optimization techniques involve translations of 

algorithms (or more usually, segments of algorithms) 

into partial orderings representing data dependencies. 

However, such partial ordering techniques normally preclude 

statements of the form " a precedes a "; consequently 

cycles must be excluded.  Furthermore, no attempt is made 

to represent the interaction of decisions with data 

dependencies. This means that generation of all partial 

ordering information for an algorithm would involve 

producing a partial ordering for each possible control 

history of the algorithm.  This problem remains serious even 

if we restrict our attention to one program loop.  Either we 

must limit ourselves to one iteration of the loop — in which 

case we exclude all information about concurrencies across 

different iterations of the loop (it is precisely this 

information which can provide us with "pipeline" solutions) 

— or we must "unwind" the loop (i.e., treat it as one long 
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"straight-line" sequence of computations rather than as 

a loop), which, although it does lead to explicit repre- 

sentation of concurrencies across successive iterations, 

necessarily means throwing away the part-part matching 

information. 

We should like to be able to represent algorithms as 

partial orderings of data dependencies without sacrificing 

useful part-part matching information. We will therefore 

use Petri nets as our basic representational medium. Petri 

nets can be used to exhibit explicitly both partial ordering 

and part-part matching information because they represent, 

the behavior of cyclic systems of partially ordered events 

and states. For a brief description of Petri nets see 

Appendix I. 

Let us first consider the use of Petri nets to model 

algorithms in which control is as straightforward as 

possible — that is, algorithms without any conditional 

branches and hence with only one possible control history. 

We can represent each arithmetic or logical operation with 

the following schema. 



operation initiation 

operation completion 

25. 

o.i.p. : operation in progress 

o.i.p. 

op. 

op2 

°Pi 

operation completed, 
not in progress 

operand, available 

operand- available 

operand.used in oper- 
ation, not available 

op' : operand, used in operation, 
not available 

ur' : result of operation may be 
1  made available; use1 of pre- 

vious result (as an operand 
for some operation) has already 
taken place 

ur. : result of operation available 
for use-i 

Note that each use of a given result is represented 

uniquely.  Accordingly, each use of a variable-name as 

an operand (i.e., each occurrence of the variable-name 

on the right side of an assignment statement) will be 

represented as follows: 
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value generation 

value use 

operatic«^ , which generates values for x, in progress 

operation. f which uses x as an operand, in progress 

x is available as an operand for operation, 
value of x may not yet be changed. 

The 

x used as an operand for operation, . The value of x 
may be changed as a result of operation. . 

Utm _____^___ 
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We would then represent the four line example which we 

used earlier as follows: 

0 C* v\z 

A=B-C 

X=A2 

Y=/Ä 

Z=X+Y 

,'   fi 
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Note that the schemata for operations and for variable- 

uses have cyclic behaviors and that therefore the 

algorithmic representation which we have constructed from 

them also behaves cyclically. One important consequence of 

this is that our representation expresses not only "forward" 

data dependencies (the computation of the next value for X 

cannot begin until the current operand value for A has 

been computed) but "backward" data dependencies as well (the 

value of A may not be changed to its next value until the 

current value has been used by the operations which compute 

X and Y ). 

As long as an algorithm contained no decisions, we could 

apply these schemata throughout to obtain an adequate 

representation.  As soon as we admit branching, however, 

this procedure is no longer adequate, because decisions 

render the dependency relations variable.  Consider, for 

example, the following flowblock diagram, in which we will 

be concerned only with the variable A : 

• ■ • - 'in ■■■  lüMM 



x_i 
n  A= 

f * 

m ... =A .   . • 
II . 

* 

\ / 

29. 

IIU 

7-^- 

Statement n generates a value for A which is used in 

statement m .  Each time a value is generated for A at 

statement n  (each time control flows through flowblock 

I ), that value may be used at statement m once, or many 

times, or not at all (control may flow from I to II to III; 

or it may flow from I to II and then recirculate through 

II any number of times; or it may flow from I to III and 

back to I again).  Or we might complicate the picture 

slightly so that there are two alternative statements, 

either one of which may have generated the value used 

in any given execution of statement m , 
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In any algorithm which contains branching, the data 

dependencies are "variable" — that is, they are determined 

by the particular path "chosen by control" when the 

algorithm is executed.  It should be kept in mind, further- 

more, that both forward and backward data dependencies are 

at issue; we are interested not only in when the appropriate 

value for an operand is available and may be used but also 

in when a value is no longer needed and a new value may be 

provided. The data dependencies in an algorithm with 

branching constitute what we might call a "variable partial 
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ordering".  Clearly, before we can consider the problem 

of representing such variable partial orderings, we will 

have to deal with the problem of extracting the necessary 

data dependency information from the algorithmic language 

definition of an algorithm. 

VI.  Variable-Names and Data Dependency Relations 

We have already discussed one role of variable-names:  a 

variable-name represents a set of mutually exclusive 

values; at any time during performance of the algorithm, 

(at most) one of these values will hold.  We have also 

considered another role of variable-names:  different 

(and possibly unrelated) uses of the same variable-name 

may be — and normally will be — mapped to the same 

machine location; thus the various uses of a given 

variable-name constitute part-part matching information. 

(Of which we may or may not wish to take advantage — as 

we have already pointed out, it will frequently prove 

advantageous to map different uses of the same variable- 

name to different machine components in order to allow these 

uses to be concurrent.)  We will now want to consider 

another role of variable-names:  we will want to examine 

the ways in which variable-names interact with control to 

determine data dependencies. 

•^MWHKflMMKMMI 
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1 Consider the following example, in which, again, we are 

interested only in the variable A . 

/ 

. A=   • - - 

n . . . =A • - • 

o . . . =A • • ■ 

p 

q 

A= . • 

. =A . 

i 

We said earlier that an occurrence of a variable-name on 

the right side of an assignment statement (i.e., a use of 

a variable) represents the result of the most recently 

executed assignment to that variable-name.  Whenever 

statement n or statement o is executed, the occurrences 

of A in these statements must necessarily represent the 

value produced by the most recent execution of statement m . 

Consequently statements n and o are ordered with „respect 

to statement m :  statement n is later than statement m , 

M •■■ ■■■■ - - ■  ■■ i  
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and statement o is later than statement m . Because 

the uses of A in statements n and o always represent 

the value generated by the most recent execution of state- 

ment m (i.e., m is the only assignment statement which 

can produce values for those uses), we call those uses of 

A members of the A equivalence class generated by 

statement m . Similarly, the use of A in statement 

£ is a member of the A equivalence class generated by 

statement £ . Let us now expand the example as follows. 

m 

n 

A= • 

* 

• • • ~A 

... =A 

•  *  • 

L 

\ 

r ...»A . . . 
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After each generation of the A equivalence class 

generated by statement £ , the use of A in statement 

r may occur once, or many times, or not at all before the 

generation of some other A equivalence class, However, 

the use of A in statement r always (if and whenever 

it occurs) represents the value generated by the most 

recent execution of statement £ , and therefore it is 

a member of the A equivalence class generated by state- 

ment £ .  One way, then, in which variable-names and 

control interact to determine data dependency is in the 

generation by assignment statements of equivalence classes, 

which define ordering relations between operations. Each 

occurrence of a variable-name on the left side of an 

assignment statement represents the generation of an 

equivalence class; each use of that variable-name for which 

that assignment statement is always the most recent assign- 

ment to that variable-name is a member of that equivalence 

class. 

Let us now consider an example which illustrates another 

type of data dependency. 

; 
: I 
i 

| 
: 
_ 

Lss m "«■-    . —*- *— 
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I ' 

m A= 

7 

i 

i ' 

i * 

i ' 

^ 

Here there are two possible statements, m and n , which 

may generate a value for the use of A in statement o . 

These uses of the variable-name A express both a part- 

part matching and a set of ordering relations. The results 

of two alternative computations are "merged"; whenever 

statement o is executed, it uses as an operand the most 

recent result of either statement m or statement n 

— whichever was executed most recently.  In the context 

of our earlier discussion, we can describe merges as 

the result of part-part matching — either the "folding 

up" of one history or the "overlaying" of different 

histories (or both),  in hardware terms, such part-part 
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matching, represented by merges, allows the mapping of 

alternative control histories onto the same equipment. 

Statements m and n both generate A equivalence 

classes.  But since the use of A in statement o 

represents a value which may have been produced by either 

m or n , it cannot be a member of either equivalence 

class.  Because we will want the A equivalence classes 

to constitute a partition of all uses of A , we will 

let the uses of A in statements o and p_ constitute 

a third equivalence class.  Roughly speaking, we can think 

of this equivalence class as having been generated when 

either statement m or statement n has been executed, 

and a decision has been made to go to flowblock III.  In 

the flowblock diagram we would locate the generation of 

the equivalence class at the "merge-point" — that is, at 

the entry to flowblock III. Note that whenever statement 

o is executed, this merge-point will then always be the 

most recent point at which an A equivalence class was 

generated.  In terms of the data dependencies, a set of 

alternative ordering relations has been defined:  either 

o is later than m, or o is later than n . We have, 

then, two types of equivalence classes, which represent 

ordering relations between operations. We shall want to 

partition the uses of each variable-name into equivalence 

classes.  To accomplish this we use an algorithm by Warshall, 

which is described in Appendix II.  Here we shall restrict 

4 
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ourselves to a very brief account of the algorithm.  It 

might be useful to recast the problem of partitioning 

variable-uses into equivalence classes in more familiar 

terms. A common optimization problem — and one which 

is normally dealt with only locally — is the elimination 

of redundant computation, or common subexpression elimina- 

tion.  Suppose, for example, that the expression SINF (A) 

appears twice in an algorithm. We would like to know 

whether we can compute the sine of A once for both uses. 

We would like to know, roughly speaking, if both instances 

of A "always represent the same value." More precisely, 

is there a point p_ in the flow diagram such that on no 

path from £ to either of the uses is there an  A-assign- 

ment and such that there is no path from any A-assignment 

to either of the uses which does not pass through £ ? 

(If such a point exists, we can safely place the computation 

of the sine of A there.)  Based on our definition of an 

equivalence class, we can restate this question as follows: 

Are both instances of A members of the same equivalence 

class? Warshall's algorithm, then, may be thought of as 

a global solution of the problem of common subexpression 

elimination. 

As an example, let us take the flow diagram below and 

apply Warshall's algorithm to the variable A .  Only the 

occurrences of A actually appear in the diagram, and 

MMBMI MMHH 
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the statements in which they occur have been numbered 

for convenience. 

We expand this graph by replacing each flowblock-node F 

with a totally ordered set of nodes * ,  as follows: 

- if F is the entry flovblock, one node called 
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the entry-node, which is the earliest node in 

$ ; or 

if F has more than one input arc, one node 

called a flow-node, which is the earliest node 

in $ ; and 

a set of instance-nodes, one corresponding to 

each instance of A in flowblock F ; these 

nodes are ordered according to the order in 

which the corresponding instances of A occur 

within the flowblock (where the left side of 

an assignment statement is later than the right 

side); and 

- if F has more than one output arc, one node 

called a decision-node, which is the latest 

node in $ ; or 

- if F is the exit flowblock, one node called 

the exit-node, which is the latest node in $ . 

All input arcs of F become input arcs of the earliest 

node in $ ; all output arcs of F become output arcs of 

the latest node in $ .  If $ is empty (i.e.,  F has 

one input arc, one output arc, and contains no instance of 

the variable), then it must have some unique precedessor 

flowblock G and some unique immediate successor flow- 

block H ; replace the arc from G to F and the arc 

from F to H with one arc from G to H .  The re- 

sulting graph for the example above is the following: 
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I   ! 

(6>: 

i 
exit» 

Note that there is still a unique node which is earlier 

than every other node in the graph (the entry-node) and 

a unique node which is later than overy other node in the 

graph (the exit-node). The purpose of the algorithm is to 

subscript the instances of A in such a way that they 

are partitioned into equivalence classes. This means 

that we want to identify a minimal set of nodes in the 
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above graph as equivalence-class-generators such that 

every other node in the graph has a unique most recent 

equivalence-class-generating ancestor. He know that all 

assignments to A generate equivalence classes; therefore, 

we will circle all nodes representing left-side instances 

of A and label them uniquely as A cl lc2 ' en 
We will also circle the entry node and label it A cO 

(6). 

I 
exit • 
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It remains to determine the equivalence classes which 

must be generated because of merges. Roughly speaking, 

the algorithm accomplishes this by pushing the name of 

each circled node along directed arcs to all uncircled 

nodes which can be reached without encountering another 

circled node.   When two different names meet on an 

uncircled node, that node is circled; such newly circled 

nodes are uniquely labeled as Af. , Af~ i   ••• » Afm • 

The names of the newly circled nodes are also propagated 

until no more nodes may be circled.  (It should be 

intuitively clear that only flow-nodes are candidates 

for circling).  Upon completion of the algorithm every 

node is either circled or has associated with itself the 

name of exactly one circled node:  namely, its unique most 

recent circled ancestor.  The nsmes define the partition 

into equivalence classes.  Each circled node corresponds 

to an equivalence-class-generating event — either an 

assignment to A or a merge. 
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entry (OA ? cO 

CDCOA cl 

(2) .  A 

(6) «A 

I f2 

exit »A f2 

Millstein and Warshall prove that the solution is unique 

and minimal. 
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t Let us make one further modification in the above graph, 

as follows. For each circled flow-node, which defines 

some equivalence class Af. , consider the names associated 

with those nodes vrhieh are its immediate predecessors. 

For each such name Aj^  (where k represents either f 

or c ) — and there ifiust be at least two different names 

— introduce a new uncircled node into the graph, and 

assign it the name Aj. .  Introduce new arcs such that 

this new node is the immediate successor of each A,, 

node which was an immediate predecessor of the circled 

Af-  node.  Eliminate the arcs from these immediate pre- 

decessors to the circled A...  node, and introduce a new 
fi 

arc from the new A, . node to the circled Af.  node. 

Application of this procedure to the example above produces 

the following graph: 
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(3)1 

entry (TJA^ 

I (2)» A 

cl 

c2 
Lcl 

/-   >> 
c3 

I 
(4)1 A 

(4) CO A 
C3 

exit»A 
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f2 

We call this graph the complete p-graph of A . Let us 

provide several further definitions for future use. We 

■..-.■. rfMMixMNc£AW«<*JWM 
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call the set of all nodes In the complete p-graph of A 

which have associated with them the name A^ the members 

of the equivalence class Aki . We call the set of all 

nodes which are immediate successors of members of some 

equivalence class A. . but which are not themselves 

members of the equivalence class Aj.  the exit nodes of A. . 

We define the graph of the equivalence class Aki as the 

subgraph of the complete p-graph of A which contains the 

members of A^^ together with the exit nodes of A. . . 

Thus the graph of the equivalence class Ac3 in our example 

would be the following: 
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VII.  The Translation of Conventional Algorithms 
into Cyclic Partial Orderings 

Let us assume that we have applied Warshall's algorithm 

to each variable in some algorithm. We can now consider 

the problem of giving this data dependency information 

explicit representation and of relating it to decisions. 

Let us continue to represent operations as before. 

initiation 

.completion 

For each assignment in an algorithm we will produce one 

such operation representation. We can represent decisions 

(i.e., IF statements) similarly, except that we will 

represent the various possible outcomes or decision- 

resolutions explicitly as net conflict. 
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A decision has a variable as an operand just like any 

other operation.  (Note that for each decision in an 

algorithm there will be in each p-graph of some variable 

in the algorithm a unique decision-node corresponding to 

that decision. Similarly, for each decision-resolution 

there will be a unique arc — one of the output arcs of 

the decision-node — corresponding to that decision- 

resolution.) Since we are aiming at a representation 

which explicitly exhibits data dependencies and since 

these data dependencies are determined by the interaction 

of control with variable-names, we will want, roughly 

speaking, to link decision results directly to variable- 

uses to generate ordering relations between operations. 

Therefore we will expand our previous representation of 

a variable-use from: 

generation 

use 
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use of A... . __i 
ki(u) 

(k stands for either f or c ; hence, ki is a 

subscript identifying the equivalence class of which 

the use is a member. 

u is a subscript which unqiuely identifies the 

particular variable-use being represented. 

Arcs a and b are alternatives (exactly one is 

present in any given representation) as are arcs 

f and £ . 

Places d and e represent decision results.) 
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Before giving formal rules for applying this schema, 

let us describe it in informal, approximate terms. 

A, . . .  has the same interpretation as in our previous 

schema:  the current value of the variable is available 

for this use; it may not yet be changed to the next 

value.  Similarly, A/.. .  means:  the current value 

has already been used and is no longer needed; it may be 

changed to the next value. A,. . .  represents a sort 

of limbo:  the current value is available, but this use 

of it may or may not take place (before the generation of 

its next value), depending on the outcome of one or more 

decisions. Places c , d , and e are connected to 

transitions representing decision-resolutions. A decision- 

resolution which causes this use of A to take place 

(before the next generation of the equivalence class) has 

e as an output (and is called "an enabling event" for this 

variable-use) and c as an input. A decision-resolution 

which guarantees that this use of A will not take place 

(before the next generation of the equivalence class) aas 

d as an output (and is called a "disabling event" for this 

variable-use) and c as an input,  c means:  the last 

decision result affecting this variable-use has "taken 

effect"; the next relevant decision result may be generated. 

The transition labeled "use of A. . , v" represents the 
Kl \M) 

initiation of the operation in which this instance of A 
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is an operand.  If the equivalence class A. >  is 

generated by an assignment, then the transition labeled 

"generation of A^. " represents the completion of the 

operation which provides values for that equivalence 

class. All representations of variable-uses which are 

members of the same equivalence class will, of course, 

share the same generating transition and have different 

use transitions.  If the equivalence class A. .  is 

generated by a merge of several A equivalence classes, 

we create a set of alternative generating events — one 

for each equivalence class which participates in the 

merge.  Each such generating event will consist of one 

transition which has as an "operand" a variable-use 

representation which is a member of one of the merging 

equivalence classes.  Each of these alternative 

generating transitions will, of course, generate the 

entire equivalence class.  For example: 

--*»s.va^ mm*mmm'tew -■ * 
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generation 
of A, 

generation 

The arcs a and b are alternatives — exactly one of 

the two is present in any given representation of a 

variable-use.  If each time the equivalence class Aki is 

generated, this use must take place at least once, then 

arc a is present and not arc b .  If, after each 

generation of the equivalence class Aki , this use may 

or may not take place, then arc b is present and not arc 

a . Similarly, arcs f and g_ are alternatives.  If for 

each generation of the equivalence class this use may take 

place at most once, then arc f_ is present and not arc g_ . 

If for each generation of the equivalence class this use may 

take place more than once, then arc g_ is present and not 
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arc f . 

Let us now restate these rules more precisely.  For 

each uncircled node in the complete p-graph of A which 

is not a flow-node or a decision-node, we will produce 

a variable-use representation in accordance with the 

schema above and the following rules.  Consider any such 

node A, . .   . , which is a member of some equivalence class 

*ki 

If the equivalence class A^-  is generated by 

an assignment, then the generating transition 

of Aj^ • / v  is the termination transition of 

the operation corresponding to the generating 

node of Aj. . 

If the equivalence class A^-  is generated by 

a merge, then there is a set of alternative 

generating transitions for A^ /u\  — one 

corresponding to each immediate predecessor 

node of the circled A^ node. 

If the node A^■/uj  does not have as an 

immediate successor a circled flow-node, then 

its use transition is the initiation transition 

of the operation associated with it. 

If the node A^ /u«  has as an immediate 

successor a circled flow-node, then its use 

transition is one of the set of alternative 
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generating transitions for the equivalence 

class defined by the circled flow-node. 

If every path from the circled Aj.  node to 

an exit-node of A, .  contains A. . . ., then 

the representation of A, . . .  contains arc a 

and not arc b . 

Otherwise it contains arc b and not arc a . 

If in the graph of A. .  there exists a circuit 

such that all nodes in the circuit are members 

of Aj^ •  and such that A^^ /u*  is contained in 

the circuit, then the representation of A^wu) 

contains arc £ and not arc f_ . 

Otherwise it contains arc f and not arc £ • 

- For each decision-node AJH (v)
eAki » such that 

there exists a path from A^^y)  to Ak^/uj 

which is contained in Aj^ , and such that there 

exists at least one path from Aki(v)  to 
some 

exit-node of Aj-  which does not contain A
IH(U)

: 

Let P be the set of all paths p such that the 

first node of p is &ki(v\     an<* the last node 

of p is an exit node of A^^ and such that the 

last node of p is the only node in p which is 

not a member of A^ .  Partition P into sub- 

sets P]_ , P2 , ... , Pn according to the second 

node of each member path (i.e., according to the 

branch taken at the decision), so that each 
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subset corresponds uniquely to a resolution of 

the decision. 

- For each subset Pft such that all members 

of Pv contain Aj.,  . , let the decision- 

resolution transition corresponding to Pft 

have as an output place e  (in the re- 

presentation of A]c£ / j) and as an input 

place c . 

- For each subset Pj such that no member 

of Pj contains Ak£/Uj , let the decision- 

resolution transition associated with ?j 

have place d as an output and place c 

as an input. 

Constants are treated similarly. For each use of a constant, 

we produce a representation in accordance with the schema and 

rules for variable-uses. However, since there can be no 

generation event for a constant, part of the schema will be 

superfluous, (as indicated in the following figure by 

broken lines). 

[    k' *3». 

use 

.:■■■: 
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Furthermore, if place e is not an output of any tran- 

sition — i.e., if the constant-use in question occurs in 

every control history of the algorithm — then we will 

eliminate places e and c from the representation as 

well, so that the value is made available again after 

each use, independently of any other computation or 

decision. This would leave us with the following schema: 

These representational schemata for variable-uses (and 

constant-uses) and decisions differ radically from con- 

ventional representations. A decision is no longer viewed 

as a point in a flow diagram at which control chooses one 

of several alternative paths and a decision-resolution 

simply as the choice of one of those alternative com- 

putational paths.  Instead each decision-resolution has a 

set of results. Each of the results affects the status of 

some one variable-use, either enabling or disabling it 

— i.e., each decision-resul determines either a forward 
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or a backward data-dependency relation. One important 

aspect of this is that the various effects of a decision- 

resolution are given individual, explicit representation. 
« 

Even more interesting, however, is the fact that this 
I 
j 

schema is free of the dualism of conventional representa- I 
I tions:  control and computation no longer have different 

ontological status; decision results and computational 

results alike are explicitly represented as conditions 
i 

(or "sub-states" or "signals") in a partially ordered, 

cyclic system of such conditions. 

Having explained our representational schemata in detail, 

we will now replace them with more concise notational 

forms.  We shall replace the operation schema with a 

To model decisions, we shall break the lower bar to 

represent the various possible decision-resolutions. 

Furthermore, we shall name each decision-resolution in 

double bar. 
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the algorithm uniquely. 

11 

We shall replace the variable-use model with a rectangle; 

an output arc will connect the generating transition to 

the variable-use model; an output arc will connect the 

variable-use model with its use transition. A diagonal 

in the upper right corner of the rectangle indicates the 

existence of arc a ; its absence indicates the existence 

of arc b . A diagonal in the lower left corner of the 

rectangle Indicates the existence of arc f ; its absence 

indicates the existence of arc g_ . The names of all 

enabling events of the variable-use (i.e., inputs of place 

e ) are listed along the right edge of the rectangle. The 

names of all disabling events (i.e., inputs of d ) are 

listed along the left edge. 



^äsm' "■■ymr   ■ 

59, 

I : 

J 

generation 

P P 

•use 

We can condense the following example accordingly. 

(ii) 

ii 

—'•""■■"iniHuiaii 



_y -, ,— !"■■■■ ■■■'■-—•■'■•.> B r~i l Tr-~j». .^aflgrcy^, 

60. 

Before we can apply our representational procedures to 

an example, we must (for the time being at least) impose 

one further restriction: all decisions must be ordered. 

This is easily accomplished since every decision- 

resolution involves a commitment to a unique next decision. 

Therefore, for each decision y_ in the algorithm, we 

create a place which is input to the initiation transition 

of that decision; we can then make this place an output of 

every decision-resolution transition which has y_ as its 

immediate successor decision. 

VIII. An Example of the Translation Procedure 

Let us now take the following algorithm segment as an 

example for translation into our representational form. 

For the sake of convenience and clarity we will number 

each statement and each decision-resolution. 

t 
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1 A»C+E 

2 IF T 7,7,3 

4 

5 

6 

I=-10 

B=B+A 

1=1+1 

IF I 4,7,7 

ill 

III 

7 

8 

D=B+A 

WRITE D 

IV 
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p-qrapha for the algorithm 

'cO(l) 

1 
'CO 

1 
'cO 

-cO 

I 
-cO 

E 
C0(1) 

I 
'cO 

cO 

c0(2) 

I 
loO 

PC0 

J 
CO 

CO cO 
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*cl 

cl 

J 
cl(4) 

J 
cl 

4cl 

I 
cl(7) 

I 
*cl 

CO 

J 
cO 

'cO 

i 

cl(8) 

J 
cl 
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65. 

The Translated Representation of the Algorithm 
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We now have a representation which expresses most of 

the obvious kinds of concurrency possible for the 

algorithm. It consists of a partial ordering of 

operations determined exclusively by the. data dependencies 

(with the exception of the ordering of decisions). Con- 

trol has been largely eliminated. Each decision inter- 

acts explicitly with each variable-use it affects. 

IX.  Pipelining 

There is, in this representation, a certain amount of 

"play" between decisions and value availability: a 

value may be available for use in an operation before 

a commitment has been made to perform that operation; 

conversely, the commitment to perform an operation may 

be made before a necessary operand value has been 

generated.  Because of the fact that algorithms contain 

cycles, it will be to our advantage to increase this 

freedom as much as possible. For example, we might 

consider a loop in which the control variable is computed 

independently from the other operations in the loop.  If 

we could get several iterations ahead with the decisions, 

we could "wind up" the loop and achieve a pipeline effect. 

That is, ideally it might be possible to have all the 

operations in progress concurrently so that the through- 

put rats for the loop would be determined by the time 



wTOwpsKw    iiijtjUMUj-wiM^jMHiM'.yniiiF ""|^^^^,^^PW^^W^I* 

a~-i II  »lUIII—IUI'IM»» 

67. 

required for the longest individual operation. To allow 

this kind of concurrency we will introduce a simple net 

structure which might be variously interpreted as a 

buffer, a stack, a queue, or a pipeline. 

We have already used this structure to illustrate pipe- 

lining, we might also interpret each pair of places as 
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i i 

representing a location in which a value or a signal 

may be stored.  If the left place is full, that location 

is empty and may receive a value. If the right place is 

full, that location contains a value, which it may trans- 

mit to the next location (it is not possible for both places 

in a pair to be full — cr empty). We could then view this 

structure as a first-in-first-out stack. Signals are 

dropped in at the top and taken out at the bottom in order; 

the stack may hold as many values concurrently as it has 

place-pairs. Let us now suppose that there are two kinds 

of signals which may be placed into a stack and that we 

would like to distinguish between them explicitly. Further- 

more, we will want to preserve the order in which they 

enter the stack. We can represent such a bi-valued stack 

as follows. 
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We can introduce such stacks into our representation of 

variable-uses and decision-results as follows. 

— generation 

-use 
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In this fashion, we can create an arbitrarily high 

degree of freedom between decisions and computations. 

Furthermore, since the decision results affecting each 

variable use are given individual representation, this 

means that we may thereby increase the freedom between 

different computations. 

X. Control and Merges 

We have considerably increased the power of our notation 

to represent potential concurrency, but our representation 

still contains arbitrary sequencing restrictions. The 

most obvious and serious of these is the ordering of 

decisions. Let us briefly consider two important 

implications of this restriction. First, we would like 

to be able to pipeline the algorithm as a whole so that 

it may concurrently process more than one set of inputs. 

As long as decisions are totally ordered, no significant 

amount of pipelining will be possible, since all decisions 

involved in the processing of one input set must clearly 

have been made before any decision involved in processing 

the next input set may be made. Secondly, let us consider 

the fallowing example. 
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£Z> 
^1/ 

Suppose that loop II and loop III are unordered with 

respect to data-dependency (all values used in both loops 

might be generated in flowblock I, for example). There is, 

therefore, no data dependency constraint which prevents 

these two loops from "running" concurrently. As long as 

decisions are totally ordered, however, this possibility 
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is excluded. 

On the other hand, we cannot simply throw Out the 

ordering of decisions altogether. To show why this 

straightforward solution is inadequate, we will try 

abandoning the ordering of decisions in the following 

example, in which we will be specifically concerned with 

the merge of the variable A at flowbiock IV. We have 

named the decisions in this diagram a, b, and c, and 

we have named the decision-resolutions i, ii, iii, iv, 

v, vi, and vii . 
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If we assume appropriate data-dependencies, the following 

set of events is possible:  "Control" enters flowblock I 

and at decision a it chooses resolution ii . Let us 

assume that decision b is extremely time-consuming and 

that while this decision is being made, "control" (or 

"part of control", perhaps) skips ahead to flowblock VI 

and re-executes decision a — this is, of course, 

permissible because decision a must be encountered 

again regardless of the outcome of decision b . Let us 

suppose that this time resolution i is chosen, and 

control enters flowblock III, where a value is generated 

for A^, . Decision c is executed enabling A^ to cm cm 

enter the merge and provide a value for A^Q . At this 

point decision b is finally completed; resolution iv 

is chosen enabling Acn to provide a value for Afo at 

the merge. Since the two "entries" into the merge 

occurred in the wrong order, however, any computations 

which use Af  will have been rendered meaningless. 

Roughly speaking, wherever there is a merge (i.e., part- 

part matching), we must keep track of the logical priorities 

of the various claims which may be made on a representational 

"part". The different uses of such a "part" can only be 

distinguished by the order of their occurrence. Hence we 

will want to determine which decisions are critical in 

maintaining priorities among "entries" into a merge.  If we 

then order the effects of these decisions on the merge, we 
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can allow the decisions themselves to take place in any 

order. 

We can briefly outline a procedure for identifying the 

set of decisions which are critical for a given variable- 

merge.  Take the p-graph of the variable in question and 

delete all circles.  Circle the exit node and each of 

the immediate predecessor nodes to the merge node in 

question.  Reverse the direction of every arc in the 

p-graph and apply Warshall's algorithm.  This will cause 

the desired set of decision nodes to be circled (and 

only those nodes).  We can then use this information to 

order entries into the merge.  In the example above, 

decisions a , b ,  and c constitute the set of 

interesting decisions for the merge into Af  . We can 

order the effects of those decisions as follows:  (Note 

that the order in which the decisions themselves take 

place is not affected). 

i 



IV VI1 

generation of 
A*rt from A  *o      cm 

The desequencing of decisions may also lead to a similar 

problem with certain variable-uses, and a solution like 

that for merges is applicable. 
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XI.  Proposed Extensions of the 
Representational Form 

We have outlined procedures which make possible the 

translation of a sequentially defined algorithm into a 

powerful representation of highly concurrent execution 

of the algorithm.  Roughly speaking, each operation may 

take place when (1) the necessary operand values are 

available, (2) enough decisions have been made to 

guarantee that the operation will be required, and 

(3) enough decisions have been made to guarantee that 

no logically prior claim can be made on the algorithmic 

parts involved. All sequencing has been stripped out 

except that which is given by data dependencies or by 

priorities for part use.  In the process, control has 

been dismembered and the useful information which it 

carries has been broken down into individual ordering 

relations. 

This is as far as we can carry the development of this 

representational apparatus in this discussion, but we 

would like to mention several possible extensions and 

applications.  For example, we have already mentioned 

the fact that one arbitrary restriction imposed by the 

notion of control is that nothing may be executed which 

is not computationally necessary.  However, it may prove 

more efficient to defer some decisions — to pursue one 

or more alternative branches provisionally before the 

—r„ --—*-imir 
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choice among them has been made. We now have a represen- 

tation which exhibits explicitly which variable-uses are 

affected by a given decision. Therefore, we could 

mechanically build decision-deferral into our representation 

by moving enable/disable connections to other variable 

uses which are later in the chain of data-dependencies 

— so long as we provide logical machinery to discard 

rejected values. Where two such alternative paths 

merged, furthermore, we could extend the decision deferral 

by "unzipping" the merge — that is, by duplicating 

representational structures logically later than the merge. 

We might use the technique of duplication in another con- 

text as well:  if we could identify computational bottle- 

necks, we might very profitably duplicate the structures 
j 

at these bottlenecks.  If we had statistical information 

about the relative frequency of different entry paths into 
I      ; 
!      j 

|*|        a given merge, we might also implement another type of 
j   i _ 

i j        decision deferral: we could "open" the most probable entry 
j ! 

to the merge on a provisional basis, even though the 
I 

necessary decisions to determine priority of entry had not 

yet been made. Again, we would need logical machinery for 

discarding unwanted values. Several of the above possibilities 

involve duplication — i.e., part-part matching in reverse. 

Because the data dependencies are exhibited explicitly we 

can also move in the opposite direction. We have already 

discussed one kind of part-part matching which is a standard 
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optimization technique:  elimination of redundant 

computations. We have accessible the information 

necessary for a global attack on this problem. Where two 

similar operations have operands generated by the same 

transitions (i.e., where the operands are members of the 

same equivalence classes), we can combine them.  That 

is, we can replace the two operations with one operation 

which generates an equivalence class representing the 

union of the two equivalence classes generated by the 

replaced operations. 

XII.  Implications for Hardware Design 

Finally, we would like to make several remarks about 

machine design.  As the theoretical limits on the speed 

of computing components are approached, further increases 

in computing rates depend increasingly on our ability to 

build and use machines with highly parallel operating 

capabilities.  Leaving aside the question of cost (which 

in any case can only be evaluated when we have the means 

to determine how effectively such equipment could be 

exploited), the principal problem in designing such 

computing equipment is not one of devising suitable 

physical components.  The principal problem is rather the 

organization of physical components into a programmable 

system.  Even the most straightforward digital computer is 

,,»—■m-.-i—mm 
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highly parallel in its operation in one stnse — its 

operation represents a very complex system of partially 

ordered events.  It is simply that this system has been 

constructed in such a way that the subset of events 

interesting to us as users of the machine will occur 

sequentially (or very nearly — even on the "programmable" 

level of machine behavior we can cope with a lxmited 

amount of concurrency). Digital computers are designed 

in this way so that sequentially defined algorithms may 

be mapped onto them. It is because of this that they are 

programmable. Consequently any significant reorganization 

of hardware to exploit more fully the possibilities of 

concurrent operation must depend upon an appropriate 

conceptual reorganization of the representations of 

mathematical processes which we wish to perform. 
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APPENDIX I 

Petri Nets1 

•jrmally, a Petri net is a directed graph with two kinds 

of nodes:  places, represented as circles; and transitions, 

represented as line segments.  Each directed arc, represented 

as an arrow, connects one place with one transition. An 

arrow from a place to a transition means that the place is 

an input to the transition; an arrow from a transition to 

a place means that the place is an output of the transition. 

Every place in a net is an output of at least one transition 

and an input to at least one transition.  No place may be 

both an input to and an output of the same transition. 

A place is capable of two states:  full or empty.  The 

state of a net is given by a list of all its full places. 

A transition may fire if and only if all of its inputs are 

full.  When a transition fires, all of its inputs are 

emptied and all of its outputs are filled.  If some place 

is input to two or more transitions, all of whose inputs 

are full, these transitions are in conflict.  Only one of 

the transitions — any one — may fire in such a situation. 

(See Figures A, B, and C for examples of net diagrams. 

Figure B shows a net with conflict,) 

'For a comprehensive account of Petri nets we 
refer the reader to the "Final Report for the Information 
System Theory Project", RADC Contract # AF 30 (602)-4211, 
by Dr. Anato.1 W. Holt et al. 

.v.   -.---- 
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Figure A 

i   r 

A net and an occurrence-graph representing its behavior. 
The shaded places are full. The broken lines represent 
time slices of the o-graph. 

| i 

Figure B 

^JJ 

*—J 

B 

c_y 

j 

V B  ^ 

A .^. 

B  _ 

F    / B 

A net with conflict and the o-cycles which constitute its 
basis. When A, B, and C are full, either transition 1 fires 
or transition 2 fires, but not both. 
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Figure C 

K^r   2L£ © 1L : Ball 1 is moving 
counter-clockwise. 

1R : Ball 1 i3 moving 
clockwisec 

2L : Ball 2 is moving 
counter-clockwise. 

etc. 

In using Petri nets to describe a system, each place is 

associated with a proposition about the system.  By   \ 

interpretation, when a place is full, the proposition 

associated with it is true.  In other words, the condition 

described by a proposition holds in the system when the 
\ 

associated place is full. The state of a system described 

by a given state of its net is the conjunction of the 

propositions associated with the full places.2 Thus a 

net diagram togetl .** with a suitable initial assignment 

It is perhaps misleading to speak of "system states' 
here since a net does not necessarily define a totally 
ordered sequence of states.  (Formally, this is because 
some transitions may fir« concurrently - that is, their 
firings are not temporally ordered.)  In this respect, 
nets differ fundamentally from state machines. 
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of place states (corresponding to the conditions which 

hold in the system initially) makes possible a formal 

simulation of the behavior of the corresponding system. 

Note that it is the occupancy of places which is viewed 

as having duration.  Transitions merely bound places; 

the firing of a transition is not viewed as time-consuming 

— rather, it is a separation of distinct place occupancies. 

Hence, the propositions associated with places describe 

conditions involving time-consuming operations or states. 

Figure C, for example, is a net representation of four 

balls moving and colliding on a single-lane circular track. 

The propositions describing the system are all of the 

form:  "ball n is moving clockwise (or counter-clockwise)". 

We may view an occurrence-graph, or o-graph, as a directed 

graph which represents a simulation history of some net. 

Formally, an o-graph consists of vertices, arcs, and 

labels associated with the arcs.  Each label corresponds 

to some condition of the system being represented.  (The 

words label and condition are therefore used interchangeably 

in this context.)  Each arc represents an interval of 

place occupancy (or condition holding); the place (and 

hence the condition) is designated by the label associated 

with the arc. An inner vertex represents a transition 

firing and hence an occurrence in the system being represented. 

(The terms inner vertex and occurrence are accordingly 

> JL_ 
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used interchangeably.)  Thus an occurrence may be described 

as follows:  the conditions of the input arcs cease to 

hold (the input places become empty); the conditions of 

the output arcs begin to hold (the output places become 

full).  (See Figures A, B, and D for examples of o-graphs.) 

Two occurrences are said to be temporally ordered if and 

only if there is a path from one to the other; the former 

precedes the latter. Note that some occurrence pairs in 

an o-graph are temporally ordered while others are not. 

Occurrences which are not ordered are said to be con- 

current .  Similarly, two arcs are temporally ordered if 

and only if there is a path from one to the other; arcs 

which are not temporally ordered are concurrent. A 

time-slice is a maximal set of pairwise concurrent arcs. 

A time-slice represents a possible state of the net (and 

hence of the system) during the history which the o-graph 

describes.  (See Figure A.) 
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Figure D 

1R 

-2L- 

4L 

JB- 

(two balls moving clockwise and two counter-clockwise) 

(three balls moving counter-clockwise and one clockwise) 

(three balls moving clockwise and one counter-clockwise) 
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An o-graph may be decomposed at a time-slice. Two o-graphs 

may be composed if the terminal conditions of one are 

identical to the initial conditions of the other. An 

o-graph whose initial and terminal conditions are 

identical is termed an o-cycle. An o-graph formed by 

composing some number of copies of an o-cycle is termed 

a repetition stretch of the o-cycle. An o-cycle which 

cannot be decomposed into further o-cycles is termed an 

irreducible o-cycle.  (The o-graphs shown in Figures A, 

B, and D are all irreducible o-cycles.)  For every net 

together with a suitable assignment of place states, 

there is at least one basis, consisting of a finite set 

of irreducible o-cycles from which every possible 

simulation history may be generated by composition and 

decomposition.  If the net contains no conflict, its basis 

consists of one irreducible o-cycle. Note that a given 

net diagram may be capable of several different disjoint 

behaviors given different initial place assignments. 

Figure D, for example, shows the bases for the three 

different behaviors of which the net in Figure C is 

capable. 
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APPENDIX II 

Warshall's Algorithm 

We start with a 

definition:  a p-graph is an ordered pair  (G,N)  where 

G is a finite, directed, single-source, single-sink graph, 

and N is any subset of the nodes of G which includes 

the source. For our purpose we may regard G as the 

flow graph of an algorithm where the unique entry and exit 

are the source and sink of the graph.  N is precisely the 

set of initially circled nodes. 

definition:  a p-graph is complete if, for any node n of 

G either: 

(i)  neN ; or 

(ii)  there exists a node n*eN such that any path from 

any node in N to n includes n* . 

In terms of flow graphs, a graph is complete if every 

node has a unique circled ancestor, i.e., every use of a 

variable belongs to a unique equivalence class. 

We now see that a solution to the naming problem is included 

in the solution to the problem of completing a p-graph.  To 

further that solution we prove the key 

theorem: 

If  (G,N.)  and (G,N_)  are both complete p-graphs, 

then  (G,N,ON )  is a complete p-graph. 

proof (Millstein): 

(G,N nN )  is trivially a p-graph. 

■...-,.. .-■'. 
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Suppose it is not complete. 

Then there exists neG such that 

(i) n/NjO*^ ; and 

(ii) there exist   q ,q2eN,nN2 , with paths p. , 

P2 from q. , q , respectively, to n ouch 

that p, , p. do not have a common point in 

N,ON . 
1 2 

case 1: 

Without loss of generality we choose 

(a) p^ ,  p_ to be cycleless paths; and 

(b) q^ , q2 to be the last points in N.nN  on paths 

p / p  respectively; and 

(c) n to be the first point in N, - (N,nN2)  common to 

both paths.  (Note: we use the finiteness in the 

definition of p-graphs in making these choices.) 
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; 

Now  (G,N )  is complete. Also,   q q^NjO^S^ and 

n^N2 .  Hence there exists n'eN2 3 Pj^ , p2 both pass 

through n' .  Let p| , p'  be the portions of p1 , P2 

1 ' "*2 between q, , q„ and n' 

\ 

N 

/N2 

/ 

Now  (G,N.)  is complete.  Also,   q ,q eNjON •N^ . 

n'eN2 and by assumption n'^N,nN  (or else p^ , p2 

have a common point in N.nN2 , contradicting (ii) above). 

Therefore, n'^N.  (and hence n'^n) . 

Therefore there exists n"eN.,  such that p' , p' both 

pass through n" . 

Since n'^n and p. , p  are cycleless paths, n"=fn . 

Therefore n" is a point in N. - (N ON )  common to both 

p. , p  and n"4n .  This contradicts (c) above. 
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case 2: 

n e N2 - (N fifl ) 

By symmetry of argument this case leads to a contradiction. 

case 3: 

neC(N UN ) 

By a construction similar to case 1 this case reduces to 

case 1.  Hence all three cases lead to a contradiction 

so  (G,N,- N )  is complete. 

Our main result is contained in the 

corollary: 

If M is an arbitrary subset of the nodes of G , 

there exists a unique minimal set N of nodes of 

G such that M^N and (G,N)  is a complete p-graph. 

proof: 

There exists at least one set with the required 

property:  take all nodes of G .  Moreover, since 

G is finite, there is only a finite number of sets 

with the required property.  Therefore, we can take 

the intersection of all such sets and the result is 

the required minimal N . 

We have shown that, given a p-graph, there exists a unique 

minimal completion of the p-graph.  In this section, we 

give an algorithm for computing this completion. 

We have defined the algorithm in a rather peculiar notation 
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which requires some justification.  The essential point 

is that the algorithm depends on cycling through the 
■ 

elements of a set, where the effect of processing an 

element may be to append other elements to the set. 

If we attempt to express the algorithm ir FORTRAN or 

ALGOL, we are forced to invent a data structure to represent 

the set:  perhaps a linked list, perhaps a bit vector to 

indicate membership.  In any event, we find ourselves 

making a decision about optimum representation, introducing 

new symbolic names (for the list head and pointers, or 

for the bit vector), and inventing cyclic controls of the 

loop-within-loop type which are more complex than the 

simple single quantification we started with. 

In sum, FORTRAN or ALGOL representation of the algorithm 

is both complex enough to obscure the essential logical 

structure and quite arbitrary, in that a number of quite 

different-looking algorithms might be written without 

logical loss. 

We have elected therefore to pay the price of an unfamiliar 

notation, in the hope that the very simple expression 

which results will disarm the reader's discomfort with a 

novel and not very well-defined language. 

_j_ 
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INITIAL CONDITIONS 

We imagine as given: 

1. D , a constant equal to the number of nodes. 

2. VAL(I) , a vector where 1<I£D . VAL(I) = I 

if the I  node of the given p-graph is circled; 

VAL(I) = 0 , otherwise. 

3. S(I) , a family of sets, where lsi^D .  For 

any I ,  S(I)  is the set of nodes which are 

immediate successors of the I * node. 

TERMINAL CONDITIONS 

1. VAL(I) = I , if the I  node of the completed 

p-graph is circled; otherwise VAL(I) = J , 

where the J  node is the last circled ancestor 

on all paths to the I 

2. D and S(I)  are unchanged. 

VARIABLES 

1. I , J , and Q are variables which assume 

integer values. 

2. NOTYET is a variable whose value is a set of 

integers. 
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Algorithm: 

COMPLETE 

ALPHA $ Q<-0. 

NOTYET «-{l|l<;l£D}. 

(Yl|leNOTYETAVAL(I) ±  0) (BLEED CD . NOTYET «- NOTYET-{I}.) 

If  Q ¥  0 , (VIJVAL(I) ±  I)(VAL(I)«- 0) .  GO TO ALPHA. 

EXIT. 

BLEED (I) 

(Vj|jeS(I)) (FLOW(I,J).) . 

EXIT. 

FLOW (I,J) 

If VAL(J) = 0 , VAL(J) *■  VAL(I) .  EXIT. 

If VAL(J) = VAL(I) , EXIT. 

If VAL(J) = J , EXIT. 

VAL(J) *■  J .  Q *■ 1 .  EXIT. 

i   ■■ ■   .. .-.... &Hm&m&&*^m >:*■:> ..■■ 



___.. 

.aua.-api^i«^>1iflW!»^Wj -•^j+r.-- -. 

UNCLASSIFIED 
Security Classification 

DOCUMENT CONTROL DATA R&D 
(Security classification ol title, body ol mbtlrmct and indexing annotation must be tittered when the overall report I« classilied) 

1    ORIGINATING ACTIVITY (Corporate author) 

Applied Data Research, Inc. - Corporate Research 
Center 

450 Seventh Ave., New York, N.Y.   10001 

2a. REPORT SECURITY   C L ASSI FIC/ TION 

UNCLASSIFIED 
2b. GROUP 

3 RtPORT Tl TLE 
N/A 

The Representation of Algorithms 

OESCRIPTIVE NOTES (Type ol report and Inclusive datet) 

Final Report 
5   AuTHORIS) (First name, middle initial, la at name) 

Robert M. Shapiro 
Harry Saint 

6  REPORT DATE 

September 1969 
7a.   TOTAL  NO.  OF PAGES 

94 
lb.   NO.   OF  REFS 

»a.   CONTRACT  OR  GRANT NO. 

F30602-69-C-0034 
b.   PROJECT NO. 

4594 

9a.   ORIGINATOR'S  REPORT  NUMBER(S) 

CA-6908-2331 
9b. OTHER REPORT NO(S) (Any other numbers that may be assigned 

this report) 

RADC TR-69-313,   Vol.   II 
10     DISTRIBUTION  STATEMENT 

This document has been approved for public release and sale; its 
distribution is unlimited. 

II.   SUPPLEMENTARY   NOTF 12.   SPONSORING MILITARY   ACTIVITY 

13.   ABSTRACT 

The problem of representing mathematical processes is considered 
in the context of digital computer software and hardware. 

DD ^,1473 UNCLASSIFTF.n 
Security Classification 



UNCLASSIFIED 
Security Classification 

KEY   WORDS 
ROLE   I       WT ROLE "T 

Multiprogramming 

Parallel processing 

UNCLASSIFIED 
Security Classification 


