
T
I I U M I .»■" ■■«■im *"ll«ip ■» LscaManvaiM

el <

CN
o

O
NO

Q
<

CO

2
X

T3
CO

t—< <->
PS Cd

o M

Ü O
a

< O
o

fc c
o i—i

CO

1—1

z ■M X3 o Q> Ü
h-t u ¥
H Vk CO H

< O (U 0

H •i-i

PS £ Z P. Os

W ct) a> vO

to
W
Pi
CL.

CO

s d
 D

a
ta

D

rk
,

N

i-H

XI

s
Cu

PS .2>
a 0)

XJ
i-H *->

a X 0 a a> Qi
h rf <z CO

• \
» • \ • \ a> *£•■ M

• * \
a> E a> CD

.• \ ■S S-E C
• m o o £ 10

§5 = 55

• ••• \
-»1
CO™

a> 5 o

0
3
to
0)
3 \»*V»* \ *g'5> CD

\««V * \ « o n
^" G c

V • • \ IO CO)
0

10 0 o~ "^ — _ Z \ «• \ -^- X3 \ 0 <e c

*
III
Ü

v*i*# \ - III

V-V \
* • •• •• \

•
s
0
0

M Ik
0 V -•• \

\••••••• * \ a III

V## • \ v*;- \ K
<
a.
in

V •••
a

III §

03
I§

3

OS
• •

•
• • 1

2" • ••••• 1
•••••

■■ Lt_ • «•••«
El • • •

m
J§ 7$> Ü£

/•• •.'••
/ ••' •

• *• /

/ • • • /

/•••."*• /
/ V /

/ • *• • / /• • • • /

"^"-

RADC-TR- 69-313, Volume II
Final Technical Report
September 1969

THE REPRESENTATION OF ALGORITHMS

Applied Data Research, Incorporated

This document has been approved
for public release and sale; its
distribution is unlimited. r

- ■

Reproduced by the
CLEARINGHOUSE

lor Federal Scientific & Technical
Information Springfield Va. 22151

Rome Air Development Center
Air Force Systems Command

Griffiss Air Force Bnse, New York

• '■■ I I ■' ■ '

I

THE REPRESENTATION OF ALGORITHMS

Robert M. Shapiro
Harry Saint

Applied Data Research, Incorporated

This document has been approved
for public release and sale; its
distribution is unlimited.

—m -mm- ^mm

FOREWARD

This final technical report was prepared by Messrs.

R. M. Shapiro, Harry Saint, R. E. Millstein, A. W. Holt,

S. Warshall and L. Sempliner of Applied Data Research, Inc.,

Corporate Research Center, 450 Seventh Avenue, New York,

N.Y. 10001, under Contract F30602-69-C-0034, Project 4594.

Contractor's report number is CA-6908-2331.

The Rome Air Development Center project engineer was

Miss Patricia Langendorf (EMIDD).

This report consists of two volumes:

Volume I: A handbook on File Structuring

Volume II: The Representation of Algorithms

This technical report has been reviewed by the

Office of Information (EMLS) and is releasable to the

Clearinghouse for Federal Scientific and Technical

Information.

This technical report has been reviewed and is

approved:

TrRICIA M. LANGLNDÜRF
Project Engineer

Approved:^7>£/$
A. £. STOLL, Colonel, USAF
Chief, Intelligence and Recon Division

FOR THE COMMANDER; C
IRVINOLj/'G'ABELMAN
Chief, Plans Office

ABSTRACT

The problem of representing mathematical processes

is considered in the context of digital computer

software and hardware.

■"■ ■ mm

TABLE OF CONTENTS

VOLUME I: A HANDBOOK ON FILE STRUCTURING

Page

Introduction 1

I. A Model of Cross-Indexing 7

II. Feature Cards 10

III. Edge-Notched Cards 13

IV. Indirect Coding 16

V. Superimposed Coding 24

VI. Combined Coding Techniques 29

VII. Is Retrieval Time a Linear Function of the
Size of the Data Base? 30

VIII. The Volume of Cross-Indexing
Information 32

IX. A Fundamental Difference between Item- and
Descriptor-Organized Files 34

X. A Second Fundamental Difference between Item-
and Descriptor-Organized Files 36

XI. Formulae for the Volume of Bits Transacted
with 38

XIi. Some Comments on the Volumetric Formulae. . 40

XIII. Computer Implementation of the Cross-
Indexing Operation 41

XIV. Computer-Implemented Item-Inverted File
Organization 42

XV. Computer-Implemented Item-Sequenced File
Organization 45

XVI. The Use of Indirect and Superimposed Coding
in Computer Implementations 48

XVII. PDQ (Program for Descriptor Query) 49

XVIII. Batching or Buffering 53

r

Page

XIX. Batching Queries and Updates . 54

XX. An Important Asymmetry from the User's
Point of View 56

XXI. An Alternative Method of Representing Lists
in Inverted File Organizations ... 57

XXII. An Analogous Alternative for Item-Sequenced
File Organizations 60

XXIII. A Comparison of Three Organizations for
Indexing 62

XXIV. A New Method for Performing List
Intersections 69

XXV. Data Compression — Another Encodement for
Inverted Lists 76

XXVI. A Grammar for Defining Graph Representations
of File Structures 79

XXVII. A Critique of Balanced Trees 98

XXVIII. Hashing and Secondary Storage 110

XXIX. Net Models — Some Elementary Constructs . 133

XXX. A Model of Buffering 137

XXXI. A Model of Double Buffering 139

XXXII. Pipelined and Serial Phased Systems . . . 142

XXXIII. A Model of a Hardware Device ~ The NCR
CRAM Unit 148

XXXIV. A Highly Concurrent Net Model of the
Cross-Indexing Grid 153

APPENDIX I. Petri Nets 1-1

BIBLIOGFAPHY B-l

VOLUME II: THE REPRESENTATION OF ALGORITHMS
(separate book)

I. Introduction 1

II. Conventional Algorithmic Representations . 1

■' u'wmw < fmmi^mmmm^w^wi''^^ili9fi

i.-w=K-f t^^—^asra Mt

Page

III. Part-Part Matching 9

IV. Fundamental Restrictions Implicit in
Conventional Representational Forms . . 16

V. Partial Ordering . 23

VI. Variable-Names and Data Dependency
Relations 31

VII. The Translation of Conventional Algorithms
into Cyclic Partial Orderings 47

VIII. An Example of the Translation Procedure . . 60

IX. Pipelining 66

X. Control and Merges 70

XI. Proposed Extensions of the Representational
Form 77

XII. Implications for Hardware Desicm 79

APPENDIX I. Petri Nets 1-1

APPENDIX II. Warshall's Algorithm II-l

-**w>?i ..,,U! fpiim .IH" J «MM-1 Jl»1-1.1,"„

1.

I. Introduction

In this report we intend to examine the problem of

representing mathematical processes. We shall consider

this problem in the context of digital computer soft-

ware and hardware — both because the availability of such

computational machinery makes this the most useful avenue

of approach and because this computational machinery has

played such an important role in shaping the way in

which people think about mathematical processes. In this

context representations of mathematical processes are

normally called algorithms. The word 'algorithm', how-

ever, tends to have a much narrower meaning, and the

restrictions implied by the use of this word are built

into the languages in which algorithms are commonly

formulated. We shall begin by examining briefly the

function of these standard representational forms. We

shall try to determine exactly what representational

restrictions they impose, and where these seem un-

justifiable, we will propose alternative representational

forms.

II. Conventional Algorithmic Representations

Let us consider a typical computing situation. A human

being has some (perhaps relatively imprecise) notion of

a mapping from some domain of inputs to some range of

! I 2.

i

outputs; this mapping presumably takes form in his mind

as a sequence of transformations on the inputs. He

formulates this mapping precisely as an algorithm in

some computer-oriented language like FORTRAN. A com-

piler then translates this definition of the mapping into

a program which drives some computer in such a way that

it performs the desired mapping. This procedure involves

a series of translations ~ from human notion to al-

gorithmic language to hardware states. For these trans-

lations to be feasible there must be a reasonable simi-

larity between the way in which human beings structure

mappings, the structure of the algorithmic language, and

the structure of the computing machinery.

'•:>
The problem is that in designing languages to express

algorithms (and computers to perform them), we have two

— often conflicting — aims. The first of these aims

is to provide human beings with the most convenient

representational medium possible for the definition of

mappings. The second is to provide a representational

form which can be conveniently translated into the most

efficient hardware implementation possible with respect

to space and time (i.e., how much equipment is required

for how long).

With respect to the first aim, a number of criticisms

•"■ •mrnrn. i ii-iim ■ «in—jjpw^WpW

■?»irt«BW»««W*«1

3.

can be made of algorithmic languages. For purposes of

this discussion, however, we shall assume at the outset

that, at least for a large and interesting class of prob-

lems, these languages — particularly with respect to

their fundamental conceptual organization — provide the

most convenient possible representational medium for the

definition of input/output mappings by human beings. We

will concern ourselves instead with the second function

of algorithmic languages — that of providing a satis-

factory source representation for the translation into

the most efficient possible hardware implementation. We

shall argue that from this point of view the fundamental

conceptual view of mathematical processes which underlies

standard algorithmic languages (and machine design) is

unsatisfactory. Ws shall propose a representational form

with a different conceptual groundwork and demonstrate the

feasibility of translation from standard algorithmic

languages into this representational form. We shall try

to indicate both how this representational form might

enable us to exploit current computing machinery more

efficiently and, more importantly, what implications it

might have for the design and exploitation of more power-

ful machinery.

We shall begin by examining in some detail the view of

mathematical processes which provides the foundation for

1-1 '

4.

algorithmic languages and machine design. Let us

consider, for example, a flowblock diagram of an al-

gorithm defined in some language like FORTRAN. The

j diagram is a directed graph whose nodes are the flow-
i

blocks; each flowblock contains a totally ordered set of

FORTRAN statements. The flowblocks are connected by

directed arcs; each arc is an output of exactly one flow-

block, and an input to exactly one flowblock. Cycles and

loops are permitted. Each flowblock has at least one

input arc and at least one output arc with the exception

of a unique flowblock called entry, which has no input

arc, and a unique flowblock called exit, which has no

output arc. Since this diagram is to be a representation

of a process, it is meaningless without some sort of

simulation rule. This is provided by creating an entity

called control. Control can be thought of as a unique

token which moves through the diagram in discrete steps,

residing at any given time at exactly one statement. To

begin simulation of the algorithm, control is placed on

the first statement of the entry flowblock. Within a

flowblock, control moves from one statement to its

immediate successor (the statements within a flowblock

are always totally ordered); from the last statement of

a flowblock, control may move along any one of the output

arcs to the first statement of some other (or the same)

flowblock. Each time control resides at a statement,

■■»■ ^l!". w-

i'•H'r.~+^\ j^r-s-:-:.---

5.

that statement is executed exactly once. When control

arrives at the last statement of the exit flowblock,

the simulation is completed. We now have a rough picture

of an algorithm functioning: a unique entity named control

wanders through a "flow diagram" bringing to life one

statement at a time as it drifts by. The two most

interesting features of this picture are (1) that at

any given time during a simulation, control resides at

exactly one statement and (2) that in the course of one

simulation, control may visit the same statement many

times.

We must now examine the individual statements. In order

to avoid unnece^ary complications, let us invent a

simplified version of FORTRAN which permits:

(1) two types of I/O statements: the word 'READ* followed

by exactly one variable-name, and the word 'WRITE' followed

by exactly one variable-name;

(2) assignment statements, consisting of exactly one

variable-name followed by *=' followed by either one

variable-name (or one integer) or else by two variable-

names (or two integers, or one variable-name and one

integer) separated by an arithmetic or Boolean operator;

(3) control statements of two types: 'GO TO* followed by

a statement-name, and 'IF' followed by a variable-name

! i

6.

followed by three statement-names.

Let us look first at a typical assignment statement:

A=B+C. The *ariable-names (A , B , and C in this

example) act as "placeholders" for values. We could

translate this statement as follows: add the value

currently assigned to B and the value currently assigned

to C ; assign the result to A . Hence, we call A the

result and B and C the operands. Once control en-

counters this statement, A will continue to "stand for"

the value assigned to it by the execution of the state-

ment until control encounters another assignment to A

(or re-encounters the same assignment to A). In other

words, any variable-name occurring on the right side of

an assignment statement (i.e., as an operand) represents

the result of the most recently executed assignment to

that variable-name. Because the same variable-name may

be designated as the result in several different statements,

and because control may pass to the same statement more

than once, a given variable-name may represent many

different values during one performance of the algorithm,,

However, the fact that control can reside at only one

statement at a time guarantees that at any given time

during the performance of an algorithm, a given variable-

name represents (at most) one value (since there can be at

most one most-recently-encountered assignment to that

ii »i uiijiiwq^ppi^—*"

7.

variable-name). Note that the concepts control and

variable are interdependent.

Initially, at least, we can think of I/O statements as

"incomplete" assignment statements. A READ statement

assigns a value to a variable-name; a WRITE statement

uses a variable-name as an operand.

Control statements do not directly affect the values of

variables. Instead they determine the path of control

from one flowblock to another. In particular an IF state-

ment uses the current value of some variable (which we may

think of as the operand of the IF_ statement) as the

criterion for determining v/hich of several alternative

"paths" (i.e., output arcs from the flowblock) control

will take. Consequently, such statements are commonly

called "decisions".

We now have a conceptually complete model of an algorithm.

If we eliminate the two-dimensional aspects of this picture

by arranging the statements in a list, we have a typical

algorithm definition in an algorithmic language. One

statement in the list can be designated the initial state-

ment and another the terminal statement. To "run" the

algorithm we place our "control token" on the initial

statement. Control then moves down the list executing

8.

r i
t

! 1

one statement at a time; some of the statements may be

control statements whose execution may cause control to

be sent to some statement other than the immediately

subsequent statement; when control arrives at the ter-

minal statement, the "run" is completed. Hardware per-

formance of an algorithm is pictured with the seme

conceptual machinery. A program consists cf a set of

instructions, each of which occupies one location in

memory. Memory is totally ordered — each location has

a unique successor. There is a control counter which

(roughly speaking) always contains the memory address of

the next instruction to be executed and there is some

sort of central processor which executes the instructions

one at a time. Each time an instruction is executed, the

address in the control counter is incremented so that it

contains the address of the next location in memory. The

execution of a transfer instruction, however, may place

the address of some other memory location in the control

counter. An instructio- which specifies the execution of

some arithmetic or logical operation may designate a

memory location whose contents are to be used as an operand;

or an instruction may designate a memory location in which

the result of some such operation is to be stored. Thus

memory locations may be used very naturally in a way

analogous to variable-names in an algorithmic language

representation. In general, the translation from

— 'up' ' 'i mmgpp '"''

9.

algorithmic language to hardware will be relatively

straightforward.

III. Part-Part Matching

This conceptual machinery for representing mathematical

processes is in some respects extremely powerful. The

fact that during one performance of an algorithm the same

statement may be executed many times and that the same

instance of a variable-name may represent a different

value each time, means that a relatively small set of

statements may represent an arbitrarily long sequence of

different computations. In hardware terms this means

that a relatively small computing device can be programmed

to perform a relatively Jong and varied sequence of oper-

ations. Let us illustrate more clearly, with the help of

a simple example, exactly how this conciseness is achieved.

Consider the following algorithm consisting of five state-

ments :

READ A

READ B

A=A-B

A=A*B

WRITE A

•:»»>.ii|' ..um.. I £ '••)

i I I

10.

Suppose that the input domain is defined as follows:

the possible input values of A are the integers 1, 2,

and 3; the possible input values of B are the integers

1 and 2. The algorithm could then be thought of as

representing the following mapping:

3,2

However, the algorithm defines the mapping as a sequence

of arithmetic transformations on an ordered input pair so

that from this point of view we may think of the algorithm

as representing a set of computational histories — one

for each input pair in the domain, as follows:

INPUT 1,1 INPUT 1,2 INPUT 2,1 INPUT 2,2 INPUT 3,1 INPUT 3,2

0=1-1 -1-1-2 1-2-1 0-2-2 2-3-1 1-3-2

0=0*1 -2—1*2 1-1*1 0-0*2 2-2*1 2-1*2

OUTPUT 0 OUTPUT -2 OUTPUT 1 OUTPUT 0 OUTPUT 2 OUTPUT 2

The algorithmic definition provides one representation for

m^m ■ ..mi ^ m-^j..*J^jm^JffWi.U'W».l"l""«».JiM.WJ»l"

-. ^>-*-rM^#mttm,fZm!HSm*GlS'l^*^.^iznä&Tr*' *■ ™r*w»«s*»S!fi*tt*-^'«^^ waaammm MMMMMIWWBÄ

11.

all of these computational histories by what we will call

part- t matching; "parts" of different computational

histories are "matched" to each other in such a way that

all the computational histories may be "overlaid" and

given one representation. Each variable name then re-

presents a set of mutually exclusive values (for example,

in any given performance of the algorithm, B represents

either 1 or 2), and each statement therefore represents

some set of mutually exclusive computations (for example,

A-B represents either 1-1 or 1-2 or 2-1, etc.,). Let us

next examine the role of control with the help of a slightly

more complicated example:

1 READ A

2 READ B

3 B»B*B

4 A=A-B

5 IF A 6,8,4

^

\

r
8 WRITE A

9 WRITE E

1
6 B=B+A

7 IF B 8,8,6

"7

gV.ll, ^„.^PHU».!,.».., ,| |.,| |.„ ■ ■■T—l—IWB—Ml

12.

I-I
We will now take for granted the kind of part-part

matching discussed in the preceding paragraphs and con-

sider only the range of "control histories" which this

algorithm represents. By "control histories" we mean

the set of possible paths from entry to exit. (Each

"control history" may of course represent many computa-

tional histories.) Given some finite domain of input

values, we could in principle represent each possible

control history as a directed graph as follows: (sea

next page)

!■■■■■ I I —~-J-, •^"WP^IP^l jfiypip T- "W^ g ' -
■•

"

»«fR««9M

13.

1, 2, 3» • • • • • • • • •

wrrisafeM^aMWyftT -W

*r

14.

If we took such a set of all possible histories as our

starting point, we could view the task of producing

an algorithmic language definition of the algorithm as

a process of further part-part matching: we first

"fold up" each of the individual histories by matching

different parts of the same history to each other, as

follows:

I S

!

1, 2, 3, i, • • • j,

'

-

•—' ' ■i»'nw»«""«MÄ1^H*i

15.

In history j , for example, we have matched operation

Sj with operation 52; since operation 5, had operation

4j as its successor and operation 5, had operation 6.

as its successor, in the foided-up representation of

the history operation 5 has both operation 4 and operation

6 as successors. We can now "overlay" all the folded up

histories by similarly matching parts of different

histories to each other. We match, for example, operation

5 in history 2 with operation 5 in history j . The

result of this part-part matching is of course equivalent

to a flow diagram of an algorithmic language definition

of the algorithm.

i 1 r

H

16.

IV. Fundamental Restrictions Implicit in
Conventional Representational Forms

Clearly, the part-part matching information implicit in

standard algorithmic definitions is extremely useful,

and we will want to retain it in any alternative

representational form we might propose. Specifically,

this information leads to a very efficient use of space.

Roughly speaking, standard algorithmic formulations

approach maximum efficiency with respect to space and

minimum efficiency with respect to time. They make very

inefficient use of time because, very simply, they require

that only one thing be done at a time. The notion of

control as a unique "entity" which passes from one

statement or instruction to another forces a total

ordering on all the computations in the performance of

an algorithm; every history will necessarily consist of

a totally ordered sequence of operations. Consider the

following two sequences of statements:

A=B-C A=B-C

X=A2 Y=/Ä

Y=A X=A2

Z=X+Y Z=X+Y

These two sequences are computationally equivalent; an

algorithm writer would nevertheless be forced to choose

. . .--

iwgww—twnwiiiww

17.

one of them arbitrarily. Assuming we had adequate com-

puting machinery, however, we could make more efficient

use of time by performing the second and third statements

concurrently. We might then find it useful to exhibit

this possibility explicitly by representing these four

statements as a partial ordering defined by the data

dependencies.

♦

In general an algorithm consists of a set of partially

ordered operations, where the partial ordering is

determined by the data dependencies. We can obviously

increase efficiency with respect to time by performing

18.

unordered operations concurrently.

Furthermore, once we admit the possibility of exploiting

partial ordering information by performing different

operations concurrently, it emerges that other arbitrary

restrictions have been implicitly imposed by the standard

representational forms. Consider, for example, the

following net model of a three-stage process:

next input may
be provided

1st stage not
in progress

input available

-initiation of 1st stage

1st stage in progress

.completion of 1st stage
initiation of 2nd stage

2nd stage

3rd stage

i

next output may
be provided

output available

19.

The three stages are totally ordered, which would seem

to exclude any possibility of concurrent operation. Let

us assume that each stage takes one unit of time; it

will therefore take three units of time for each mapping

of an input to an output. On the other hand, if we

further assume that inputs can be provided (and outputs

accepted) by the environment at the rate of one per

time unit, then as soon as the first stage has finished

with the first input, it may accept the next input. Thus

the inputs can be pipelined so that all three stages are

operating concurrently. The throughput rate would then

approach one output per time unit. If we could abandon

the notion of control we might similarly be able to

represent the possibility of pipelining in an algorithmic

context. Suppose, for example, that the net diagram above

is a model of a program loop, with the process stages

representing the individual instructions and the ordering

relations corresponding to the data dependencies within

the loop. Then, despite the fact that the instruction

executions (within any one iteration of the loop) must

be totally ordered, all the instructions may be performed

concurrently (by overlapping executions from successive

iterations) so that the throughput rate is limited only

by the duration of the most time-consuming single instruc-

tion. Similarly we could represent the possibility of

pipelining the algorithm as a whole — that is, the

- .'T ■ .,TJ ■.■:. ■ j V**?7* rUtSHf+tXtiJr

20.

possibility of an algorithm or program working on more

than one input set concurrently.

Another interesting restriction implicit in the standard

view of algorithms is that of doing only what must

necessarily be done. Consider the following example:

A-B+C

I» (A/327)-57

IF I n,n,m

n

r
A*A'

^

m A-/K

I I » I

If the computation of I is extremely lengthy we might

profitably "defer the decision". That is, whixe we are

computing I and then "making the decision", we might

concurrently pursue both of the alternative branches —

even though one of them will turn out to have been

"unnecessary". We could then use the result of the

decision to choose which of the alternative values of A

we wished to retain.

I
ii Min—iwii i mi

21.

fl Given the possibility of concurrent operation, we might

also wish to question the automatic one-one mapping of

variable names to equipment locations. Two uses of the

same variable name might be entirely unrelated in terms

of data dependency and thus potentially concurrent if

mapped to different equipment locations. Other types of

space/time trade-offs might also become more interesting.

A computation which is a "bottleneck" in the performance

of an algorithm might be "duplicated" in a hardware

representation.

Many such possibilities for taking advantage of partial

ordering information and potential concurrent operation

are already exploited to a limited extent on both the

hardware and software levels. At the level of individual

instruction execution there is normally a very high

degree of concurrent operation, of course. However, at

what we might call the "programmable level" of machine

operation there is very little. Machines like the CDC 6600,

the CDC 7600, and the IBM 360/91 permit some concurrent

execution of instructions. The CDC 7600 furthermore, has

functional units which may be pipelined (so that a given

functional unit may be working on several instructions at

a time). Programs for these machines, however, must consist

of totally ordered sets of instructions, and the central

processor decodes the instructions sequentially; furthermore

22.

the register and functional unit reservation schemes

impose further restrictions on parallel operation.

Consequently, potential concurrency is exploited to a

very limited degree and only very locally. Many machines

allow concurrent I/O processing, and there are a number

of machine designs which allow several central processors

to pursue loosely related computational paths concurrently.

The 360/91 allows a kind of decision-deferral or "look-

ahead" which involves pursuing the "most likely" branch

provisionally before a conditional branch instruction has

actually been executed.

Frequently, even though machine operation is sequential,

one sequence of operations will be more efficient than

another, computationally equivalent sequence (for example,

because it requires less intermediate storage} so that,

on the software level, there are a number of optimization

techniques which use partial ordering information for

resequencing. The same kind of information may also

expose redundant computations — caused either by several

redundant expressions or by an expression which is in-

variant within a loop. Again, these techniques are applied

independently and (except for recognition of invariance

within a loop) only locally — usually within a single flow-

block. All of these procedures, both hardware and software,

are closely related: they are piecemeal attempts to provide

p—-

mm

23.

more efficient hardware implementations by circumventing

arbitrary restrictions imposed by the representational

forms in which algorithms are defined. No consistent

alobal exploitation of these possibilities can be

achieved, however/ because the necessary information is

inaccessible in such representations.

V. Partial Ordering

Many optimization techniques involve translations of

algorithms (or more usually, segments of algorithms)

into partial orderings representing data dependencies.

However, such partial ordering techniques normally preclude

statements of the form " a precedes a "; consequently

cycles must be excluded. Furthermore, no attempt is made

to represent the interaction of decisions with data

dependencies. This means that generation of all partial

ordering information for an algorithm would involve

producing a partial ordering for each possible control

history of the algorithm. This problem remains serious even

if we restrict our attention to one program loop. Either we

must limit ourselves to one iteration of the loop — in which

case we exclude all information about concurrencies across

different iterations of the loop (it is precisely this

information which can provide us with "pipeline" solutions)

— or we must "unwind" the loop (i.e., treat it as one long

\

- !

24.

"straight-line" sequence of computations rather than as

a loop), which, although it does lead to explicit repre-

sentation of concurrencies across successive iterations,

necessarily means throwing away the part-part matching

information.

We should like to be able to represent algorithms as

partial orderings of data dependencies without sacrificing

useful part-part matching information. We will therefore

use Petri nets as our basic representational medium. Petri

nets can be used to exhibit explicitly both partial ordering

and part-part matching information because they represent,

the behavior of cyclic systems of partially ordered events

and states. For a brief description of Petri nets see

Appendix I.

Let us first consider the use of Petri nets to model

algorithms in which control is as straightforward as

possible — that is, algorithms without any conditional

branches and hence with only one possible control history.

We can represent each arithmetic or logical operation with

the following schema.

operation initiation

operation completion

25.

o.i.p. : operation in progress

o.i.p.

op.

op2

°Pi

operation completed,
not in progress

operand, available

operand- available

operand.used in oper-
ation, not available

op' : operand, used in operation,
not available

ur' : result of operation may be
1 made available; use1 of pre-

vious result (as an operand
for some operation) has already
taken place

ur. : result of operation available
for use-i

Note that each use of a given result is represented

uniquely. Accordingly, each use of a variable-name as

an operand (i.e., each occurrence of the variable-name

on the right side of an assignment statement) will be

represented as follows:

26.

value generation

value use

operatic«^ , which generates values for x, in progress

operation. f which uses x as an operand, in progress

x is available as an operand for operation,
value of x may not yet be changed.

The

x used as an operand for operation, . The value of x
may be changed as a result of operation. .

Utm _____^___

27.

We would then represent the four line example which we

used earlier as follows:

0 C* v\z

A=B-C

X=A2

Y=/Ä

Z=X+Y

,' fi

i 1

I

11

28.

Note that the schemata for operations and for variable-

uses have cyclic behaviors and that therefore the

algorithmic representation which we have constructed from

them also behaves cyclically. One important consequence of

this is that our representation expresses not only "forward"

data dependencies (the computation of the next value for X

cannot begin until the current operand value for A has

been computed) but "backward" data dependencies as well (the

value of A may not be changed to its next value until the

current value has been used by the operations which compute

X and Y).

As long as an algorithm contained no decisions, we could

apply these schemata throughout to obtain an adequate

representation. As soon as we admit branching, however,

this procedure is no longer adequate, because decisions

render the dependency relations variable. Consider, for

example, the following flowblock diagram, in which we will

be concerned only with the variable A :

• ■ • - 'in ■■■ lüMM

x_i
n A=

f *

m ... =A . . •
II .

*

\ /

29.

IIU

7-^-

Statement n generates a value for A which is used in

statement m . Each time a value is generated for A at

statement n (each time control flows through flowblock

I), that value may be used at statement m once, or many

times, or not at all (control may flow from I to II to III;

or it may flow from I to II and then recirculate through

II any number of times; or it may flow from I to III and

back to I again). Or we might complicate the picture

slightly so that there are two alternative statements,

either one of which may have generated the value used

in any given execution of statement m ,

30.

In any algorithm which contains branching, the data

dependencies are "variable" — that is, they are determined

by the particular path "chosen by control" when the

algorithm is executed. It should be kept in mind, further-

more, that both forward and backward data dependencies are

at issue; we are interested not only in when the appropriate

value for an operand is available and may be used but also

in when a value is no longer needed and a new value may be

provided. The data dependencies in an algorithm with

branching constitute what we might call a "variable partial

*-*W

31.

ordering". Clearly, before we can consider the problem

of representing such variable partial orderings, we will

have to deal with the problem of extracting the necessary

data dependency information from the algorithmic language

definition of an algorithm.

VI. Variable-Names and Data Dependency Relations

We have already discussed one role of variable-names: a

variable-name represents a set of mutually exclusive

values; at any time during performance of the algorithm,

(at most) one of these values will hold. We have also

considered another role of variable-names: different

(and possibly unrelated) uses of the same variable-name

may be — and normally will be — mapped to the same

machine location; thus the various uses of a given

variable-name constitute part-part matching information.

(Of which we may or may not wish to take advantage — as

we have already pointed out, it will frequently prove

advantageous to map different uses of the same variable-

name to different machine components in order to allow these

uses to be concurrent.) We will now want to consider

another role of variable-names: we will want to examine

the ways in which variable-names interact with control to

determine data dependencies.

•^MWHKflMMKMMI

32.

1 Consider the following example, in which, again, we are

interested only in the variable A .

/

. A= • - -

n . . . =A • - •

o . . . =A • • ■

p

q

A= . •

. =A .

i

We said earlier that an occurrence of a variable-name on

the right side of an assignment statement (i.e., a use of

a variable) represents the result of the most recently

executed assignment to that variable-name. Whenever

statement n or statement o is executed, the occurrences

of A in these statements must necessarily represent the

value produced by the most recent execution of statement m .

Consequently statements n and o are ordered with „respect

to statement m : statement n is later than statement m ,

M •■■ ■■■■ - - ■ ■■ i

-^WJSET^UBW «ws*»«icgTr»^^<r».--«q»»wF^n»>* -r -^fcs^eiiV'jMiuULllM<*JIIHIJ I*

33.

and statement o is later than statement m . Because

the uses of A in statements n and o always represent

the value generated by the most recent execution of state-

ment m (i.e., m is the only assignment statement which

can produce values for those uses), we call those uses of

A members of the A equivalence class generated by

statement m . Similarly, the use of A in statement

£ is a member of the A equivalence class generated by

statement £ . Let us now expand the example as follows.

m

n

A= •

*

• • • ~A

... =A

• * •

L

\

r ...»A . . .

34.

i I

After each generation of the A equivalence class

generated by statement £ , the use of A in statement

r may occur once, or many times, or not at all before the

generation of some other A equivalence class, However,

the use of A in statement r always (if and whenever

it occurs) represents the value generated by the most

recent execution of statement £ , and therefore it is

a member of the A equivalence class generated by state-

ment £ . One way, then, in which variable-names and

control interact to determine data dependency is in the

generation by assignment statements of equivalence classes,

which define ordering relations between operations. Each

occurrence of a variable-name on the left side of an

assignment statement represents the generation of an

equivalence class; each use of that variable-name for which

that assignment statement is always the most recent assign-

ment to that variable-name is a member of that equivalence

class.

Let us now consider an example which illustrates another

type of data dependency.

;
: I
i

|
:
_

Lss m "«■- . —*- *—

. .

«■»I« mi »-<—iWW.ll1' .

35.

I '

m A=

7

i

i '

i *

i '

^

Here there are two possible statements, m and n , which

may generate a value for the use of A in statement o .

These uses of the variable-name A express both a part-

part matching and a set of ordering relations. The results

of two alternative computations are "merged"; whenever

statement o is executed, it uses as an operand the most

recent result of either statement m or statement n

— whichever was executed most recently. In the context

of our earlier discussion, we can describe merges as

the result of part-part matching — either the "folding

up" of one history or the "overlaying" of different

histories (or both), in hardware terms, such part-part

36.

matching, represented by merges, allows the mapping of

alternative control histories onto the same equipment.

Statements m and n both generate A equivalence

classes. But since the use of A in statement o

represents a value which may have been produced by either

m or n , it cannot be a member of either equivalence

class. Because we will want the A equivalence classes

to constitute a partition of all uses of A , we will

let the uses of A in statements o and p_ constitute

a third equivalence class. Roughly speaking, we can think

of this equivalence class as having been generated when

either statement m or statement n has been executed,

and a decision has been made to go to flowblock III. In

the flowblock diagram we would locate the generation of

the equivalence class at the "merge-point" — that is, at

the entry to flowblock III. Note that whenever statement

o is executed, this merge-point will then always be the

most recent point at which an A equivalence class was

generated. In terms of the data dependencies, a set of

alternative ordering relations has been defined: either

o is later than m, or o is later than n . We have,

then, two types of equivalence classes, which represent

ordering relations between operations. We shall want to

partition the uses of each variable-name into equivalence

classes. To accomplish this we use an algorithm by Warshall,

which is described in Appendix II. Here we shall restrict

4
tamMmamtm-räamutm«■ i r r' - -——'— ■■■■■-■■■;

VWV\WVWHBHBtfäB88Bt£P*3*&

37.

ourselves to a very brief account of the algorithm. It

might be useful to recast the problem of partitioning

variable-uses into equivalence classes in more familiar

terms. A common optimization problem — and one which

is normally dealt with only locally — is the elimination

of redundant computation, or common subexpression elimina-

tion. Suppose, for example, that the expression SINF (A)

appears twice in an algorithm. We would like to know

whether we can compute the sine of A once for both uses.

We would like to know, roughly speaking, if both instances

of A "always represent the same value." More precisely,

is there a point p_ in the flow diagram such that on no

path from £ to either of the uses is there an A-assign-

ment and such that there is no path from any A-assignment

to either of the uses which does not pass through £ ?

(If such a point exists, we can safely place the computation

of the sine of A there.) Based on our definition of an

equivalence class, we can restate this question as follows:

Are both instances of A members of the same equivalence

class? Warshall's algorithm, then, may be thought of as

a global solution of the problem of common subexpression

elimination.

As an example, let us take the flow diagram below and

apply Warshall's algorithm to the variable A . Only the

occurrences of A actually appear in the diagram, and

MMBMI MMHH

j i 38.

i i

the statements in which they occur have been numbered

for convenience.

We expand this graph by replacing each flowblock-node F

with a totally ordered set of nodes * , as follows:

- if F is the entry flovblock, one node called

39.

the entry-node, which is the earliest node in

$; or

if F has more than one input arc, one node

called a flow-node, which is the earliest node

in $; and

a set of instance-nodes, one corresponding to

each instance of A in flowblock F ; these

nodes are ordered according to the order in

which the corresponding instances of A occur

within the flowblock (where the left side of

an assignment statement is later than the right

side); and

- if F has more than one output arc, one node

called a decision-node, which is the latest

node in $; or

- if F is the exit flowblock, one node called

the exit-node, which is the latest node in $.

All input arcs of F become input arcs of the earliest

node in $; all output arcs of F become output arcs of

the latest node in $. If $ is empty (i.e., F has

one input arc, one output arc, and contains no instance of

the variable), then it must have some unique precedessor

flowblock G and some unique immediate successor flow-

block H ; replace the arc from G to F and the arc

from F to H with one arc from G to H . The re-

sulting graph for the example above is the following:

40.

I !

(6>:

i
exit»

Note that there is still a unique node which is earlier

than every other node in the graph (the entry-node) and

a unique node which is later than overy other node in the

graph (the exit-node). The purpose of the algorithm is to

subscript the instances of A in such a way that they

are partitioned into equivalence classes. This means

that we want to identify a minimal set of nodes in the

41.

above graph as equivalence-class-generators such that

every other node in the graph has a unique most recent

equivalence-class-generating ancestor. He know that all

assignments to A generate equivalence classes; therefore,

we will circle all nodes representing left-side instances

of A and label them uniquely as A cl lc2 ' en
We will also circle the entry node and label it A cO

(6).

I
exit •

42

It remains to determine the equivalence classes which

must be generated because of merges. Roughly speaking,

the algorithm accomplishes this by pushing the name of

each circled node along directed arcs to all uncircled

nodes which can be reached without encountering another

circled node. When two different names meet on an

uncircled node, that node is circled; such newly circled

nodes are uniquely labeled as Af. , Af~ i ••• » Afm •

The names of the newly circled nodes are also propagated

until no more nodes may be circled. (It should be

intuitively clear that only flow-nodes are candidates

for circling). Upon completion of the algorithm every

node is either circled or has associated with itself the

name of exactly one circled node: namely, its unique most

recent circled ancestor. The nsmes define the partition

into equivalence classes. Each circled node corresponds

to an equivalence-class-generating event — either an

assignment to A or a merge.

'

43.

entry (OA ? cO

CDCOA cl

(2) . A

(6) «A

I f2

exit »A f2

Millstein and Warshall prove that the solution is unique

and minimal.

44.

! '<

t Let us make one further modification in the above graph,

as follows. For each circled flow-node, which defines

some equivalence class Af. , consider the names associated

with those nodes vrhieh are its immediate predecessors.

For each such name Aj^ (where k represents either f

or c) — and there ifiust be at least two different names

— introduce a new uncircled node into the graph, and

assign it the name Aj. . Introduce new arcs such that

this new node is the immediate successor of each A,,

node which was an immediate predecessor of the circled

Af- node. Eliminate the arcs from these immediate pre-

decessors to the circled A... node, and introduce a new
fi

arc from the new A, . node to the circled Af. node.

Application of this procedure to the example above produces

the following graph:

:-?r-^

>rT^H5*?*awBaBi't»aiw?'.fi''iiaii) ni'wy

(3)1

entry (TJA^

I (2)» A

cl

c2
Lcl

/- >>
c3

I
(4)1 A

(4) CO A
C3

exit»A

45.

f2

We call this graph the complete p-graph of A . Let us

provide several further definitions for future use. We

■..-.■. rfMMixMNc£AW«<*JWM

46.

call the set of all nodes In the complete p-graph of A

which have associated with them the name A^ the members

of the equivalence class Aki . We call the set of all

nodes which are immediate successors of members of some

equivalence class A. . but which are not themselves

members of the equivalence class Aj. the exit nodes of A. .

We define the graph of the equivalence class Aki as the

subgraph of the complete p-graph of A which contains the

members of A^^ together with the exit nodes of A. . .

Thus the graph of the equivalence class Ac3 in our example

would be the following:

■«»■■ mm

47.

VII. The Translation of Conventional Algorithms
into Cyclic Partial Orderings

Let us assume that we have applied Warshall's algorithm

to each variable in some algorithm. We can now consider

the problem of giving this data dependency information

explicit representation and of relating it to decisions.

Let us continue to represent operations as before.

initiation

.completion

For each assignment in an algorithm we will produce one

such operation representation. We can represent decisions

(i.e., IF statements) similarly, except that we will

represent the various possible outcomes or decision-

resolutions explicitly as net conflict.

r

48.

A decision has a variable as an operand just like any

other operation. (Note that for each decision in an

algorithm there will be in each p-graph of some variable

in the algorithm a unique decision-node corresponding to

that decision. Similarly, for each decision-resolution

there will be a unique arc — one of the output arcs of

the decision-node — corresponding to that decision-

resolution.) Since we are aiming at a representation

which explicitly exhibits data dependencies and since

these data dependencies are determined by the interaction

of control with variable-names, we will want, roughly

speaking, to link decision results directly to variable-

uses to generate ordering relations between operations.

Therefore we will expand our previous representation of

a variable-use from:

generation

use

»V» J JWjU,

»nWMt 1-"t-gt^rj^>iWLB!Ii|^^j)|MM4>aa,
■0*J5»f^lWf HÜWHWHWMUH i»

to:

49.

use of A... . __i
ki(u)

(k stands for either f or c ; hence, ki is a

subscript identifying the equivalence class of which

the use is a member.

u is a subscript which unqiuely identifies the

particular variable-use being represented.

Arcs a and b are alternatives (exactly one is

present in any given representation) as are arcs

f and £ .

Places d and e represent decision results.)

50.

i

*■

Before giving formal rules for applying this schema,

let us describe it in informal, approximate terms.

A, . . . has the same interpretation as in our previous

schema: the current value of the variable is available

for this use; it may not yet be changed to the next

value. Similarly, A/.. . means: the current value

has already been used and is no longer needed; it may be

changed to the next value. A,. . . represents a sort

of limbo: the current value is available, but this use

of it may or may not take place (before the generation of

its next value), depending on the outcome of one or more

decisions. Places c , d , and e are connected to

transitions representing decision-resolutions. A decision-

resolution which causes this use of A to take place

(before the next generation of the equivalence class) has

e as an output (and is called "an enabling event" for this

variable-use) and c as an input. A decision-resolution

which guarantees that this use of A will not take place

(before the next generation of the equivalence class) aas

d as an output (and is called a "disabling event" for this

variable-use) and c as an input, c means: the last

decision result affecting this variable-use has "taken

effect"; the next relevant decision result may be generated.

The transition labeled "use of A. . , v" represents the
Kl \M)

initiation of the operation in which this instance of A

51.

is an operand. If the equivalence class A. > is

generated by an assignment, then the transition labeled

"generation of A^. " represents the completion of the

operation which provides values for that equivalence

class. All representations of variable-uses which are

members of the same equivalence class will, of course,

share the same generating transition and have different

use transitions. If the equivalence class A. . is

generated by a merge of several A equivalence classes,

we create a set of alternative generating events — one

for each equivalence class which participates in the

merge. Each such generating event will consist of one

transition which has as an "operand" a variable-use

representation which is a member of one of the merging

equivalence classes. Each of these alternative

generating transitions will, of course, generate the

entire equivalence class. For example:

--*»s.va^ mm*mmm'tew -■ *

! I

!

generation
of A,

generation

The arcs a and b are alternatives — exactly one of

the two is present in any given representation of a

variable-use. If each time the equivalence class Aki is

generated, this use must take place at least once, then

arc a is present and not arc b . If, after each

generation of the equivalence class Aki , this use may

or may not take place, then arc b is present and not arc

a . Similarly, arcs f and g_ are alternatives. If for

each generation of the equivalence class this use may take

place at most once, then arc f_ is present and not arc g_ .

If for each generation of the equivalence class this use may

take place more than once, then arc g_ is present and not

Z*ry* ~»*"*R *?^1

53.

arc f .

Let us now restate these rules more precisely. For

each uncircled node in the complete p-graph of A which

is not a flow-node or a decision-node, we will produce

a variable-use representation in accordance with the

schema above and the following rules. Consider any such

node A, . . . , which is a member of some equivalence class

*ki

If the equivalence class A^- is generated by

an assignment, then the generating transition

of Aj^ • / v is the termination transition of

the operation corresponding to the generating

node of Aj. .

If the equivalence class A^- is generated by

a merge, then there is a set of alternative

generating transitions for A^ /u\ — one

corresponding to each immediate predecessor

node of the circled A^ node.

If the node A^■/uj does not have as an

immediate successor a circled flow-node, then

its use transition is the initiation transition

of the operation associated with it.

If the node A^ /u« has as an immediate

successor a circled flow-node, then its use

transition is one of the set of alternative

54.

generating transitions for the equivalence

class defined by the circled flow-node.

If every path from the circled Aj. node to

an exit-node of A, . contains A. . . ., then

the representation of A, . . . contains arc a

and not arc b .

Otherwise it contains arc b and not arc a .

If in the graph of A. . there exists a circuit

such that all nodes in the circuit are members

of Aj^ • and such that A^^ /u* is contained in

the circuit, then the representation of A^wu)

contains arc £ and not arc f_ .

Otherwise it contains arc f and not arc £ •

- For each decision-node AJH (v)
eAki » such that

there exists a path from A^^y) to Ak^/uj

which is contained in Aj^ , and such that there

exists at least one path from Aki(v) to
some

exit-node of Aj- which does not contain A
IH(U)

:

Let P be the set of all paths p such that the

first node of p is &ki(v\ an<* the last node

of p is an exit node of A^^ and such that the

last node of p is the only node in p which is

not a member of A^ . Partition P into sub-

sets P]_ , P2 , ... , Pn according to the second

node of each member path (i.e., according to the

branch taken at the decision), so that each

55.

subset corresponds uniquely to a resolution of

the decision.

- For each subset Pft such that all members

of Pv contain Aj., . , let the decision-

resolution transition corresponding to Pft

have as an output place e (in the re-

presentation of A]c£ / j) and as an input

place c .

- For each subset Pj such that no member

of Pj contains Ak£/Uj , let the decision-

resolution transition associated with ?j

have place d as an output and place c

as an input.

Constants are treated similarly. For each use of a constant,

we produce a representation in accordance with the schema and

rules for variable-uses. However, since there can be no

generation event for a constant, part of the schema will be

superfluous, (as indicated in the following figure by

broken lines).

[k' *3».

use

.:■■■:

56.

Furthermore, if place e is not an output of any tran-

sition — i.e., if the constant-use in question occurs in

every control history of the algorithm — then we will

eliminate places e and c from the representation as

well, so that the value is made available again after

each use, independently of any other computation or

decision. This would leave us with the following schema:

These representational schemata for variable-uses (and

constant-uses) and decisions differ radically from con-

ventional representations. A decision is no longer viewed

as a point in a flow diagram at which control chooses one

of several alternative paths and a decision-resolution

simply as the choice of one of those alternative com-

putational paths. Instead each decision-resolution has a

set of results. Each of the results affects the status of

some one variable-use, either enabling or disabling it

— i.e., each decision-resul determines either a forward

I— ' '■"■——■■

I

57.

or a backward data-dependency relation. One important

aspect of this is that the various effects of a decision-

resolution are given individual, explicit representation.
«

Even more interesting, however, is the fact that this
I
j

schema is free of the dualism of conventional representa- I
I tions: control and computation no longer have different

ontological status; decision results and computational

results alike are explicitly represented as conditions
i

(or "sub-states" or "signals") in a partially ordered,

cyclic system of such conditions.

Having explained our representational schemata in detail,

we will now replace them with more concise notational

forms. We shall replace the operation schema with a

To model decisions, we shall break the lower bar to

represent the various possible decision-resolutions.

Furthermore, we shall name each decision-resolution in

double bar.

58.

the algorithm uniquely.

11

We shall replace the variable-use model with a rectangle;

an output arc will connect the generating transition to

the variable-use model; an output arc will connect the

variable-use model with its use transition. A diagonal

in the upper right corner of the rectangle indicates the

existence of arc a ; its absence indicates the existence

of arc b . A diagonal in the lower left corner of the

rectangle Indicates the existence of arc f ; its absence

indicates the existence of arc g_ . The names of all

enabling events of the variable-use (i.e., inputs of place

e) are listed along the right edge of the rectangle. The

names of all disabling events (i.e., inputs of d) are

listed along the left edge.

^äsm' "■■ymr ■

59,

I :

J

generation

P P

•use

We can condense the following example accordingly.

(ii)

ii

—'•""■■"iniHuiaii

_y -, ,— !"■■■■ ■■■'■-—•■'■•.> B r~i l Tr-~j». .^aflgrcy^,

60.

Before we can apply our representational procedures to

an example, we must (for the time being at least) impose

one further restriction: all decisions must be ordered.

This is easily accomplished since every decision-

resolution involves a commitment to a unique next decision.

Therefore, for each decision y_ in the algorithm, we

create a place which is input to the initiation transition

of that decision; we can then make this place an output of

every decision-resolution transition which has y_ as its

immediate successor decision.

VIII. An Example of the Translation Procedure

Let us now take the following algorithm segment as an

example for translation into our representational form.

For the sake of convenience and clarity we will number

each statement and each decision-resolution.

t

61.

1 A»C+E

2 IF T 7,7,3

4

5

6

I=-10

B=B+A

1=1+1

IF I 4,7,7

ill

III

7

8

D=B+A

WRITE D

IV

w—.— - " *

62.

p-qrapha for the algorithm

'cO(l)

1
'CO

1
'cO

-cO

I
-cO

E
C0(1)

I
'cO

cO

c0(2)

I
loO

PC0

J
CO

CO cO

—~~■^•■pp*" " " '■■

*cl

cl

J
cl(4)

J
cl

4cl

I
cl(7)

I
*cl

CO

J
cO

'cO

i

cl(8)

J
cl

63.

r
64.

... ... r«,»?r^-?.-^y---

i ■

I

B f2(7)

J
B
f2

lf2

- '■"■ —«^» ^"

-*— ~- «■ -. -

65.

The Translated Representation of the Algorithm

66.

We now have a representation which expresses most of

the obvious kinds of concurrency possible for the

algorithm. It consists of a partial ordering of

operations determined exclusively by the. data dependencies

(with the exception of the ordering of decisions). Con-

trol has been largely eliminated. Each decision inter-

acts explicitly with each variable-use it affects.

IX. Pipelining

There is, in this representation, a certain amount of

"play" between decisions and value availability: a

value may be available for use in an operation before

a commitment has been made to perform that operation;

conversely, the commitment to perform an operation may

be made before a necessary operand value has been

generated. Because of the fact that algorithms contain

cycles, it will be to our advantage to increase this

freedom as much as possible. For example, we might

consider a loop in which the control variable is computed

independently from the other operations in the loop. If

we could get several iterations ahead with the decisions,

we could "wind up" the loop and achieve a pipeline effect.

That is, ideally it might be possible to have all the

operations in progress concurrently so that the through-

put rats for the loop would be determined by the time

wTOwpsKw iiijtjUMUj-wiM^jMHiM'.yniiiF ""|^^^^,^^PW^^W^I*

a~-i II »lUIII—IUI'IM»»

67.

required for the longest individual operation. To allow

this kind of concurrency we will introduce a simple net

structure which might be variously interpreted as a

buffer, a stack, a queue, or a pipeline.

We have already used this structure to illustrate pipe-

lining, we might also interpret each pair of places as

68.

i i

representing a location in which a value or a signal

may be stored. If the left place is full, that location

is empty and may receive a value. If the right place is

full, that location contains a value, which it may trans-

mit to the next location (it is not possible for both places

in a pair to be full — cr empty). We could then view this

structure as a first-in-first-out stack. Signals are

dropped in at the top and taken out at the bottom in order;

the stack may hold as many values concurrently as it has

place-pairs. Let us now suppose that there are two kinds

of signals which may be placed into a stack and that we

would like to distinguish between them explicitly. Further-

more, we will want to preserve the order in which they

enter the stack. We can represent such a bi-valued stack

as follows.

*■"'«. "P

1

69.

We can introduce such stacks into our representation of

variable-uses and decision-results as follows.

— generation

-use

70.

In this fashion, we can create an arbitrarily high

degree of freedom between decisions and computations.

Furthermore, since the decision results affecting each

variable use are given individual representation, this

means that we may thereby increase the freedom between

different computations.

X. Control and Merges

We have considerably increased the power of our notation

to represent potential concurrency, but our representation

still contains arbitrary sequencing restrictions. The

most obvious and serious of these is the ordering of

decisions. Let us briefly consider two important

implications of this restriction. First, we would like

to be able to pipeline the algorithm as a whole so that

it may concurrently process more than one set of inputs.

As long as decisions are totally ordered, no significant

amount of pipelining will be possible, since all decisions

involved in the processing of one input set must clearly

have been made before any decision involved in processing

the next input set may be made. Secondly, let us consider

the fallowing example.

p, mm ., — "I" ■
■■ ■

71.

£Z>
^1/

Suppose that loop II and loop III are unordered with

respect to data-dependency (all values used in both loops

might be generated in flowblock I, for example). There is,

therefore, no data dependency constraint which prevents

these two loops from "running" concurrently. As long as

decisions are totally ordered, however, this possibility

■nf P>l|!^ ' <»'■ W'»' ipm

72.

is excluded.

On the other hand, we cannot simply throw Out the

ordering of decisions altogether. To show why this

straightforward solution is inadequate, we will try

abandoning the ordering of decisions in the following

example, in which we will be specifically concerned with

the merge of the variable A at flowbiock IV. We have

named the decisions in this diagram a, b, and c, and

we have named the decision-resolutions i, ii, iii, iv,

v, vi, and vii .

——- ■ ■■■ ml mv

-'

73.

■

74.

If we assume appropriate data-dependencies, the following

set of events is possible: "Control" enters flowblock I

and at decision a it chooses resolution ii . Let us

assume that decision b is extremely time-consuming and

that while this decision is being made, "control" (or

"part of control", perhaps) skips ahead to flowblock VI

and re-executes decision a — this is, of course,

permissible because decision a must be encountered

again regardless of the outcome of decision b . Let us

suppose that this time resolution i is chosen, and

control enters flowblock III, where a value is generated

for A^, . Decision c is executed enabling A^ to cm cm

enter the merge and provide a value for A^Q . At this

point decision b is finally completed; resolution iv

is chosen enabling Acn to provide a value for Afo at

the merge. Since the two "entries" into the merge

occurred in the wrong order, however, any computations

which use Af will have been rendered meaningless.

Roughly speaking, wherever there is a merge (i.e., part-

part matching), we must keep track of the logical priorities

of the various claims which may be made on a representational

"part". The different uses of such a "part" can only be

distinguished by the order of their occurrence. Hence we

will want to determine which decisions are critical in

maintaining priorities among "entries" into a merge. If we

then order the effects of these decisions on the merge, we

■■„■„,■. „II — I pp

75.

can allow the decisions themselves to take place in any

order.

We can briefly outline a procedure for identifying the

set of decisions which are critical for a given variable-

merge. Take the p-graph of the variable in question and

delete all circles. Circle the exit node and each of

the immediate predecessor nodes to the merge node in

question. Reverse the direction of every arc in the

p-graph and apply Warshall's algorithm. This will cause

the desired set of decision nodes to be circled (and

only those nodes). We can then use this information to

order entries into the merge. In the example above,

decisions a , b , and c constitute the set of

interesting decisions for the merge into Af . We can

order the effects of those decisions as follows: (Note

that the order in which the decisions themselves take

place is not affected).

i

IV VI1

generation of
A*rt from A *o cm

The desequencing of decisions may also lead to a similar

problem with certain variable-uses, and a solution like

that for merges is applicable.

«^»i

'

77.

XI. Proposed Extensions of the
Representational Form

We have outlined procedures which make possible the

translation of a sequentially defined algorithm into a

powerful representation of highly concurrent execution

of the algorithm. Roughly speaking, each operation may

take place when (1) the necessary operand values are

available, (2) enough decisions have been made to

guarantee that the operation will be required, and

(3) enough decisions have been made to guarantee that

no logically prior claim can be made on the algorithmic

parts involved. All sequencing has been stripped out

except that which is given by data dependencies or by

priorities for part use. In the process, control has

been dismembered and the useful information which it

carries has been broken down into individual ordering

relations.

This is as far as we can carry the development of this

representational apparatus in this discussion, but we

would like to mention several possible extensions and

applications. For example, we have already mentioned

the fact that one arbitrary restriction imposed by the

notion of control is that nothing may be executed which

is not computationally necessary. However, it may prove

more efficient to defer some decisions — to pursue one

or more alternative branches provisionally before the

—r„ --—*-imir

78.

choice among them has been made. We now have a represen-

tation which exhibits explicitly which variable-uses are

affected by a given decision. Therefore, we could

mechanically build decision-deferral into our representation

by moving enable/disable connections to other variable

uses which are later in the chain of data-dependencies

— so long as we provide logical machinery to discard

rejected values. Where two such alternative paths

merged, furthermore, we could extend the decision deferral

by "unzipping" the merge — that is, by duplicating

representational structures logically later than the merge.

We might use the technique of duplication in another con-

text as well: if we could identify computational bottle-

necks, we might very profitably duplicate the structures
j

at these bottlenecks. If we had statistical information

about the relative frequency of different entry paths into
I ;
! j

|*| a given merge, we might also implement another type of
j i _

i j decision deferral: we could "open" the most probable entry
j !

to the merge on a provisional basis, even though the
I

necessary decisions to determine priority of entry had not

yet been made. Again, we would need logical machinery for

discarding unwanted values. Several of the above possibilities

involve duplication — i.e., part-part matching in reverse.

Because the data dependencies are exhibited explicitly we

can also move in the opposite direction. We have already

discussed one kind of part-part matching which is a standard

 «V

79.

optimization technique: elimination of redundant

computations. We have accessible the information

necessary for a global attack on this problem. Where two

similar operations have operands generated by the same

transitions (i.e., where the operands are members of the

same equivalence classes), we can combine them. That

is, we can replace the two operations with one operation

which generates an equivalence class representing the

union of the two equivalence classes generated by the

replaced operations.

XII. Implications for Hardware Design

Finally, we would like to make several remarks about

machine design. As the theoretical limits on the speed

of computing components are approached, further increases

in computing rates depend increasingly on our ability to

build and use machines with highly parallel operating

capabilities. Leaving aside the question of cost (which

in any case can only be evaluated when we have the means

to determine how effectively such equipment could be

exploited), the principal problem in designing such

computing equipment is not one of devising suitable

physical components. The principal problem is rather the

organization of physical components into a programmable

system. Even the most straightforward digital computer is

,,»—■m-.-i—mm

80.

highly parallel in its operation in one stnse — its

operation represents a very complex system of partially

ordered events. It is simply that this system has been

constructed in such a way that the subset of events

interesting to us as users of the machine will occur

sequentially (or very nearly — even on the "programmable"

level of machine behavior we can cope with a lxmited

amount of concurrency). Digital computers are designed

in this way so that sequentially defined algorithms may

be mapped onto them. It is because of this that they are

programmable. Consequently any significant reorganization

of hardware to exploit more fully the possibilities of

concurrent operation must depend upon an appropriate

conceptual reorganization of the representations of

mathematical processes which we wish to perform.

—i^w jinn

I I V*'Z-**g*i,l*1.

■ ■ .

1-1

APPENDIX I

Petri Nets1

•jrmally, a Petri net is a directed graph with two kinds

of nodes: places, represented as circles; and transitions,

represented as line segments. Each directed arc, represented

as an arrow, connects one place with one transition. An

arrow from a place to a transition means that the place is

an input to the transition; an arrow from a transition to

a place means that the place is an output of the transition.

Every place in a net is an output of at least one transition

and an input to at least one transition. No place may be

both an input to and an output of the same transition.

A place is capable of two states: full or empty. The

state of a net is given by a list of all its full places.

A transition may fire if and only if all of its inputs are

full. When a transition fires, all of its inputs are

emptied and all of its outputs are filled. If some place

is input to two or more transitions, all of whose inputs

are full, these transitions are in conflict. Only one of

the transitions — any one — may fire in such a situation.

(See Figures A, B, and C for examples of net diagrams.

Figure B shows a net with conflict,)

'For a comprehensive account of Petri nets we
refer the reader to the "Final Report for the Information
System Theory Project", RADC Contract # AF 30 (602)-4211,
by Dr. Anato.1 W. Holt et al.

.v. -.----

1-2

Figure A

i r

A net and an occurrence-graph representing its behavior.
The shaded places are full. The broken lines represent
time slices of the o-graph.

| i

Figure B

^JJ

*—J

B

c_y

j

V B ^

A .^.

B _

F / B

A net with conflict and the o-cycles which constitute its
basis. When A, B, and C are full, either transition 1 fires
or transition 2 fires, but not both.

' Jy*nm**wiNmmtJiijm*-

1-3

Figure C

K^r 2L£ © 1L : Ball 1 is moving
counter-clockwise.

1R : Ball 1 i3 moving
clockwisec

2L : Ball 2 is moving
counter-clockwise.

etc.

In using Petri nets to describe a system, each place is

associated with a proposition about the system. By \

interpretation, when a place is full, the proposition

associated with it is true. In other words, the condition

described by a proposition holds in the system when the
\

associated place is full. The state of a system described

by a given state of its net is the conjunction of the

propositions associated with the full places.2 Thus a

net diagram togetl .** with a suitable initial assignment

It is perhaps misleading to speak of "system states'
here since a net does not necessarily define a totally
ordered sequence of states. (Formally, this is because
some transitions may fir« concurrently - that is, their
firings are not temporally ordered.) In this respect,
nets differ fundamentally from state machines.

!

HMMm.'.'HH*

1-4

of place states (corresponding to the conditions which

hold in the system initially) makes possible a formal

simulation of the behavior of the corresponding system.

Note that it is the occupancy of places which is viewed

as having duration. Transitions merely bound places;

the firing of a transition is not viewed as time-consuming

— rather, it is a separation of distinct place occupancies.

Hence, the propositions associated with places describe

conditions involving time-consuming operations or states.

Figure C, for example, is a net representation of four

balls moving and colliding on a single-lane circular track.

The propositions describing the system are all of the

form: "ball n is moving clockwise (or counter-clockwise)".

We may view an occurrence-graph, or o-graph, as a directed

graph which represents a simulation history of some net.

Formally, an o-graph consists of vertices, arcs, and

labels associated with the arcs. Each label corresponds

to some condition of the system being represented. (The

words label and condition are therefore used interchangeably

in this context.) Each arc represents an interval of

place occupancy (or condition holding); the place (and

hence the condition) is designated by the label associated

with the arc. An inner vertex represents a transition

firing and hence an occurrence in the system being represented.

(The terms inner vertex and occurrence are accordingly

> JL_

1-5

used interchangeably.) Thus an occurrence may be described

as follows: the conditions of the input arcs cease to

hold (the input places become empty); the conditions of

the output arcs begin to hold (the output places become

full). (See Figures A, B, and D for examples of o-graphs.)

Two occurrences are said to be temporally ordered if and

only if there is a path from one to the other; the former

precedes the latter. Note that some occurrence pairs in

an o-graph are temporally ordered while others are not.

Occurrences which are not ordered are said to be con-

current . Similarly, two arcs are temporally ordered if

and only if there is a path from one to the other; arcs

which are not temporally ordered are concurrent. A

time-slice is a maximal set of pairwise concurrent arcs.

A time-slice represents a possible state of the net (and

hence of the system) during the history which the o-graph

describes. (See Figure A.)

1-6

Figure D

1R

-2L-

4L

JB-

(two balls moving clockwise and two counter-clockwise)

(three balls moving counter-clockwise and one clockwise)

(three balls moving clockwise and one counter-clockwise)

■

1-7

An o-graph may be decomposed at a time-slice. Two o-graphs

may be composed if the terminal conditions of one are

identical to the initial conditions of the other. An

o-graph whose initial and terminal conditions are

identical is termed an o-cycle. An o-graph formed by

composing some number of copies of an o-cycle is termed

a repetition stretch of the o-cycle. An o-cycle which

cannot be decomposed into further o-cycles is termed an

irreducible o-cycle. (The o-graphs shown in Figures A,

B, and D are all irreducible o-cycles.) For every net

together with a suitable assignment of place states,

there is at least one basis, consisting of a finite set

of irreducible o-cycles from which every possible

simulation history may be generated by composition and

decomposition. If the net contains no conflict, its basis

consists of one irreducible o-cycle. Note that a given

net diagram may be capable of several different disjoint

behaviors given different initial place assignments.

Figure D, for example, shows the bases for the three

different behaviors of which the net in Figure C is

capable.

i I

II-l

APPENDIX II

Warshall's Algorithm

We start with a

definition: a p-graph is an ordered pair (G,N) where

G is a finite, directed, single-source, single-sink graph,

and N is any subset of the nodes of G which includes

the source. For our purpose we may regard G as the

flow graph of an algorithm where the unique entry and exit

are the source and sink of the graph. N is precisely the

set of initially circled nodes.

definition: a p-graph is complete if, for any node n of

G either:

(i) neN ; or

(ii) there exists a node n*eN such that any path from

any node in N to n includes n* .

In terms of flow graphs, a graph is complete if every

node has a unique circled ancestor, i.e., every use of a

variable belongs to a unique equivalence class.

We now see that a solution to the naming problem is included

in the solution to the problem of completing a p-graph. To

further that solution we prove the key

theorem:

If (G,N.) and (G,N_) are both complete p-graphs,

then (G,N,ON) is a complete p-graph.

proof (Millstein):

(G,N nN) is trivially a p-graph.

■...-,.. .-■'.

II-2

Suppose it is not complete.

Then there exists neG such that

(i) n/NjO*^ ; and

(ii) there exist q ,q2eN,nN2 , with paths p. ,

P2 from q. , q , respectively, to n ouch

that p, , p. do not have a common point in

N,ON .
1 2

case 1:

Without loss of generality we choose

(a) p^ , p_ to be cycleless paths; and

(b) q^ , q2 to be the last points in N.nN on paths

p / p respectively; and

(c) n to be the first point in N, - (N,nN2) common to

both paths. (Note: we use the finiteness in the

definition of p-graphs in making these choices.)

II-3

;

Now (G,N) is complete. Also, q q^NjO^S^ and

n^N2 . Hence there exists n'eN2 3 Pj^ , p2 both pass

through n' . Let p| , p' be the portions of p1 , P2

1 ' "*2 between q, , q„ and n'

\

N

/N2

/

Now (G,N.) is complete. Also, q ,q eNjON •N^ .

n'eN2 and by assumption n'^N,nN (or else p^ , p2

have a common point in N.nN2 , contradicting (ii) above).

Therefore, n'^N. (and hence n'^n) .

Therefore there exists n"eN., such that p' , p' both

pass through n" .

Since n'^n and p. , p are cycleless paths, n"=fn .

Therefore n" is a point in N. - (N ON) common to both

p. , p and n"4n . This contradicts (c) above.

[
II-4

case 2:

n e N2 - (N fifl)

By symmetry of argument this case leads to a contradiction.

case 3:

neC(N UN)

By a construction similar to case 1 this case reduces to

case 1. Hence all three cases lead to a contradiction

so (G,N,- N) is complete.

Our main result is contained in the

corollary:

If M is an arbitrary subset of the nodes of G ,

there exists a unique minimal set N of nodes of

G such that M^N and (G,N) is a complete p-graph.

proof:

There exists at least one set with the required

property: take all nodes of G . Moreover, since

G is finite, there is only a finite number of sets

with the required property. Therefore, we can take

the intersection of all such sets and the result is

the required minimal N .

We have shown that, given a p-graph, there exists a unique

minimal completion of the p-graph. In this section, we

give an algorithm for computing this completion.

We have defined the algorithm in a rather peculiar notation

-

*

II-5

which requires some justification. The essential point

is that the algorithm depends on cycling through the
■

elements of a set, where the effect of processing an

element may be to append other elements to the set.

If we attempt to express the algorithm ir FORTRAN or

ALGOL, we are forced to invent a data structure to represent

the set: perhaps a linked list, perhaps a bit vector to

indicate membership. In any event, we find ourselves

making a decision about optimum representation, introducing

new symbolic names (for the list head and pointers, or

for the bit vector), and inventing cyclic controls of the

loop-within-loop type which are more complex than the

simple single quantification we started with.

In sum, FORTRAN or ALGOL representation of the algorithm

is both complex enough to obscure the essential logical

structure and quite arbitrary, in that a number of quite

different-looking algorithms might be written without

logical loss.

We have elected therefore to pay the price of an unfamiliar

notation, in the hope that the very simple expression

which results will disarm the reader's discomfort with a

novel and not very well-defined language.

j

II-6

INITIAL CONDITIONS

We imagine as given:

1. D , a constant equal to the number of nodes.

2. VAL(I) , a vector where 1<I£D . VAL(I) = I

if the I node of the given p-graph is circled;

VAL(I) = 0 , otherwise.

3. S(I) , a family of sets, where lsi^D . For

any I , S(I) is the set of nodes which are

immediate successors of the I * node.

TERMINAL CONDITIONS

1. VAL(I) = I , if the I node of the completed

p-graph is circled; otherwise VAL(I) = J ,

where the J node is the last circled ancestor

on all paths to the I

2. D and S(I) are unchanged.

VARIABLES

1. I , J , and Q are variables which assume

integer values.

2. NOTYET is a variable whose value is a set of

integers.

I f

II-7

Algorithm:

COMPLETE

ALPHA $ Q<-0.

NOTYET «-{l|l<;l£D}.

(Yl|leNOTYETAVAL(I) ± 0) (BLEED CD . NOTYET «- NOTYET-{I}.)

If Q ¥ 0 , (VIJVAL(I) ± I)(VAL(I)«- 0) . GO TO ALPHA.

EXIT.

BLEED (I)

(Vj|jeS(I)) (FLOW(I,J).) .

EXIT.

FLOW (I,J)

If VAL(J) = 0 , VAL(J) *■ VAL(I) . EXIT.

If VAL(J) = VAL(I) , EXIT.

If VAL(J) = J , EXIT.

VAL(J) *■ J . Q *■ 1 . EXIT.

i ■■ ■ .. .-.... &Hm&m&&*^m >:*■:> ..■■

___..

.aua.-api^i«^>1iflW!»^Wj -•^j+r.-- -.

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA R&D
(Security classification ol title, body ol mbtlrmct and indexing annotation must be tittered when the overall report I« classilied)

1 ORIGINATING ACTIVITY (Corporate author)

Applied Data Research, Inc. - Corporate Research
Center

450 Seventh Ave., New York, N.Y. 10001

2a. REPORT SECURITY C L ASSI FIC/ TION

UNCLASSIFIED
2b. GROUP

3 RtPORT Tl TLE
N/A

The Representation of Algorithms

OESCRIPTIVE NOTES (Type ol report and Inclusive datet)

Final Report
5 AuTHORIS) (First name, middle initial, la at name)

Robert M. Shapiro
Harry Saint

6 REPORT DATE

September 1969
7a. TOTAL NO. OF PAGES

94
lb. NO. OF REFS

»a. CONTRACT OR GRANT NO.

F30602-69-C-0034
b. PROJECT NO.

4594

9a. ORIGINATOR'S REPORT NUMBER(S)

CA-6908-2331
9b. OTHER REPORT NO(S) (Any other numbers that may be assigned

this report)

RADC TR-69-313, Vol. II
10 DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its
distribution is unlimited.

II. SUPPLEMENTARY NOTF 12. SPONSORING MILITARY ACTIVITY

13. ABSTRACT

The problem of representing mathematical processes is considered
in the context of digital computer software and hardware.

DD ^,1473 UNCLASSIFTF.n
Security Classification

UNCLASSIFIED
Security Classification

KEY WORDS
ROLE I WT ROLE "T

Multiprogramming

Parallel processing

UNCLASSIFIED
Security Classification

