
RICE UNIVERSITY

Value�Driven Redundancy Elimination

by

Loren Taylor Simpson

A Thesis Submitted

in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Approved� Thesis Committee�

Keith D� Cooper� Associate Professor� Chair
Department of Computer Science
Rice University

Linda Torczon� Faculty Fellow
Department of Computer Science
Rice University

Ken Kennedy� Noah Harding Professor
Department of Computer Science
Rice University

Sarita Adve� Assistant Professor
Department of Electrical and Computer
Engineering
Rice University

Houston� Texas

April� ����

Value�Driven Redundancy Elimination

Loren Taylor Simpson

Abstract

Value�driven redundancy elimination is a combination of value numbering and code

motion� Value numbering is an optimization that assigns numbers to values in such a

way that two values are assigned the same number if the compiler can prove they are

equal� When this optimization discovers two computations that produce the same

value� it can �under certain circumstances� eliminate one of them� Code motion is an

optimization that attempts to move instructions to less frequently executed locations�

Traditional techniques must assume that every de�nition produces a distinct value�

Therefore� an instruction cannot move past a de�nition of one of its subexpressions�

This restriction can be relaxed when certain de�nitions are known to produce redun�

dant values� By understanding how these two optimizations interact� we can simplify

each of them� and the resulting combination will be more powerful than the sum of

the two parts� Value numbering will be simpler because it need not be concerned

with eliminating instructions� and code motion will be simpler because identifying

subexpressions is not necessary�

This research investigates this value�driven approach to redundancy elimination�

We improve upon the known algorithms for both value numbering and code motion�

and we show experimental evidence of their e�ectiveness�

Acknowledgments

To say that this thesis has been an individual e�ort would be grossly misleading�

Many people have contributed to this work in tangible and intangible ways� I would

�rst like to thank God for leading me to Rice and surrounding me with wonderful

friends and coworkers� My wife� Sallye� and my parents and her parents have provided

me with constant support and encouragement�

The members of my committee are Keith Cooper� Linda Torczon� Ken Kennedy�

and Sarita Adve� They have contributed greatly to this research� I admire and respect

them deeply� and I am honored to be associated with them�

This research has been part of the Massively Scalar Compiler Project at Rice

University� The project is supported by ARPA� and Vivek Sarkar of IBM has provided

my support� The members of the group �past and present� are Keith Cooper� Linda

Torczon� Ken Kennedy� Preston Briggs� Tim Harvey� Lisa Thomas� Rob Shillingsburg�

Cli� Click� Chris Vick� John Lu� Edmar Wienskoski� Phil Schielke� and Linlong Jiang�

Preston Briggs was a great in�uence during my early years as a graduate student�

and I regret that he is no longer a member of our project� Tim Harvey has been the

kind of friend who will go out of his way to help someone� and then deny that it was

any trouble at all�

Bob Morgan of DEC has shown a great deal of interest in the project� and he

has encouraged our research in the area of redundancy elimination� Dave Spott and

David Wallace of Sun Microsystems are implementing the algorithm for SCC�based

value numbering in their next generation compiler�

My time as a graduate student at Rice has been one of the most rewarding periods

in my life� This is due in part to the standard of excellence set by the past and present

Rice graduate students�

Contents

Abstract ii

Acknowledgments iii

List of Illustrations vii

� Introduction �

��� Intermediate Representations � 	

��	 Static Single Assignment Form � 	

��
 Optimization �

��� Classi�cation of Optimizations �

��� Safety� Opportunity� and Pro�tability � � � � � � � � � � � � � � � � � �

�� Redundancy Elimination �

��� Organization of the Thesis �

� Hash�Based Value Numbering �

	�� Static Single Assignment Form ��

	�	 Dominator�Tree Value Numbering ��

	�
 Incorporating Value Numbering into SSA Construction � � � � � � � � �

	�� Uni�ed Hash Table ��

	�� Interaction with Other Optimizations � � � � � � � � � � � � � � � � � � ��

	� Data Structures � 	�

	�� Extensions � 	�

	�� Summary � 	�

� Value Partitioning ��

�� Complexity �
�

�	 Data Structures to Support Partitioning � � � � � � � � � � � � � � � �
�

�
 Re�ning the Partition �

�� Handling Commutative Operations � � � � � � � � � � � � � � � � � � �

�� Eliminating Redundant Stores �
�

v

� Summary �
�

� SCC�Based Value Numbering ��

��� Shortcomings of Previous Techniques � � � � � � � � � � � � � � � � � � ��

��	 The RPO Algorithm �

��
 Extensions ��

��� Discussion ��

��� The SCC Algorithm ��

�� Example �

��� Uninitialized Values ��

��� Summary ��

� Code Removal ��

��� Dominator�Based Removal ��

��	 AVAIL�Based Removal �

��
 Summary �

	 Code Motion 	�

�� Partial Redundancy Elimination �

�	 Lazy Code Motion �

�
 Critical Edges �

�� Moving LOAD Instructions ��

�� Summary �	

� Value Driven Code Motion ��

��� VDCM Algorithm ��

��	 Examples ��

��
 Summary ��

� Relief of Register Pressure ��

��� Identifying Blocks with High Register Pressure � � � � � � � � � � � � � �	

��	 Choosing Expressions to Relieve Pressure � � � � � � � � � � � � � � � � �	

��
 Selecting Locations to Insert Instructions � � � � � � � � � � � � � � � � ��

��� Results ��

��� Summary ��

vi

� Experimental Results �

��� Experimental Compiler ��

��	 Tests Performed �	

��
 Raw Instruction Counts �

��� Normalized Instruction Counts ��

��� Comparison with Previous State of the Art � � � � � � � � � � � � � � � ��

�� Compile Times ��

��� Relief of Register Pressure ��

��� Summary ��

��� Recommendations ���

�
 Summary of Contributions ���

A Operator Strength Reduction ���

A�� The Algorithm �	

A���� Preliminary Transformations �	

A���	 Finding Region Constants and Induction Variables � � � � � � �	�

A���
 Code Replacement �	�

A���� Example �
�

A���� Running Time �
�

A�	 Linear Function Test Replacement �

A�	�� Follow�up Transformations �
�

A�
 Previous Work �
�

A�� Summary �
�

Bibliography ��	

Illustrations

��� Organization of a typical compiler �

��	 Program before conversion to SSA �

��
 Program after conversion to SSA �

	�� Value numbering example ��

	�	 CFG for if�then�else construct ��

	�
 Dominator�tree value numbering �

	�� Dominator�tree value numbering example � � � � � � � � � � � � � � � � ��

	�� Value numbering during SSA construction � � � � � � � � � � � � � � � ��

	� Uni�ed hash table ��

	�� Interaction with other optimizations � � � � � � � � � � � � � � � � � � � 	�

	�� Data structure for scoped hash table � � � � � � � � � � � � � � � � � � 		

	�� Example program containing loads and stores � � � � � � � � � � � � 	�

�� Partitioning algorithm � 	�

�	 Partitioning example � 	�

�
 Partitioning steps for example program � � � � � � � � � � � � � � � � �
�

�� Incorrect partition when positions are ignored � � � � � � � � � � � � �
�

�� Operations supported by the partition � � � � � � � � � � � � � � � � �
�

� Data structures for representing the partition � � � � � � � � � � � � �
	

�� Data structures for re�ning the partition � � � � � � � � � � � � � � � �
�

�� Commutativity example �
�

�� Partition for second commutativity example � � � � � � � � � � � � � �
�

��� Data structures for handling commutative operations � � � � � � � � �

��� Example program for redundant�store elimination � � � � � � � � � � �
�

��	 Initial partition for redundant�store elimination example � � � � � � �
�

��
 Partition to enable redundant�store elimination � � � � � � � � � � � �
�

viii

��� Data structures for redundant�store elimination � � � � � � � � � � � � ��

��� Improved by hash�based techniques ��

��	 Improved by partitioning techniques �	

��
 The RPO algorithm ��

��� Example requiring 	D�SSA� � 	 iterations � � � � � � � � � � � � � � � ��

��� Example with D�CFG� �� D�SSA� ��

�� Tarjan�s SCC �nding algorithm ��

��� SCC�based value numbering algorithm � � � � � � � � � � � � � � � � � �	

��� Example with equal induction variables � � � � � � � � � � � � � � � � � ��

��� Example with edges removed from SCC � � � � � � � � � � � � � � � � � �

���� Example with uninitialized values �

��� Program improved by dominator�based removal � � � � � � � � � � � � ��

��	 Program improved by AVAIL�based removal � � � � � � � � � � � � � � ��

��
 Naive bucket sorting algorithm �

��� Better bucket sorting algorithm �

��� Example program � 	

�� Data��ow equations for AVAIL�based removal � � � � � � � � � � � � �

�� Program improved by partial redundancy elimination � � � � � � � � � �

�	 Unnecessary code motion �

�
 Data��ow equations for lazy code motion � Part � � � � � � � � � � � � �

�� Data��ow equations for lazy code motion � Part 	 � � � � � � � � � � � ��

�� Splitting a critical edge ��

� Incorrect motion of a store instruction � � � � � � � � � � � � � � � � �	

��� Algorithm for computing altered using values � � � � � � � � � � � � � ��

��	 Algorithm for computing altered using lexical names � � � � � � � � � ��

��
 Expression tree �

��� VDCM example ��

��� Another VDCM example ��

��� Example where redundancy elimination decreases register pressure � � ��

ix

��	 Motivating example for heuristic �

��
 Motivating example for heuristic 	 ��

��� Motivating example for heuristic
 ��

��� Data��ow equations for relief of register pressure � � � � � � � � � � � � �

��� Sample ILOC routine ��

��	 Number of ILOC operations for hash�based value numbering

techniques � Spec benchmark ��

��
 Number of ILOC operations for value partitioning techniques � Spec

benchmark ��

��� Number of ILOC operations for SCC�based value numbering

techniques � Spec benchmark �

��� Number of ILOC operations for hash�based value numbering

techniques � FMM benchmark ��

�� Number of ILOC operations for value partitioning techniques � FMM

benchmark ��

��� Number of ILOC operations for SCC�based value numbering

techniques � FMM benchmark ��

��� Comparison of hash�based value numbering techniques � Spec

benchmark ���

��� Comparison of value partitioning techniques � Spec benchmark � � � � ���

���� Comparison of SCC�based value numbering techniques � Spec

benchmark ��	

���� Comparison of value numbering techniques using dominator�based

removal � Spec benchmark ��

���	 Comparison of value numbering techniques using AVAIL�based

removal � Spec benchmark ���

���
 Comparison of value numbering techniques using lazy code motion �

Spec benchmark ���

���� Comparison of value numbering techniques using value�driven code

moion � Spec benchmark ��

���� Comparison of hash�based value numbering techniques � FMM

benchmark ���

��� Comparison of value partitioning techniques � FMM benchmark � � � ���

x

���� Comparison of SCC�based value numbering techniques � FMM

benchmark ���

���� Comparison of value numbering techniques using dominator�based

removal� FMM benchmark ���

���� Comparison of value numbering techniques using AVAIL�based

removal � FMM benchmark ���

��	� Comparison of value numbering techniques using lazy code motion �

FMM benchmark ���

��	� Comparison of value numbering techniques using value�driven code

motion � FMM benchmark ���

��		 Comparison with previous �state of the art� � Spec benchmark � � � ���

��	
 Comparison with previous �state of the art� � FMM benchmark � � � ��	

��	� Comparison of relief heuristics � Spec benchmark� LOAD�STORE

weight ���

��	� Comparison of relief heuristics � Spec benchmark� LOAD�STORE

weight �
 ���

��	 Comparison of relief heuristics � FMM benchmark� LOAD�STORE

weight ��

��	� Comparison of relief heuristics � FMM benchmark� LOAD�STORE

weight �
 ��

A�� Example �		

A�	 Transformed code �	

A�
 SSA graph �	�

A�� Tarjan�s SCC �nding algorithm �	�

A�� Operator strength reduction algorithm � � � � � � � � � � � � � � � � � �	

A� Code replacement functions �	�

A�� After operator strength reduction �
�

A�� A worst�case example �
	

�

Chapter �

Introduction

A compiler is a program that translates programs in one language �called the source

language� to equivalent programs in another language �called the target language��

Usually� the source language is a high�level language written by a programmer and

the target language is the machine code for some computer� The primary goals of the

compiler are to�

�� Preserve the meaning of the original code

	� Produce e�cient code

� Compile quickly

Figure ��� shows the organization of a typical compiler consisting of three stages�

The front end must perform scanning� parsing� and context�sensitive analysis� The

optimizer transforms the program to improve its e�ciency� Generally� the optimizer

is organized as a sequence of passes � each with a speci�c purpose� The back end

generates the target language� It must perform register allocation� scheduling� and

instruction selection� There are many interesting problems involved in building both

the front end and the back end of a compiler� but this thesis is concerned primarily

with the compiler�s optimizer�

source
language

� front

end
� optimizer � back

end
� target

language

errors

HHHHHHHj �

��������

Figure ��� Organization of a typical compiler

	

��� Intermediate Representations

The compiler transforms a program represented in the source language to an equiv�

alent program represented in the target language� Along the way� a variety of inter�

mediate representations will be used� The design of the intermediate representations

is a fundamental part of the compiler development process� The intermediate rep�

resentation allows the three stages to communicate and it determines the amount of

information about the program that is available�

Often� the compiler will build an abstract syntax tree �AST� during parsing� It is

very similar to a parse tree except that many of the unnecessary nodes are removed�

The AST is very convenient for performing context�sensitive analysis and certain

high�level optimizations�

The compiler can generate three�address code during a walk of the AST� Three�

address code is a sequence of instructions of the form�

x� y op z

Three�address code gets its name because each instruction can access three names�

During the generation of three�address code� the compiler may create temporary

names for results that are not given a name by the programmer� For example� a

large expression will be calculated by a sequence of three�address instructions� and

each instruction will de�ne a compiler�generated temporary name� When the value

of the entire expression has been calculated� it can be stored in one of the program�s

variables�

The three�address code can be divided into basic blocks� or maximal sequences of

straight line code� A basic block has the property that if one instruction executes�

they all execute in order� The basic blocks are organized into a control��ow graph

�CFG�� The nodes in the CFG represent basic blocks and the edges correspond to

possible control �ow from one basic block directly to another�

��� Static Single Assignment Form

Many of the optimizations presented here are based on static single assignment

�SSA� form ����� The basic idea used in constructing SSA form is to give unique

names to the targets of all assignments in the routine� and then to overwrite uses of

the assignments with the new names� A complication arises in routines with more

than one basic block� Values can �ow into a block from more than one de�nition

site� and each site has a unique SSA name for the item� Consider the example in

HHHHHHHHj

���������

���������

HHHHHHHHj

if �� � � �B�

x � �B� x �
B�

y � xB�

Figure ��� Program before conversion to SSA

Figure ��	� There are two de�nition points for the name x referenced in B�� If

each de�nition point is overwritten with a unique SSA name� how can we correctly

replace the reference to x� Special assignments called ��functions are used to solve

the problem� These ��functions are placed at the routine�s join points �that is� at the

beginning of the basic blocks which have more than one predecessor�� One ��node is

inserted at each join point for each name in the original routine� This name is called

the ��node�s original name� In practice� to save space and time� ��functions are placed

at only certain join points and for only certain names� Speci�cally� a ��function is

placed at the birthpoint of each value � the earliest location where the joined value

exists �
���

The ��functions provide a single de�nition for a name that had more than one

de�nition �on di�erent control��ow paths� in the original routine� Each ��node de�nes

a new name for the original item as a function of all of the SSA names which are

current at the end of the join point�s predecessors� Any uses of the original item in

the basic block are replaced by the new name� The number of inputs for a ��node is

equal to the number of predecessors of the block in which the ��node appears� The

semantics of the ��function are simple� The ��node selects the value of the input that

corresponds to the block from which control is transferred and assigns this value to the

result� When ��functions are properly inserted� it becomes possible for any routine

to be renamed to produce an equivalent routine in which each name has exactly one

de�nition point� The SSA form of the example in Figure ��	 is shown in Figure ��
�

Renaming has already been performed� If control is transferred from block B� to B��

�

HHHHHHHHj

���������

���������

HHHHHHHHj

if �� � � �B�

x� � �B� x� �
B�

x� � ��x�� x��
y � x�

B�

Figure ��� Program after conversion to SSA

the ��node will assign x� the value from x�� If control is transferred from block B� to

B�� the ��node will assign x� the value from x��

��� Optimization

This thesis focuses on the compiler�s optimizer� Actually� the term optimization is

somewhat misleading� It implies that the code produced is optimal� In reality� the

optimizer transforms the intermediate representation in a way that is believed to

improve the program� Typically� improvements focus on the execution speed of the

program� However� other improvements� such as reducing memory requirements� are

also possible� There is no guarantee that the resulting code cannot be improved�

In fact� it is possible that the optimizer will make the program worse� Therefore�

many tradeo�s must be considered when designing an optimizer� The fundamental

responsibility of the optimizer is to preserve observational equivalence �
��� In other

words� the optimized program must produce the same results as the unoptimized

program for all possible inputs�

A typical optimizer is organized as a sequence of passes �or optimizations�� Each

pass tries to either improve the running time of the program or decrease its space re�

quirements� Some passes �or all passes� may be repeated� Each optimization performs

a speci�c task� Examples include�

� discover and propagate a constant value

� move a computation to a less frequently executed place

�

� specialize a computation based on context

� discover a redundant computation and remove it

� remove code that is useless or unreachable

� combine several instructions into some powerful instruction

The order in which the transformations are performed is important for several rea�

sons� One optimization may require code in a certain �shape�� One optimization may

discover �facts� that another needs� One optimization may introduce opportunities

or destroy opportunities for another optimization �
���

��� Classi�cation of Optimizations

When discussing a particular optimization� it is often helpful to compare it to other

optimizations� To do this e�ectively� we must understand which optimizations are

good candidates for comparison� The �rst classi�cation is based on the assumptions

made about the target machine�

Machine independent Assumes no knowledge of the target machine

Machine dependent Uses a speci�c feature of the target machine

There are very few optimizations that are truly independent of the target machine�

For example� removing a redundant computation would improve the execution time

of the program on most machines� However� this change may increase the register

pressure beyond what the target machine can support� If so� the register allocator will

be forced to insert spill code that may be more expensive than the original computa�

tion� As a rule of thumb� machine independent optimizations apply to a broad class of

machines and they ignore many of the constraints present in real machines� Examples

include removing redundant computations and moving instructions to less frequently

executed locations� Further� optimizations whose primary focus is to take advantage

of some feature of a particular architecture are called machine dependent� Examples

include rewriting memory operations to take advantage of speci�c addressing modes

and reordering instructions to reduce the number of pipeline stalls�

The second classi�cation is based on the scope of the optimization � how much of

the program must be analyzed�

Local Analyze and transform a single basic block

Global Analyze and transform a single procedure

Interprocedural Analyze and transform the whole program

As we shall see� there are several scopes that fall between these major levels� For

example� in Chapter 	� we will discuss extended basic blocks� which lie between local

and global�

��� Safety Opportunity and Pro�tability

The primary criteria for evaluating optimizations are safety� opportunity� and prof�

itability� Safety deals with the issue of whether or not an optimization will destroy

the observational equivalence property� An unsafe optimization has the potential to

change the observable behavior of a program� Unsafe optimizations should never be

applied�

Opportunity is concerned with the amount of e�ort involved in identifying loca�

tions within the program where the transformation can be applied� The intermediate

representation plays a signi�cant role in this aspect of optimization� For example�

locating the loops is rather simple using an abstract syntax tree� but it is more dif�

�cult if the program is represented by a control��ow graph� On the other hand� the

programmer may have created a loop using goto�s� which will not be visible in the

abstract syntax tree� Another common way to identify opportunities is data��ow

analysis � compile�time reasoning about the run�time �ow of values�

Pro�tability deals with the amount of improvement expected from applying a

transformation� The pro�tability of an optimization can be computed in a number

of ways� Some transformations� such as dead code elimination � removing compu�

tations whose values are never used� are always pro�table� Other transformations�

such as removing redundant computations� are simply assumed to be pro�table� We

saw how this assumption can be violated in the previous section� The pro�tability

of an optimization might be calculated at compile�time or at run�time� If the cal�

culation shows that the transformation is pro�table� then it will be applied� When

the calculation is performed at run�time� the compiler must generate code with and

without applying the transformation� Often� the compiler writer must consider the

tradeo�s between opportunity and pro�tability when deciding which optimizations

to implement� For example� a transformation with large amounts of compile time

�

required to �nd opportunities and relatively small payo�s in pro�tability would not

be very attractive� On the other hand� a transformation where opportunities are easy

to �nd and pro�tability is large would be very attractive�

��	 Redundancy Elimination

This research focuses on new techniques for compiler�based redundancy elimination�

Optimizing compilers often attempt to eliminate redundant computations either by

removing instructions or by moving instructions to less frequently executed locations�

Historically� the algorithms aimed at removing instructions have been designed inde�

pendently from those aimed at moving instructions� Usually� there is one optimization

pass that attempts to determine when two instructions compute the same value and

then decides if one of the instructions can be eliminated� A second optimization pass

determines a set of locations where an instruction would compute the same result� and

it selects the one that is expected to be the least frequently executed� This approach

su�ers from a phase ordering problem as well as the problem that no information

is shared between the two passes� We believe the correct approach to redundancy

elimination is a single optimization with two steps�

�� Determine which computations in the program compute the same value� and
identify the values computed in the routine� We will refer to this step as value
numbering� because we assign numbers to values so that two values have the
same number if the compiler can prove they are equal�

	� Use the value numbers to remove instructions or move them to less frequently
executed locations�

One advantage of formulating the problem in this manner is that it provides a

good separation of concerns� Step � encodes the knowledge that it discovers into the

choice of speci�c value numbers� Step 	 can rely on the numbers �encoded in the

name space or in a set of tables� as a basis for its reasoning� Thus� we can select the

algorithm for step one independently of the selection of the algorithm for step two�

This research has improved upon the best known solution to each of these steps�

��� Organization of the Thesis

The remainder of this thesis is organized as follows� Chapter 	 will discuss the hash�

based approach to value numbering� Chapter
 will present a global algorithm for

�

value numbering that is based on partitioning� Chapter � will present an original

algorithm that combines the advantages of hash�based value numbering and value

partitioning� Chapter � will explain techniques for removing instructions from a rou�

tine� and Chapter will present techniques for moving instructions to less frequently

executed locations� Chapter � will present a new algorithm that improves upon pre�

vious code motion frameworks by taking advantage of the results of value numbering�

Chapter � will discuss a new technique for applying code motion techniques to relieve

register pressure and to improve register allocation� All of the techniques described

in this thesis have been implemented using the compiler developed by the Massively

Scalar Compiler Project at Rice University� An experimental comparison of the tech�

niques will be presented in Chapter �� Chapter �� will summarize the contributions

and results of this thesis� We present an algorithm for operator strength reduction

in Appendix A because the algorithm relies on redundancy elimination and it is cen�

tered around �nding the strongly connected components of the SSA graph� just like

the value numbering algorithm in Chapter ��

�

Chapter �

Hash�Based Value Numbering

Value numbering is a code optimization technique with a long history in both lit�

erature and practice� Although the name was originally applied to a method for

improving single basic blocks� it is now used to describe a collection of optimiza�

tions that vary in power and scope� In particular� value numbering accomplishes four

objectives�

�� It assigns an identifying number �a value number� to each value computed by
the code in a way that two values have the same number if the compiler can
prove they are equal for all possible program inputs�

	� It recognizes certain algebraic identities� like i � i � � and j � j � �� and uses
them to simplify the code and to expand the set of values known to be equal�

� It uses value numbers to �nd redundant computations and remove them�

�� It discovers constant values� evaluates expressions whose operands are constants�
and propagates them through the code�

Cocke and Schwartz describe a local technique that uses hashing to discover redun�

dant computations and fold constants ����� We believe the technique was originally

invented by Balke at Computer Sciences Corporation �	��� Each unique value is iden�

ti�ed by its value number� Two computations in a basic block have the same value

number if they are provably equal� In the literature� this technique and its derivatives

are called �value numbering��

The algorithm is relatively simple� In practice� it is very fast� For each instruction

from top to bottom in the block� it hashes the operator and the value numbers of the

operands to obtain the unique value number that corresponds to the computation�s

value� If it has already been computed in the block� the expression will already

exist in the table� The recomputation can be replaced with a reference to an earlier

computation� Any operator with known�constant arguments is evaluated and the

resulting value used to replace subsequent references� The algorithm is easily extended

��

to account for commutativity and simple algebraic identities without a�ecting its

complexity�

As variables get assigned new values� the compiler must carefully keep track of the

location of each expression in the hash table� Consider the code fragment on the left

side of Figure 	��� At statement ���� the expression X �Y is found in the hash table�

but it is available in B and not in A� since A has been rede�ned� At statement �	��

the situation is worse� X � Y is in the hash table� but it is not available anywhere�

We can handle this by attaching a list of variables to each expression in the hash

table and carefully keeping it up to date�

As described� the technique works for single basic blocks� It can also be applied

to an expanded scope� called an extended basic block� An extended basic block is

a sequence of blocks B�� B�� � � � � Bn where Bi is the only predecessor of Bi��� for

� � i � n� and B� does not have a unique predecessor� Notice that a block can

be a member of more than one extended basic block� For example� consider an if�

then�else construct like the one shown in Figure 	�	 where block B� is contained

in two extended basic blocks� B�� B� and B�� B�� Value numbering over extended

blocks works precisely because each value that �ows into a block must �ow from

its predecessor and nowhere else� The blocks in the sequence can be processed by

initializing their hash tables with the results of processing the previous block� In

general� the extended basic blocks in a �ow graph form a forest� which suggests that

a scoped hash table similar to one that would be used for nested scope languages would

be appropriate� Rather than copying the hash table� new entries can be removed after

a block is processed� In reality� the compiler must do more than delete information

A� X � Y A� � X � Y
B � X � Y B� � X � Y
A� � A� � �

��� C � X � Y C� � X � Y
B � 	 B� � 	
C �
 C� �

�	� D � X � Y D� � X � Y

Original SSA Form

Figure ��� Value numbering example

��

HHHHHj

������

HHHHHj

������

B�

B� B�

B�

Figure ��� CFG for if�then�else construct

added by the new block� It must restore the name list for each expression and the

mapping from variables to value numbers� In practice� this adds a fair amount of

overhead and complication to the algorithm� but it does not change its asymptotic

complexity�

��� Static Single Assignment Form

Many of the di�culties encountered during value numbering of extended basic blocks

can be overcome by constructing the static single assignment �SSA� form of the rou�

tine ����� The critical property of SSA that we require is the naming discipline that it

imposes on the code� Each SSA name is assigned a value by exactly one operation in

a routine� therefore� no name is ever reassigned� and no expression ever becomes inac�

cessible� The advantage of this approach becomes apparent if the code in Figure 	��

is converted to SSA form� At statement ���� the expression X � Y can be replaced

by A� because the second assignment to A was given the name A�� Similarly� the

expression at statement �	� can be replaced by A�� Also� the transition from single

to extended basic blocks is simpler because we can� in fact� use a scoped hash table

where only the new entries must be removed�

��� Dominator�Tree Value Numbering

The concept of dominance is very important in program optimization and the con�

struction of SSA form� In a �ow graph� if node X appears on every path from the

�	

start node to node Y � then X dominates Y �X�Y � �

�� If X�Y and X �� Y � then

X strictly dominates Y �X � Y �� The immediate dominator of Y �idom�Y ��

is the closest strict dominator of Y �	��� In the routine�s dominator tree� the parent

of each node is its immediate dominator� Notice that all nodes that dominate a node

X are ancestors of X in the dominator tree�

Aside from the naming discipline imposed� another key feature of SSA form is the

information it provides about the way values �ow into each basic block� A value can

enter a block B in one of two ways� either it is de�ned by a ��node at the start of B

or it �ows through B�s parent in the dominator tree� Notice that� for extended basic

blocks� Bi�� is the immediate dominator of Bi� for 	 � i � n� These observations

led us to an algorithm for value numbering over the dominator tree� Bob Morgan of

DEC also made these observations and encouraged us to pursue this approach�

The algorithm processes each block by initializing the hash table with the informa�

tion resulting from value numbering its parent in the dominator tree� To accomplish

this� we again use a scoped hash table� The value numbering proceeds by recur�

sively walking the dominator tree� Figure 	�
 shows high�level pseudo�code for the

algorithm�

To simplify the implementation of the algorithm� the SSA name of the �rst occur�

rence of an expression �in this path in the dominator tree� becomes the expression�s

value number� When a redundant computation of the expression is found� the com�

piler removes the operation and replaces all uses of the de�ned SSA name with the

expression�s value number� The compiler can use this replacement scheme over a

limited region of code � in blocks dominated by the operation and in parameters to

��nodes in the dominance frontier of the operation ������ In both cases� control must

�ow through the block where the �rst evaluation occurred �de�ning the SSA name�s

value��

The ��nodes require special treatment� Before the compiler can analyze the ��

nodes in a block� it must have previously assigned value numbers to all of the inputs�

This is not possible in all cases� speci�cally� any ��node input whose value �ows

through a back edge cannot have a value number� If any of the parameters of a

��node have not been assigned a value number� then the compiler cannot analyze the

��node� and it must assign a unique new value number to the result� The following

�The dominance frontier of node X is the set of nodes Y such that X dominates a predecessor of
Y � but X does not strictly dominate Y �i�e�� DF�X� � fY j �P � Pred�Y �� X�P and X �� Y g��

�

procedure DVNT�Block b�
Mark the beginning of a new scope
for each ��node p for name n in b

if p is meaningless or redundant
Put the value number for p into VN �n�
Remove p

else
VN �n� � n
Add p to the hash table

for each assignment a of the form n� exp in b
if exp is found in the hash table

Put the value number for exp into VN �n�
Remove a

else
VN �n� � n
Add exp to the hash table

for each successor s of b
Adjust the ��node inputs in s

for each child c of b in the dominator tree
DVNT�c�

Clean up the hash table after leaving this scope

Figure ��� Dominator�tree value numbering

��

two conditions guarantee that all ��node parameters in a block have been assigned

value numbers�

�� When DVNT is called recursively for the children of block b in the dominator
tree� the children must be processed in reverse postorder� This ensures that
all of a block�s predecessors are processed before the block itself� unless the
predecessor is connected by a back edge relative to the DFS tree�

	� The block must have no incoming back edges�

If the above conditions are met� we can analyze the ��nodes in a block and decide if

they can be eliminated� A ��node can be eliminated if it is meaningless or redundant�

A ��node is meaningless if all its parameters have the same value number� A mean�

ingless ��node can be removed if the references to its result are replaced with the value

number of its input parameters� A ��node is redundant if it computes the same value

as another ��node in the same block� The compiler can identify redundant ��nodes

using a hashing scheme analogous to the one used for expressions� Without addi�

tional information about the conditions controlling the execution of di�erent blocks�

the compiler cannot compare ��nodes in di�erent blocks�

After value numbering the ��nodes and instructions in a block� the algorithm

visits each successor block and updates any ��node inputs that come from the current

block� This involves determining which ��node parameter corresponds to input from

the current block and overwriting the parameter with its value number� Notice the

resemblance between this step and the corresponding step in the SSA construction

algorithm� This step must be performed before value numbering any of the block�s

children in the dominator tree� if the compiler is going to analyze ��nodes�

To illustrate how the algorithm works� we will apply it to the code fragment in

Figure 	��� The �rst block processed will be B�� Since none of the expressions on the

right�hand sides of the assignments have been seen� the names u�� v�� and w� will be

assigned their SSA name as their value number�

The next block processed will be B�� Since the expression c� � d� was de�ned in

block B� �which dominates B��� we can delete the two assignments in this block by

assigning the value number for both x� and y� to be v�� Before we �nish processing

block B�� we must �ll in the ��node parameters in its successor block� B�� The �rst

argument of ��nodes in B� corresponds to input from block B�� so we replace u�� x��

and y� with u�� v�� and v�� respectively�

��

HHHHHj

������

HHHHHj

������

u� � a� � b�
v� � c� � d�
w� � e� � f�

B�

x� � c� � d�
y� � c� � d�

B�
u� � a� � b�
x� � e� � f�
y� � e� � f�

B�

u� � ��u�� u��
x� � ��x�� x��
y� � ��y�� y��
z� � u� � y�
u� � a� � b�

B�

HHHHHj

������

HHHHHj

������

u� � a� � b�
v� � c� � d�
w� � e� � f�

B�

v� � c� � d�����
�hhhhh

v� � c� � d�����
�hhhhh

B�
u� � a� � b�����

�hhhhh
w� � e� � f�����

�hhhhh
w� � e� � f�����

�hhhhh
B�

u� � ��u�� u������
�hhhhh

x� � ��v�� w��
x� � ��v�� w������

�hhhhh
z� � u� � x�
u� � a� � b�����

�hhhhh

B�

Before After

u�
v�
w�
x�
y�
u�
x�
y�
u�
x�
y�
z�
u�

u�
v�
w�
v�
v�
u�
w�
w�
u�
x�
x�
z�
u�

Value Numbers

Figure ��� Dominator�tree value numbering example

�

Block B� will be visited next� Since every right�hand�side expression has been

seen� we assign the value numbers for u�� x�� y� to be u�� w�� and w�� respectively�

and remove the assignments� To �nish processing B�� we �ll in the second parameter

of the ��nodes in B� with u�� w�� and w�� respectively�

The �nal block processed will be B�� The �rst step is to examine the ��nodes�

Notice that we are able to examine the ��nodes only because we processed B��s

children in the dominator tree �B�� B�� and B�� in reverse postorder and because

there are no back edges �owing into B�� The ��node de�ning u� is meaningless

because all its parameters are equal �they have the same value number�� Therefore�

we eliminate the ��node by assigning u� the value number u�� Notice that this ��

node was made meaningless by eliminating the only assignment to u in a block with

B� in its dominance frontier� In other words� when we eliminate the assignment to

u in block B�� we eliminate the reason the ��node for u was inserted during the

construction of SSA form� The second ��node combines the values v� and w�� Since

this is the �rst appearance of a ��node with these parameters� x� is assigned its SSA

name as its value number� The ��node de�ning y� is redundant because it is equal to

x�� Therefore� we eliminate this ��node by assigning y� the value number x�� When

processing the assignments in the block� we replace each operand by its value number�

This results in the expression u� � x� in the assignment to z�� The assignment to u�

is eliminated by giving u� the value number u��

Notice that if we applied single�basic�block value numbering to this example� the

only redundancies we could remove are the assignments to y� and y�� If we applied

extended�basic�block value numbering� we could also remove the assignments to x��

u�� and x�� Only dominator�tree value numbering can remove the assignments to u��

y�� and u��

��� Incorporating Value Numbering into SSA Construction

We have described dominator�tree value numbering as it would be applied to routines

already in SSA form� However� it is possible to incorporate value numbering into the

SSA construction process� There is a great deal of similarity between the value num�

bering process and the renaming process during SSA construction ���� section ��	��

The renaming process can be modi�ed as follows to accomplish renaming and value

numbering simultaneously�

��

� For each name in the original program� a stack is maintained which contains

subscripts used to replace uses of that name� To accomplish value numbering�

these stacks will contain value numbers�

� Before inventing a new name for each ��node or assignment� we �rst check if it

can be eliminated� If so� we push the value number of the ��node or assignment

onto the stack for the de�ned name�

The algorithm for dominator�tree value numbering during SSA construction is

presented in Figure 	���

��� Uni�ed Hash Table

A further improvement to dominator�tree hash�based value numbering is possible�

We walk the dominator tree using a uni�ed table �i�e�� a single hash table for the entire

routine� and replace each SSA name with its value number� Figure 	� illustrates how

this technique di�ers from dominator�tree value numbering� Since blocks B and C

are siblings in the dominator tree� the entry for a � b would be removed from the

scoped hash table after processing block B and before processing block C� Therefore�

the two occurrences of the expression will be assigned di�erent value numbers� On

the other hand� no hash�table entries are removed when using a uni�ed table� This

allows both occurrences of a � b to be assigned the same value number�

Using a uni�ed hash�table has a very important algorithmic consequence� Replace�

ments cannot be performed on�line because the table no longer re�ects availability�

Thus� we cannot immediately remove expressions found in the table� In the example�

it would be unsafe to remove the computation of a � b from block C� However�

computations that are simpli�ed �such as the meaningless ��node in block D� may

be removed� Since we cannot remove all redundancies during value numbering� we

must use a second pass over the code to perform replacement� we can use any of the

techniques described in Chapters �� � or � to eliminate the actual redundancies�

Strictly speaking� the uni�ed hash table algorithm is not a global technique be�

cause it only works on acyclic subgraphs� In particular� it cannot analyze ��nodes in

blocks with incoming back edges� and therefore it must assign a unique value number

to any ��node in such a block�

��

procedure rename and value number�Block b�
Mark the beginning of a new scope
for each ��node p for name n in b

if p is meaningless or redundant
Push the value number for p onto S�n�
Remove p

else
Invent a new value number v for n
Push v onto S�n�
Add p to the hash table

for each assignment a of the form n� exp in b
if exp is found in the hash table

Push the value number for exp onto S�n�
Remove a

else
Invent a new value number v for n
Push v onto S�n�
Add exp to the hash table

for each successor s of b
Adjust the ��node inputs in s

for each child c of b in the dominator tree
rename and value number�c�

Clean up the hash table after leaving this scope
for each ��node or assignment a in the original b

for each name n de�ned by a
pop S�n�

Figure ��� Value numbering during SSA construction

��

A

x� � a� bB x� � a� b C

x� � ��x�� x��
y � x� � �

D

HHHHHj

������

HHHHHj

������

A

x� � a� bB x� � a� b C

y� x� � �
D

HHHHHj

������

HHHHHj

������

Before After

Figure ��� Uni�ed hash table

��� Interaction with Other Optimizations

We should point out that eliminating more redundancies does not necessarily result

in reduced execution time� This e�ect is a result of the way optimizations interact�

The main interactions are with register allocation and combining instructions via copy

folding or peephole optimization� Each replacement a�ects register allocation because

it has the potential of shortening the live ranges of its operands and lengthening

the live range of its result� Because the precise impact of a replacement on the

lifetimes of values depends completely on context� the impact on demand for registers

is di�cult to assess� In a three�address intermediate code� each replacement has two

opportunities to shorten a live range and one opportunity to extend a live range� We

will discuss this issue further in Chapter ��

The interaction between value numbering and other optimizations can also a�ect

the execution time of the optimized program� The example in Figure 	�� illustrates

how removing more redundancies may not result in improved execution time� The

code in block B� loads the value of the second element of a common block called foo�

and the code in block B� loads the �rst element of the same common block� Compared

to value numbering over single basic blocks� value numbering over extended basic

blocks will remove more redundancies� In particular� the computation of register r�

is not needed because the same value is in register r�� However� the de�nition of r�

is no longer used in block B� due to the constant folding in the de�nition of r�� The

de�nition of r� is now partially dead because it is used along the path through block

	�

HHHHHj

������

r� � �foo�
r� � �

r� � r� � r�
r� � load r�

B�

r� � �foo�
r� � �

r� � r� � r�
r	 � load r�

B� B�

Original Program

HHHHHj

������

r� � �foo�
r� � �

r� � �foo���
r� � load r�

B�

r� � �

r	 � load r�
B� B�

HHHHHj

������

r� � �foo�
r� � �

r� � �foo���
r� � load r�

B�

r� � �foo�
r� � �

r	 � load r�
B� B�

Extended Basic Blocks Single Basic Blocks
More Redundancies Removed Fewer Reduncancies Removed

HHHHHj

������

r� � �foo�

r� � �foo���
r� � load r�

B�

r	 � load r�
B� B�

HHHHHj

������

r� � �foo���
r� � load r�

B�

r� � �foo�

r	 � load r�
B� B�

Final Code Final Code

Figure ��� Interaction with other optimizations

	�

B� but not along the path through B�� If the path through block B� is taken at run

time� the computation of r� will be unused� On the other hand� value numbering over

single basic blocks did not remove the de�nition of r�� and the de�nition of r� can be

removed by dead code elimination� The result is that both paths through the CFG

are as short as possible� Other optimizations that fold or combine optimizations� such

as constant propagation or peephole optimization� can produce analogous results�

��	 Data Structures

The data structures needed to support the hash�based value numbering algorithm in

Figure 	�
 are relatively simple� The array VN maps SSA names to value numbers�

and the hash table maps expressions to value numbers�

We maintain our hash tables using �over�ow chaining�� Further� since we value

number during a walk of the dominator tree� we need a scoped hash table� similar to

the style sometimes used to support compilation of a lexically�scoped language� To

accomplish this� we a need an e�cient way to remove the entries inserted during the

processing of a particular block� Each entry in the table will contain pointers to two

other entries�

�� the next entry in the same over�ow chain� and

	� the next entry in the current scope�

At each nesting level� a variable called scope will point to the start of the list of

entries in the current scope� Removing these entries is a simple matter of traversing

this list� The hash table data structure is shown in Figure 	��� In our implementation�

there are two hash tables� one for expressions and one for ��nodes�

��� Extensions

There are several extensions that can be applied to hash�based value numbering� A

very simple extension is to handle commutative operators more �exibly� Whenever an

expression with a commutative operator is encountered� we sort its operands based

on their value numbers before searching the hash table� Thus� expressions containing

a commutative operator are always put into a �canonical� form before processing�

There are other operators that technically are not commutative� but they can also

be handled more e�ectively using this technique� For example� x � y should produce

		

buckets

�

�

scope

�

scope

�
�

�

Figure ��� Data structure for scoped hash table

the same result as y � x� thus� we can place the expression in a canonical form by

sorting the operands and reversing the sense of the operator if necessary�

We can signi�cantly improve the e�ectiveness of the technique by incorporating

constant folding and algebraic simpli�cation� To accomplish this� the algorithm must

keep track of which values represent compile�time constants and their values� Since

the algorithm operates on SSA form� the only data structures required for this exten�

sion are

� a bit vector representing the values known to be constant� and

� an array mapping SSA names to their values �only those names with their entry

set in the bit vector will have valid entries in this array��

Whenever an expression is found with constant operands� the expression is eval�

uated� and it is overwritten with the constant value� There are other simpli�cations

that can be made when only one of the operands is a constant �e�g�� x � � � x�� or

when we know that two operands are equal �e�g�� x � x � ��� The complete list of

simpli�cations used in our compiler is shown in Table 	���

Another improvement we can make to this technique is to trace values into and

out of memory� This is accomplished via the tags in our intermediate representation�

Each tag represents a distinct memory location� but certain tags may be aliased to

each other� Operations that can a�ect memory are marked with a list of referenced

	

x� x � �

x or x � x �bitwise�

x xor x � � �bitwise�

x and x � x �bitwise�

x or � � x �bitwise�

x xor � � x �bitwise�

x and � � � �bitwise�

max�x� x� � x

min�x� x� � x

SIGN�x� x� � x �Sign transfer��

DIM�x� x� � � �Positive di�erence��

x

� x � TRUE

x

� x � TRUE

x

� x � TRUE

x

�� x � FALSE

x

� x � FALSE

x

� x � FALSE

x� � � x

x� � � x

x� � � �

SHIFT�x� �� � x

��x � � �if x �� ��

x� � � x

x�� � x

x mod � � �

Table ��� Algebraic simpli�cations

�SIGN�x� y� � y � � � ABS�x� � �ABS�x�
�DIM�x� y� � x � y � x � y � �

	�

tags� or a list of de�ned tags� or both� For load and store operations� the �rst tag

in each list is the one that appears in the source� and the others are possible aliases�

During the conversion to SSA form� all tags are given subscripts to give each one a

unique de�nition point� To trace values through memory� we must consistently hash

load and store operations� We will convert all load opcodes into the corresponding

store opcodes before hashing�� Memory operations are hashed using another table

similar to the ones described in Section 	�� called the �tag table��

We value number a load operation by searching the hash table for a register that

already contains the result� This can happen in two ways�

�� We could have previously loaded the value into a register�

	� We could have previously stored into this location from a register �without
overwriting the location before we get to this load��

If such a register is found� we use that register in place of the register being loaded�

Otherwise� we add an entry into the tag table showing that this register contains the

value at this memory location�

When we encounter a store operation� we want to determine if it is writing the

same value to a location that is already there� This is often the case for the stores

inserted just before subroutine calls� We look up the value stored in the memory

location and compare it to the value being stored� If the two values are equal� the

store operation can be deleted�

The example in Figure 	�� illustrates how this process works� Notice that the

loads into r� and r� will produce the same value� When the �rst load is processed�

we convert the load operator into the corresponding store and search the hash

table for the expression �store x��� The expression will not be found� so an entry

is added to the table with name r�� When the next load is processed� we will �nd

the expression in the table and thus prove that r� � r�� Next� the program stores

a new value into location x� The store operation is marked with a list of both

referenced and de�ned tags� The referenced list contains the �before� name of each

tag� and the de�ned list contains the �after� name of each tag� If the value number

of the �before� name is the same as the value number of the value being written to

this memory location� then the store is redundant and can be removed� We add

�In our compiler� load and store operations are distinguished by the type of the value and the
addressing mode

	�

r� � load �x��
r� � load �x��

���
r� � � � �
store r� �x���x��
r� � load �x��

���
store r� �x���x��

Figure ��	 Example program containing loads and stores

the expression �store x�� with the name r� to the table� This entry is then used

to prove that r� � r�� Finally� the store into x from r� can be deleted because the

expression �store x�� and r� have the same value number� namely r��

For simplicity� we have ignored the address calculation used to access the variable

in our example� For scalar variables it is irrelevant� On the other hand� the address

must be considered when processing array variables� In reality� we consider the ad�

dress to be another operand of the store expression �e�g�� store addr a��� By doing

this� we can distinguish between accesses to di�erent elements of an array� Assume

that the variable x in Figure 	�� is an array rather than a scalar� If each access is to

the same element� value numbering may be able to determine that the addresses for

each access are equal� and the redundancies will be eliminated as before� However� if

each access is to a di�erent element� the address operand of the expressions will not

match� and the program will remain unchanged�

��� Summary

This chapter describes the hash�based approach to value numbering� The technique

was �rst applied to single basic blocks and later to extended basic blocks� We have

shown that the use of static single assignment form simpli�es the technique as well as

provides opportunities for further improvements� We have shown new algorithms for

hash�based value numbering over a routine�s dominator tree and using a uni�ed hash

table� When applied to single basic blocks� extended basic blocks� or the dominator

tree� value numbering is performed on�line � redundancies are removed as soon as

	

they are identi�ed� The uni�ed hash table approach is an o��line algorithm � it relies

on the techniques described in Chapters �� � or � to eliminate the redundancies�

Another contribution of this chapter is the ability to trace values through memory

and to remove any redundancies identi�ed�

Hash�based value numbering has several advantages� It is easy to understand and

to implement� it can easily handle constant folding and algebraic identities� and it

runs in expected linear time� The uni�ed hash table algorithm is almost global� but it

can fail to discover redundancies where values �ow through a back edge in the CFG�

	�

Chapter �

Value Partitioning

Alpern� Wegman� and Zadeck describe a global approach to value numbering that we

call value partitioning ���� In this chapter� we extend this algorithm to handle com�

mutative operations and to eliminate redundant store operations� The algorithm

operates on the static single assignment �SSA� form of the routine ����� In contrast to

hash�based approaches� this technique partitions values into congruence classes� Two

values are congruent if they are

�� Computed by the same opcode� and

	� Each of the corresponding operands are congruent�

Since the de�nition of congruence is recursive� there will be routines where the

solution is not unique� A trivial solution would be to set each value in the routine

to be congruent only to itself� However� the solution we seek is the maximal �xed

point � the solution that contains the most congruent values� The maximal �xed point

partitions the values in the routine into congruence classes� The primary advantage of

value partitioning �over hash�based value numbering� is that it is a global algorithm�

However� it only accomplishes the �rst objective of value numbering �See Chapter 	��

It does not accomplish constant folding or algebraic simpli�cation� and it does not

remove redundant computations� Redundant computations are removed by a separate

algorithm�

We partition the values in the routine into congruence classes using a variation

of the algorithm by Hopcroft for minimizing a �nite�state machine ���� We use the

term partition to refer to a set of congruence classes such that each value �SSA name�

in the routine is in exactly one class� The partitioning of values is accomplished

by starting with an initial partition and iteratively re�ning the partition until it

stabilizes� In the initial partition� all values de�ned by the same opcode are in the

same congruence class� Of course� the set of values de�ned by some opcodes must be

divided immediately� For example� the frame opcode in our compiler de�nes a set

	�

� Place all values computed by the same opcode in the same
congruence classes

	 worklist � the classes in the initial partition

 while worklist �� �
� Select and delete an arbitrary class c from worklist

� for each position p of a use of x 	 c
 touched� �
� for each x 	 c
� Add all uses of x in position p to touched

� for each class s such that �
 �s � touched�
 s
�� Create a new class n� s � touched

�� s� s� n
�	 if s 	 worklist

�
 Add n to worklist

�� else
�� Add smaller of n and s to worklist

Figure ��� Partitioning algorithm

of distinct values that are passed to the routine in registers� Therefore� all the values

de�ned by the frame opcode are placed in di�erent classes in the initial partition�

The partition is re�ned using a worklist algorithm� The variable called worklist

will contain classes that might cause other classes to split� When a class is removed

from worklist� we visit the uses of all its members� The touched set records the values

de�ned by the uses that are visited at each iteration� Notice that we only visit uses in

the same position because we must treat all opcodes as if they were not commutative�

Commutative operations are handled by an extension to the partitioning algorithm

described in Section
��� Any class s �s stands for split� with a proper subset of its

members in touched ��
 �s� touched�
 s� must be split into two classes� We create

a new class n containing the touched members of s� and we remove the members of n

from s� Splitting class s may cause other classes in the partition to split� so we must

update worklist� There are two cases to consider�

Case � If s was already in worklist� this means that the partition was not stable with

respect to s� so we must leave s in worklist and also add n to worklist�

Case � If s was not in worklist� this means that the partition was stable with respect

to s before it was split� Thus� any class that would be split as a result of

	�

removing s from worklist would be split the same way as a result of removing

n from worklist� Since we are free to choose between s and n� we will select

the one that can be processed in a smaller amount of time� Therefore� we add

the smaller of s and n to worklist� As we shall see� this step is fundamentally

important in achieving our desired running time�

Once we have re�ned the partition with respect to class c� we will not examine c again

unless it is split� Pseudo�code for the partitioning algorithm is shown in Figure
���

To illustrate how the algorithm operates� consider the code fragment in Figure
�	�

Figure
�
 shows the initial partition if X is not congruent to Y �X ��� Y �� Notice

that all names de�ned by the subtraction opcode are initially in the same class� Let

the class containing X be the �rst removed from worklist� Touching the uses of X

in position � will result in A being removed from its class� Touching the uses of X

in position 	 will result in B being removed from its class� The partition after one

iteration is shown in Figure
�
� Let the class containing A be the next one removed

from worklist� Touching the uses of A in position � will result in C being removed

from its class� Touching the uses of A in position 	 will not cause any classes to be

split because the touched set is the entire class� Since all values are now in di�erent

classes� no further splitting can occur� However� since the algorithm has no way to

determine this� it will not terminate until worklist is empty� The �nal partition is

also shown in Figure
�
�

To understand the importance of touching only uses in the same position� consider

again the code fragment in Figure
�	 and its initial partition in Figure
�
� Touching

all uses of X in any position will result in A and B being removed from their class and

put into a new class together� If the algorithm continues in this fashion� no further

splitting will occur� The �nal partition is shown in Figure
��� Notice that we have

erroneously proven that A �� B and C �� D�

A� X � Y
B � Y �X
C � A�B
D � B �A

Figure ��� Partitioning example

�

����X

����Y

�

�

�

�
A B

C D

����X

����Y

����A ����B�
� ��C D

����X

����Y

����A ����B

����C ����D

Initial Partition After One Iteration Final Partition

Figure ��� Partitioning steps for example program

�	

�

X

�	

�

Y

�

�
	A B

�
�
	C D

Figure ��� Incorrect partition when positions are ignored

��� Complexity

From the pseudo�code given in Figure
��� it is not clear what the running time of the

algorithm will be� We claim that the partition can be computed in O�E logN� time�

where E is the number of edges and N is the number of nodes in the routine�s SSA

graph�� However� only a careful implementation of the data structures will result in

the desired time bound� To discover the operations our data structure must support

and their complexities� we will analyze the algorithm from the bottom up� The

statement in line �� can be performed in constant time if we can determine the size

of a class in constant time� Therefore� the if statement in lines �	��� will require

constant time� The splitting of a class in lines �� and �� can be performed in O�knk�

time if we can remove an element from class s and insert it into class n in constant

time�� The crucial part of the implementation is to perform the for loop in lines ����

in O�ktouchedk� time� This will be discussed in detail in Section
�
� The for loop

in lines � and � can be performed in O�kck�� We assume that the number of uses

in any operation is bounded by a constant so the maximum position of a use is also

bounded by a constant� Therefore� we can ignore the for loop starting on line ��

�The SSA graph has a node for each de	nition and edges
ow from de	nitions to uses�
�We use the notation knk to represent the size of set n�

�

Operation Complexity
Determine the number of elements in a class O���
Determine which class contains a name O���
Remove a member of a class O���
Add a member to a class O���
Add a new class to the partition O���
Iterate through the members of class c O�kck�

Figure ��� Operations supported by the partition

Now we are ready to analyze the running time of the entire algorithm� Consider

the number of times a class containing a particular element x can be removed from

worklist� Each time such a class is chosen� it must be smaller than half the size of the

last class to contain x removed from worklist� This is because we only add the smaller

of n and s in line ��� Therefore� a class containing x can be removed from worklist

at most O�logN� times� Suppose the cost of each execution of the for loop in lines

���� is charged to each x in c according to the number of uses of x in position p�

Then the cost for each x is O�kUSES�x�k logN�� where USES�x� is the set of uses of

x� Since E is the set of all uses of any x� the total cost of the algorithm is O�E logN��

Figure
�� summarizes the time complexity required for the various operations that

will be performed on the partition�

��� Data Structures to Support Partitioning

To support the complexity requirements given in Figure
��� each class will contain

the following information�

�� the number of members� and

	� a doubly�linked list of members�

We will also maintain a lookup table that will have a pointer to the list node and

the class number of each element in the partition� This will enable us to locate and

remove an element from a class in constant time� Figure
� shows how the data

structure would look assuming that the item with SSA name x� is in class ��

	

classes

�
num
members

�
members

� �

lookup
� node
� class num

x�

�

x�
�
�

�
�� � �

�

Figure ��� Data structures for representing the partition

��� Re�ning the Partition

Recall that in our initial presentation of the partitioning algorithm �Figure
��� we

used a set called touched� This set contained all uses of members of a class in some

position� We then searched for classes with a proper subset of their members in

touched and split them�� An implementation of the algorithm must employ an e��

cient technique for determining which classes to split and which members to remove

at each iteration� In Section
�	� we claimed that this step could be performed in

O�ktouchedk� time� To accomplish this� we do not represent the touched set itself�

Instead� we keep the intersection of touched and each class in the partition� This in�

formation is kept in an array called intersections� Each element of intersections

will contain the intersection of touched with the corresponding element of classes�

We must also keep track of which classes have a non�empty intersections entry�

When an item is touched during the process of re�ning the partition� it is moved out

of its class and into the intersections array� Recall that we are only interested in

classes with a proper subset of their members touched� Therefore� if all members of

a class are touched� they will be returned to their original class�

Figure
�� depicts an example partition with SSA name x� is in class number

�� The entry in lookup�x�� indicates class number � and points to the node for

x� in the members list of classes���� If x� is touched� the node will be removed

from that list and appended to the members list of intersections���� Once all

the uses in position p have been touched� we can determine which classes must be

split by iterating through each class s with a non�empty list at intersections�s��

To accomplish this� we must carefully maintain the set of classes to be split� We

have already removed the necessary members from classes�s� and placed them in

intersections�s�� Thus� we can simply create a new class containing the members

of intersections�s� and iterate through the members list� updating the class num

�eld of the lookup array� The entire process requires O�ktouchedk� time�

��� Handling Commutative Operations

Commutative operations must be handled with an extension to the partitioning

algorithm� The idea is to ignore the position when touching a use of a member of

a congruence class� Now� instead of splitting classes based on which members were

�In other words� we split all classes s such that � � �s � touched� � s�

�

classes

�
num
members

�
members

� �

lookup
� node
� class num

x�

�

x�
�
�

�
�� � �

�

intersections

�
num
members�

members

��

Figure ��� Data structures for re�ning the partition

A� X � Y
B � Y � X
C � X � X
D � Y � Y

�	

�

X

�	

�

Y

�

�

�

�
A B

C D

�	

�

X

�	

�

Y

�

�
�A B

�	

�

C �	

�

D

Initial Partition Final Partition

Figure ��� Commutativity example

�

touched or not touched� we split classes based on which members were touched ��

�� or 	 times� Consider the example code fragment in Figure
��� and assume that

X ��� Y � The initial partition is shown in Figure
��� Let the class containing X be

the �rst removed from the worklist� Touching the uses of X will result in A and B

being touched once and C being touched twice� Therefore� A and B will be placed

in a class together� and C will be in a class by itself� Let the class containing Y be

the next one removed from the worklist� Touching the uses of Y will result in A and

B being touched once and D being touched twice� Therefore� no further splitting of

classes is required� The �nal partition is shown in Figure
���

Now assume that X �� Y � The initial partition is shown in Figure
��� Let the

class containing X and Y be the �rst removed from the worklist� Touching the uses of

X and Y will result in A� B� C� and D all being touched twice� Therefore� no further

splitting of classes is required� and the initial partition is also the �nal partition�

Recall that when we touched an item for non�commutative operations� we moved

the item out of its current class and into the intersections array� The touched once

and touched twice arrays are used like the intersections array� The �rst time an

item is touched� it is moved from its original class into touched once� The second

time it is touched� it is moved from touched once to touched twice� We must be

careful to keep track of which classes have a non�empty entry in touched once or

touched twice� just as we do for the intersections array�

Figure
��� depicts the partition if the variable A in Figure
�� is in class number

�� The �rst timeA is touched� it will be removed from the members list of classes���

and appended to the members list of touched once���� The second timeA is touched�

it will be removed from the touched once��� and appended to touched twice����

Each time the item is touched� the num touches �eld of the lookup array will be

incremented�

�

�

�
X

Y

�

�

�

�
A B

C D

Figure ��	 Partition for second commutativity example

classes

�
num
members

�
members

� �

lookup

� node
� class num

� num touches

A

�

�

A
�
�

�
�� � �

�

touched once

�
num
members�

members

��

touched twice

�
num
members�

members

��

Figure ���
 Data structures for handling commutative operations

�

��� Eliminating Redundant Stores

Redundant�store operations write the same value to a memory location that was

previously written there� Therefore� they do not alter the contents of memory� and

they can be eliminated from the routine� but this requires an extension to the original

algorithm� Redundant stores should not be confused with dead stores� which write a

value to memory that is never subsequently read� Handling redundant scalar stores

requires an extension to the partitioning algorithm� Consider the program fragment in

Figure
���� The frame operation de�nes the initial values for the memory tags x and

y� During the conversion to SSA form� all tags were given subscripts to give each one a

unique de�nition point� The store operations have two tags associated with them	�

The �rst tag is the �before� value of the memory location� and the second is the �after�

value of the memory location� In our example� the store from r� is redundant while

the store from r� is not� We would like to check for congruence between the before

and after tag values to determine if a store is redundant� Unfortunately� the tag x�

is de�ned by the frame operation� and the tag x� is de�ned by a store operation�

Therefore� they will be in di�erent classes in the initial partition� The initial partition

is shown in Figure
��	� Clearly� x� can never be congruent to x� using the unmodi�ed

partitioning algorithm�

We must treat scalar load and store operations as copies from a register to

memory or vice versa� Since copying a value does not change it� we must ensure

that the source and destination of a copy will remain in the same congruence class

throughout the partitioning process� To accomplish this� we keep a list of copies for

frame �x� y��
���

r� � load x�
r� � �

���
store r� �x�� �x��
store r� �y�� �y��

Figure ���� Example program for redundant�store elimination

�Actually� these are lists of tags� The 	rst tag is the one that appears in the source� and the others
are possible aliases� In this example� the lists have length one�

�

�	

�
x�

�	

�
y�

�	

�
r�

�	

�
r�

�

�

�

�
x�

y�

Figure ���� Initial partition for redundant�store elimination example

�

�
	x� r� x�

�
�
	r� y�

��
��

y�

Figure ���� Partition to enable redundant�store elimination

�

each item in the partition� During the process of re�ning the partition� the copy list

for an item moves from class to class with the original item� In our example routine�

r� is treated as a copy of x�� and x� is treated as a copy of r�� Also� y� is a copy of r��

Given this scheme� the initial partition is also the �nal partition �See Figure
��
��

Notice that x� �� x�� but y� ��� y�� Thus� we can eliminate the �rst store but not the

second�

Figure
��� depicts the data structures representing the partition if x� from

Figure
��� is class number �ve� The items r� and x� are in the copy list for x��

Notice that the entries in lookup for r� and x� point to the node for x�� and the T

entry in the is copy �eld indicate that they are copies� This tells the partitioning

algorithm to ignore them during the re�nement process�

��	 Summary

This chapter describes in detail the value partitioning algorithm of Alpern� Wegman�

and Zadeck� This algorithm uses a variation of Hopcroft�s DFA minimization algo�

rithm to partition the values in a routine into congruence classes� The implementation

of value partitioning is described in detail� We present extensions to the algorithm

to handle commutative operations and to eliminate redundant store operations�

When compared to hash�based value numbering� value partitioning has the ad�

vantage that it is global� However� value partitioning has some disadvantages� It is

di�cult to implement� it cannot handle constant folding and algebraic identities� and

it runs in O�E logN� time�

��

classes

�
num
members

�
members

� �

lookup

� node
� class num
� is copy

x�

F
�

r�

T
�

x�

T
�

x�
�
�

�
�

r�

x���

� � �

�

�
�
��	

�
�

��I

�

�
��

intersections

�
num
members�

members

��

Figure ���� Data structures for redundant�store elimination

��

Chapter �

SCC�Based Value Numbering

In Chapters 	 and
� we described two competing value numbering techniques� hash�

ing and partitioning� The hashing techniques are easy to understand and implement�

and they can easily handle constant folding and algebraic identities �i�e�� x � � � x��

Their prime drawback is that they are not global techniques� The partitioning tech�

niques are global� but they cannot easily handle constant folding and algebraic iden�

tities� As a result of their shortcomings� both of these techniques can fail to discover

some crucial equivalences� In this chapter� we describe a new technique for assign�

ing value numbers that combines the advantages of both techniques � it is easy to

understand and implement� it can easily handle constant folding and algebraic iden�

tities� and it is global� We refer to this new technique as SCC�based value numbering

because it is centered around the strongly connected components of the static single

assignment graph�

��� Shortcomings of Previous Techniques

Assume that X and Y are known to be equal in the code fragment in Figure ����

Then the partitioning algorithm will �nd A congruent to B and C congruent to D�

More careful reasoning would show that they are not just congruent by pairs� but also

that they all have the value zero� Unfortunately� partitioning cannot discover that

fact� On the other hand� the hash�based approach will easily conclude that if X � Y

then A� B� C� and D are all zero�

A� X � Y
B � Y �X
C � A�B
D � B �A

Figure ��� Improved by hash�based techniques

�	

The critical di�erence between the hashing and partitioning algorithms identi�

�ed by this example is their notion of equivalence� The hash�based approach proves

equivalences based on values� while the partitioning technique considers only congru�

ent computations to be equivalent� The code in this example hides the redundancy

behind an algebraic identity� Only the techniques based on value equivalence will

discover the common subexpression here�

Now consider the code fragment in Figure ��	� If we apply any of the hash�based

approaches to this example� none of them will be able to prove that X� is equal to

Y�� This is because at the time a value number must be assigned to X� and Y�� none

of these techniques have visited X� or Y�� They must therefore assign di�erent value

numbers to X� and Y�� However� the partitioning technique will prove that X� is

congruent to Y� �and thus X� is congruent to Y��� The key feature of the partitioning

algorithm which makes this possible is its initial optimistic assumption that all values

de�ned by the same operator are congruent� It then proceeds to disprove the instances

where the assumption is false� In contrast� the hash�based approaches begin with

the pessimistic assumption that no values are equal and proceeds to prove as many

equalities as possible�

The shortcomings of hash�based value numbering and value partitioning suggest

a need for a value numbering algorithm that combines the advantages of both tech�

niques� Such an algorithm would combine the ability to perform constant folding and

algebraic simpli�cation with the ability to make optimistic assumptions and later dis�

prove them� Click presents an extension to value partitioning that includes constant

folding� algebraic simpli�cation� and unreachable code elimination ��
�� He presents

two versions of the algorithm� The straightforward version runs in O�N�� time� and

the complex version runs in O�E log�N� time� where N and E are the number of

X� � �
Y� � �
while �� � � �

X� � ��X��X��
Y� � ��Y�� Y��
X� � X� � �
Y� � Y� � �

Figure ��� Improved by partitioning techniques

�

nodes and edges in the routine�s intermediate representation graph� His intermediate

representation contains the edges in the SSA graph plus some edges used for con�

trol dependences� The complex version can miss some congruences between ��nodes

that will be proven congruent by the straightforward algorithm� The problem occurs

when the operands of a ��node are assumed congruent and later proven not congru�

ent� When the class containing the operands is split into two pieces� the algorithm

arbitrarily places the ��node in one of the pieces� Thus� another ��node with the

same operands might be placed in the other piece�

This chapter presents an algorithm� called SCC�based value numbering� that more

closely resembles hash�based value numbering than value partitioning� SCC�based

value numbering is simpler to implement than value partitioning� and it runs in

O�N �D�SSA�� time� where N is the number of SSA names� and D�SSA� is the loop

connectedness of the SSA graph� The loop connectedness of a graph is the maximum

number of back edges in any acyclic path� This number can be as large as O�N��

Knuth showed that� for control��ow graphs of real Fortran programs� it is bounded�

in practice� by three �
	�� We are concerned with the loop�connectedness of the SSA

graph� we also expect it to be small� In our test suite� the maximum number of

iterations required by the SCC algorithm is four�

We will �rst present a simpli�ed version� called the RPO algorithm� that is easier

to understand� We will prove the correctness and time bounds for this algorithm�

and then we will present SCC�based value numbering as an extension with the same

asymptotic complexity� In practice� it is more e�cient than the RPO algorithm�

��� The RPO Algorithm

The algorithm in Figure ��
 is called the RPO algorithm because it operates on

the routine in reverse postorder� We will assume for simplicity that all de�nitions

in the routine are of the form x � y op z� where op can be any operation in the

intermediate representation or a ��node� Let x�i� represent the ith operand of the

expression de�ning x� and x�op represent the operator that de�nes x� Additionally�

we say that x�i� represents a back edge if the value �ows along a back edge in the CFG�

The VN array maps SSA names to value numbers� Each value number represents a

set of SSA names �i�e�� those names with the same entry in the VN array�� Therefore�

a value number is itself an SSA name� For clarity� we will surround an SSA name

that represents a value number with angle brackets �e�g�� hx�i�� The lookup function

��

for all SSA names i
VN�i� � �

do
changed � FALSE

for all blocks b in reverse postorder
for all de�nitions x in b

expr� hVN�x����� x�op�VN�x�	��i
temp� lookup�expr� x�
if VN�x� �� temp

changed� TRUE

VN�x� � temp

Remove all entries from the hash table
while changed

Figure ��� The RPO algorithm

searches a hash table for the expression hVN�x����� x�op�VN�x�	��i� If the expression

is found� it returns the name of the expression� Otherwise� it adds the expression to

the table with name hxi�

The RPO algorithm computes a sequence of equivalence relations� ��i� that parti�

tion the set of SSA names� We say that x ��i y if and only if after the ith iteration of

the RPO algorithm VN�x� � VN�y��

i � �� x ��� y �x� y

i � �� x ��i y i�

����
���

x�op � y�op

x�e� ��i y�e�� �x�e� that are non�back edges

x�e� ��i�� y�e�� �x�e� that are back edges

We refer to a partition by the equivalence relation that produces it� We say that
��i is a re�nement of ��j ���i � ��j� if and only if there are no congruences in ��i that

are not in ��j �i�e�� �x� y x ��i y � x ��j y�� In other words� ��i can be derived from
��j by breaking congruences� Given the partition ��i� the algorithm computes ��i�� in

��

expected running time O�N�� where N is the number of SSA names in the routine�

The following theorem shows that each iteration re�nes the partition�

Theorem ��� x ��i y � x ��i�� y

Proof� The proof is by induction on i�

Basis �i � �� By de�nition� x ��� y�

Induction step �i � �� Suppose not � let x be the SSA name with the
smallest RPO number such that the assumption is false � x ���i�� y
and x ��i y� Consider the reasons why x ���i�� y�

Case � �x�op �� y�op� This implies that x ���i y� a contradiction�

Case � �x�e� ���i�� y�e� for some nonback edge� Since x ��i y�
x�e� ��i y�e� which means that x�e� is a node where the
assumption is false� and it has a smaller RPO number than x� a
contradiction�

Case � �x�e� ���i�� y�e� for some back edge� By the induction
hypothesis� x�e� ���i�� y�e�� which implies that x ���i y� a
contradiction� �

Corollary ��� The RPO algorithm must terminate� and it �nds the

maximal �xed point of the congruence relation computed by value parti�

tioning�

Proof� Each step produces a re�nement of the partition� and re�nement
cannot continue inde�nitely� Further� value partitioning �nds the
maximal �xed point of the following equivalence relation�

x �� y i�

�
x�op � y�op
x�e� �� y�e�� �e

Since the RPO algorithm begins with all SSA names congruent� we must
converge to the same �xed point as value partitioning� �

To understand how quickly the algorithm terminates� we must understand how

values are proven not to be congruent� Since we process the blocks in reverse post�

order� back edges play a key role in determining the number of iterations required� The

�

following lemma characterizes the iteration on which two SSA names are determined

not to be congruent�

Lemma ��� If x ���i y and x ��i�� y� then there is a sequence of inputs

�possibly empty��

e�� e�� � � � � en

with bj � the number of back edges in e�� � � � � ej and bn � i�� such that�

x ���i y

x�e�� ���i�b� y�e��
���

x�e�� � � � �en� ���i�bn y�e�� � � � �en�

Proof� The proof is by induction on i�

Basis �i � �� Use the empty sequence�

Induction step �i � �� Let p�� � � � � pm be the sequence of pairs x� y
with x ���i y and x ��i�� y� ordered by the minimum RPO number of
the pair� We will proceed by induction on j� the index into this
sequence�

Basis �j � �� Consider the reasons why x ���i y�

Case � �x�op �� y�op� This cannot occur because we know
that x ��i�� y�

Case � �x�e� ���i y�e�� for some nonback edge� This cannot
occur because either x�e� will have a smaller RPO number
than x or y�e� will have a smaller RPO number than y�

Case � �x�e� ���i�� y�e�� for some back edge� The sequence
consists of e followed by the sequence for the pair x�e�� y�e��
which we know exists by the induction hypothesis for i�

Induction step�j � �� Consider the reasons why x ���i y�

Case � �x�op �� y�op� This cannot occur because we know
that x ��i�� y�

��

Case � �x�e� ���i y�e�� for some nonback edge� The
sequence consists of e followed by the sequence for the pair
x�e�� y�e�� which we know exists by the induction hypothesis
for j�

Case � �x�e� ���i�� y�e�� for some back edge� The sequence
consists of e followed by the sequence for the pair x�e�� y�e��
which we know exists by the induction hypothesis for i� �

Now we can prove the algorithm�s running time� It terminates in D�SSA� � 	

iterations� where D�SSA� is the loop connectedness �the maximum number of back

edges on any acyclic path� of the SSA graph�

Theorem ��� x ��D�SSA��� y� x ��D�SSA��� y

Proof� Suppose not � let x be the SSA name with the smallest RPO
number such that x ��D�SSA��� y and x ���D�SSA��� y� According to
Lemma ���� there is a sequence of inputs such that�

x ���D�SSA��� y

x�e�� ���D�SSA����b� y�e��

���

x�e�� � � � �en� ���� y�e�� � � � �en�

This sequence contains D�SSA� � � back edges� so it must contain a
cycle� Since x has the smallest RPO number� it must be included in a
cycle� Therefore� x ���i y for some i � D�SSA� � 	� By Theorem ����
x ���D�SSA��� y� a contradiction� �

Corollary ��� The RPO algorithm terminates in at most D�SSA� � 	

passes�

Proof� Since the partition ��D�SSA��� is the same as the partition
��D�SSA���� the done �ag will remain TRUE throughout iteration
D�SSA� � 	� and the algorithm will terminate� �

��� Extensions

Since our algorithm uses hashing� we can easily extend it to include constant folding

and algebraic simpli�cation� We do this by associating a value from the constant prop�

agation lattice �f���g � Z� with each SSA name ����� This framework will discover

��

at least as many congruences as hash�based value numbering or value partitioning�

Under this extended framework� an element can fall D�SSA� � � times with respect

to the value numbering lattice and twice with respect to the constant propagation

lattice� Therefore� the height of this aggregate lattice is 	D�SSA� � 	� However�

since each element falls in both frameworks on the �rst iteration� any element can

fall at most 	D�SSA� � � times� Therefore� the extended algorithm must terminate

in 	D�SSA� � 	 iterations�

The example in Figure ��� requires 	D�SSA� � 	 iterations for the algorithm to

terminate� The back edges are shown with bold arrows� After the �rst iteration�

all nodes are believed to be constants� notice that both i� and j� are assigned the

constant 	� During the next iteration� i�� j�� i�� and j� are determined not to be

constant� but we still assume that i� �� j� and i� �� j�� During the third iteration�

we prove that i�� i�� j�� and j� are not constant� and we prove that i� ��� j�� On the

fourth and �fth iteration� we prove that i� ��� j� and i� ��� j�� respectively� On the

sixth iteration� the partition stabilizes and the algorithm terminates� Intuitively� the

algorithm takes D�SSA� passes to prove that i� and j� are not the constant 	� and

thus cannot be equal� then it takes another D�SSA� passes to propagate this fact�

��� Discussion

We have shown that the RPO algorithm �nds at least as many congruences as hash�

based value numbering or value partitioning in O�N � D�SSA�� time� Kam and

Ullman showed that the iterative data��ow analysis used for a large class of data��ow

frameworks requiresD�CFG� passes over the CFG �	��� This number can be as large as

O�B� where B is the number of blocks in the CFG� but it is believed that� in practice�

this number is bounded by a small constant �
	�� We expect that for most programs

D�CFG� � D�SSA�� However� the program in Figure ��� is an example where this is

not true� The back edges are shown with bold arrows� Notice that D�CFG� � 	� but

D�SSA� � � Further� we could make D�SSA� even larger by adding variables in the

same pattern as j and k� Despite this potential� the maximum number of iterations

required by SCC�based value numbering is four for any routine in our test suite�

��� The SCC Algorithm

�The 	nal iteration checks the stability of the analysis�

��

�����i�

�����i�

�

�

�������i�

�

�

��

����inci�

� �

�����i�

�

�
�

�����j�

�����j�

�

�

�������j�

�

�

��

����dblj�

� �

�����j�

�

�
�

SSA Graph

� � 	
 � �

i� � i���� i���� i���� i���� i���� i����

i� � i���� i���� i� i� i� i�

i� � i���� i� i� i� i� i�

i� � i��	� i��	� i� i� i� i�

i� � i��
� i� i� i� i� i�

j� � i���� i���� i���� i���� i���� i����

j� � i���� i���� i� i� j� j�

j� � i���� i� i� j� j� j�

j� � i��	� i��	� j� j� j� j�

j� � i��
� i� j� j� j� j�

Value Numbers

Figure ��� Example requiring 	D�SSA� � 	 iterations

��

i� � �
j� � �
k� � �

�
i� � ��i�� i��
j� � ��j�� j��
k� � ��k�� k��

�
i� � ��i�� i��
j� � ��j�� j��
k� � ��k�� k��

�
i� � inc i�
j� � j� � i�
k� � k� � j�

�� �

� �
�

� �

� �
�

�����i�

�����i�

�

�

�������i�

�

�

������inci�

�

�����j�

�����j�

�

�

�������j�

�

�

�������j�

�

�

��

�����k�

�����k�

�

�

�������k�

�

�

�������k�

�

�

��

Control�ow graph SSA graph

Figure ��� Example with D�CFG� �� D�SSA�

To make the algorithm more e�cient in practice� we operate on the SSA graph

instead of the control��ow graph� If no cycles are present in the SSA graph� we can

simply process the nodes in a single reverse postorder walk� That ordering guaran�

tees that all operands of an expression are visited before the expression itself must

be processed� If cycles are present then no such ordering exists� We can identify

the strongly connected components �SCCs� of the graph and treat each SCC as a

single node� A strongly connected component is a maximal collection of nodes such

that given any pair of nodes in the collection there is a path between them� After

collapsing each SCC into a single node� the resulting graph must be acyclic� When

we traverse the nodes of this graph in reverse postorder� we know that all operands

of a node are processed before the node itself� A node that is not part of any cycle

requires no special processing� but a node that represents a strongly connected com�

��

DFS�node�
node�DFSnum� nextDFSnum� �
node�visited� TRUE

node�low� node�DFSnum
PUSH�node�
for each o 	 foperands of nodeg

if not o�visited
DFS�o�
node�low� MIN�node�low� o�low�

if o�DFSnum � node�DFSnum and o 	 stack

node�low� MIN�o�DFSnum�node�low�
if node�low � node�DFSnum

SCC � �
do

x� POP��
SCC� SCC � fxg

while x �� node

ProcessSCC�SCC�

Figure ��� Tarjan�s SCC �nding algorithm

ponent requires special processing� This observation led us to an improved algorithm�

called SCC�based value numbering because it concentrates on the strongly connected

components of the SSA graph� The algorithm works in conjunction with Tarjan�s

depth��rst algorithm for �nding SCCs� shown in Figure �� ��	�� Tarjan�s algorithm

uses a stack to determine which nodes are in the same SCC� nodes not contained in

any cycle are popped singly� while all the nodes in the same SCC are popped together�

Tarjan�s algorithm has an interesting property� when a collection of nodes �possibly

containing only a single node� is popped from the stack� all of the operands that are

outside the collection have already been popped� Therefore� we process the nodes

as they are popped from the stack� When a single node is popped from the stack�

we know that we have assigned value numbers to the operands of the corresponding

expression� Thus� we can examine the expression and assign a value number to this

node� When a collection of nodes representing an SCC is popped� we know that we

have assigned value numbers to any operands outside the SCC� The members of the

SCC require special handling in order to perform value numbering�

�	

initialize optimistic and valid tables
for all nodes n

n�valnum��

while there is an unvisited node n
DFS�n� �see Figure ���

ProcessSCC�SCC�
if SCC has a single member n

Valnum�n� valid�
else

do
changed� FALSE

for each n 	 SCC in reverse postorder��

Valnum�n� optimistic�
while changed
for each n 	 SCC in reverse postorder

Valnum�n� valid�

Valnum�node� table�
expr� hnode����valnum�node�op�node�	��valnumi
Try to simplify expr

temp� lookup�expr� table�node�SSAname�
if node�valnum �� temp

changed� TRUE

node�valnum� temp

Figure ��� SCC�based value numbering algorithm

��Reverse postorder numbers are assigned with respect to the control�
ow graph

�

Since we cannot remove the entries from the hash table after each pass as the

RPO algorithm does� we will use two hash tables� The valid table contains only facts

that are known to be true� while the optimistic table contains facts that may later

be disproven� Single nodes are processed once using the valid table� and collections

of nodes are processed iteratively using the optimistic table� Figure ��� shows the

algorithm for SCC�based value numbering� The �rst step is to initialize the optimistic

and valid tables and to assign � as the value number for each node in the SSA graph�

A value number of � is considered congruent to everything� it indicates that this

node has not yet been examined� Next� we repeatedly apply Tarjan�s algorithm to

any unvisited node in the graph� As Tarjan�s algorithm identi�es strongly connected

components� it calls ProcessSCC� This function decides if the SCC is a single node

or a collection of nodes� Single nodes are processed using the valid table� Collections

of nodes are processed by iterating in reverse postorder �with respect to the CFG�

using the optimistic table� After the iteration stabilizes� the nodes are processed one

�nal time using the valid table� The Valnum function processes each node� It �rst

tries to simplify the expression that the node represents� For ordinary instructions�

we perform constant folding and algebraic simpli�cation� For ��nodes� simpli�cation

can be performed if all the operands are equal� We can also simplify ��nodes of the

form ��hxi��� to hxi��� Intuitively� this allows the initial value of a variable to �fall

through� the ��node and enter the loop� Since we are iterating in reverse postorder�

� can only appear as an argument to a ��node � not as an operand of an instruction�

��	 Example

To further clarify the algorithm� consider how it would proceed if given the exam�

ple in Figure ���� The values i� and j� are not contained in any cycle� so they will be

assigned value numbers before either of the SCCs� Assume they are each given the

value number hi�i and that the SCC containing i� and i� is processed next� During

the �rst pass over the SCC� the ��node ��hi�i��� will be simpli�ed �optimistically�

to hi�i� and i� will be given value number hi�i��� Then� the expression de�ning i��

hi�i � �� can be simpli�ed to 	� An entry mapping the constant 	 to value number

hi�i will be added to the optimistic table� During the second pass� the expression

��Recall that � is considered congruent to everything
��Remember that expressions are formed from an operator and the value numbers of the operands�
not the operands themselves�

��

i� � �
j� � �
while �� � � �

i� � ��i�� i��
j� � ��j�� j��
i� � i� � �
j� � j� � �

�����i�

�����i�

�

�

�������i�

�

��I
�����

�����j�

�����j�

�

�

�������j�

�

��I
�����

SSA Form SSA Graph

Figure ��� Example with equal induction variables

��hi�i� hi�i� cannot be simpli�ed� so an entry mapping the expression to hi�i is added

to the optimistic table� Next� an entry mapping hi�i � � to hi�i will be added to the

optimistic table� At this point the value numbers have stabilized� so we make a �nal

pass using the valid table� During this pass� we add entries mapping ��hi�i� hi�i� to

hi�i and mapping hi�i � � to hi�i to the valid table� Notice that the optimistic entry

mapping 	 to hi�i is not added to the valid table � this assumption has been disproven�

The next step is to process the SCC containing j� and j�� During the �rst pass�

the expression ��hi�i��� will be simpli�ed to hi�i� and j� will be given the value

number hi�i� Next� the expression hi�i � � can be simpli�ed to 	� it will be found in

the optimistic table with value number hi�i� During the second pass� the expression

��hi�i� hi�i� will be found in the optimistic table with value number hi�i� and hi�i� �

will be found with value number hi�i� At this point the value numbers have stabilized�

so we process the SCC using the valid table� Since entries already exist mapping

��hi�i� hi�i� to hi�i and hi�i�� to hi�i� no new entries will be added to the valid table�

Thus� the algorithm has determined that i� �� j� and i� �� j��

The contents of the optimistic and valid tables is an important issue that merits

further discussion� The primary function of the optimistic table is to hold assumptions

that may later be disproven� In contrast� the valid table represents only those facts

that are proven� Notice that in processing the example in Figure ���� entries for hi�i

and hi�i were added to both the optimistic and valid tables� On the other hand� the

entry mapping the constant 	 to hi�i was only added to the optimistic table� This

��

entry represents an optimistic assumption that was disproven� It remains in the table

because it is needed for the analysis of the second SCC � the one containing j� and

j�� In some sense� that entry �marks the trail� that the analysis must take in order

to prove that the two SCCs are equivalent� It is also possible that the constant 	

appears somewhere else in the routine� If so� we cannot give it the name hi�i� instead

we add an entry to the valid table mapping 	 to a di�erent name�

Recall that after the iteration stabilizes� we make one additional pass over the

SCC using the valid table� The need to place expressions in both tables arises from

constant folding and algebraic simpli�cation� These transformations eliminate edges

from the SSA graph� Thus� an SCC can be transformed into a collection of nodes that

is no longer strongly connected� If this happens� we want to test the nodes in this new

collection for congruence with other nodes that were processed using the valid table�

The example in Figure ��� illustrates how this might happen� The dashed edges in

the SSA graph will be broken while iteratively analyzing the SCC containing i� and

i�� When the iteration stabilizes� the algorithm discovers that i� � �� However� this

analysis was performed using the optimistic table� where there is no entry mapping �

to hj�i� This entry is only in the valid table� Similarly� the entry mapping ��hj�i� hj�i�

to hj�i exists only in the valid table� Therefore� our algorithm has not yet discovered

that i� �� j� and i� �� j�� The additional pass over i� and i� using the valid table

enables SCC�based value numbering to discover these two congruences�

��� Uninitialized Values

The handling of uninitialized values during value numbering is a complicated issue�

Our implementation of SSA construction will remove an operation if it references an

operand that is uninitialized on all paths� However� it is possible that a value could

be initialized along some paths but not others� If this is the case� a special value�

U � will represent an uninitialized input to a ��node� Any value numbering algorithm

must correctly handle U when processing the routine� Our initial assumption was

that since the behavior of an uninitialized value is unde�ned� the compiler is free

to do just about anything� Therefore� we considered U to be congruent to every

other value �just like ��� Further study showed that this assumption may not be

correct� Whether or not it is correct depends on the source language de�nition� The

example in Figure ���� demonstrates that this assumption can violate the �principle

of least astonishment�� In this example� the variable j is used to record the last

�

i� � �
j� � �
while �� � � �

i� � ��i�� i��
j� � ��j�� j��
i� � i� � �
j� � �

�����i�

�����i�

�

�

�������i�

��
��
��
��
��
��
���

��
��I��
��

�

�����j�

�����j�

�

�

�������j�

SSA Form SSA Graph

Figure ��	 Example with edges removed from SCC

i� � �

�
i� � ��i�� i��
j� � ��U � j��

if � � � � �

�

PPPPPPq

j� � i�

�������
j� � ��j�� j��
i� � i� � �

�� �

��
� �����i�

�����i�

�

�

�������i�

�

��I
�����

����U

�����j�

�

�

�������j�

�

����
��
�j�

��

Control�ow Graph SSA Graph

Figure ���
 Example with uninitialized values

��

iteration on which some condition is true� If the condition is never true� the value of

j remains uninitialized on exit from the loop� Since the value of j is not initialized

before entering the loop� the corresponding parameter in the ��node for j� is U � If

we assume that U is congruent to everything� SCC�based value numbering will go on

to prove that j� �� i�� In other words� the value of j is now the last iteration of the

loop� independent of the condition� We correct this problem by simply changing our

assumptions about U � Instead of treating U like �� it must be treated as a distinct

value number that is not congruent to anything� If we do this in our example� the

algorithm will prove that j� ��� i��

��� Summary

This chapter presents an original algorithm for value numbering that combines the

advantages of hash�based value numbering and value partitioning� It is easy to un�

derstand and to implement� it can handle constant folding and algebraic identities�

and it is global� We call the algorithm SCC�based value numbering because it is

centered around the strongly connected components of the SSA graph� It runs in

O�N �D�SSA�� time� where N is the number of nodes� and D�SSA� is the loop con�

nectedness of the SSA graph� The loop connectedness can be as large as N � �� but

it is believed that� in practice� D�SSA� is bound by a small constant� The maximum

number of iterations required for any routine in our test suite is four� We prove that

the algorithm �nds at least as many congruences as hash�based value numbering and

value partitioning�

��

Chapter �

Code Removal

Chapters 	�
� and � explain how to renumber the registers and ��nodes so that

congruent values are given the same number��� However� renumbering alone will

not improve the running time of the routine� we must also remove the redundant

computations� This chapter will present two techniques for removing code from a

routine�

DominatorBased Removal The technique suggested by Alpern� Wegman� and

Zadeck is to remove computations that are dominated by another de�nition of

the same value number ���� Figure ��� shows an example routine that we can

improve with this method� Since the computation of z in block B� dominates

the computation in block B�� the second computation can be removed�

AVAILBased Removal The classical approach is to compute the set of available

expressions �AVAIL� and to remove computations that are in the AVAIL set

HHHHHj

������

������

HHHHHj

z � x� y
if �� � � �B�

B� B�

z � x� yB�

HHHHHj

������

������

HHHHHj

z� x � y
if �� � � �B�

B� B�

B�

Before After

Figure ��� Program improved by dominator�based removal

��In Chapter �� only the uni	ed hash table algorithm will provide the consistent naming that we
require�

��

HHHHHj

������

������

HHHHHj

if �� � � �B�

z � x� yB� z � x� yB�

z � x� yB�

HHHHHj

������

������

HHHHHj

if �� � � �B�

z � x � yB� z� x � yB�

B�

Before After

Figure ��� Program improved by AVAIL�based removal

at the point where they appear in the routine �	�� This approach uses data�

�ow analysis to determine the set of expressions available along all paths from

the start of the routine� Notice that the calculation of z in Figure ��� will be

removed because it is in the AVAIL set� In fact� any computation that would be

removed by dominator�based removal would also be removed by AVAIL�based

removal� However� there are improvements that can be made by the AVAIL�

based technique that are not possible using dominators� Consider the routine

in Figure ��	� Since z is calculated in both B� and B�� it is in the AVAIL set at

B�� Thus� the calculation of z in B� can be removed� However� since neither B�

or B� dominate B�� dominator�based removal could not improve this routine�

��� Dominator�Based Removal

To perform dominator�based removal� we consider each set of names with the

same value number and look for pairs of members where one dominates the other�

To make the algorithm e�cient� we bucket sort the members of the set based on the

preorder index in the dominator tree of the block where they are computed� A naive

bucket sorting algorithm would keep a list of items de�ned for each block� Assume

that items x and y are congruent and both are computed in block B� The bucket

sorting algorithm would place them in a list indexed by the preorder index of B� See

�gure ��
�

However� we can improve upon the naive algorithm� If more than one member

is computed in the same block� only the one computed earliest in the block must be

�

Blocks

B � x � � � � y

Figure ��� Naive bucket sorting algorithm

Blocks

B �y x

Figure ��� Better bucket sorting algorithm

�

considered� because it dominates all the others� Thus� instead of an array of lists�

we can keep an array of SSA names� When an item is inserted into an entry that

already contains an item� we can select the one that is computed earlier in the block�

This item will be written into the array entry and the operation computing the other

will be removed immediately� Assume that items x and y are congruent and both

are computed in block B� and that x is computed earlier than y� The bucket sorting

algorithm would replace y with x in the entry indexed by the preorder index of B�

See Figure ����

Once we have found the item computed earliest in each block� we can compare

pairs of elements in the array and decide if one dominates the other� This decision is

based on an ancestor test in the dominator tree� The entire process can be done in

time proportional to the size of the set�

During dominator�based removal� we�ll need to perform an ancestor test on the

dominator tree� To do this in constant time� we must know the preorder index and

the number of descendants of each block in the dominator tree� We can decide if

block b� dominates block b� by performing an ancestor test in the dominator tree�

Let p� and p� be the preorder indices of b� and b� respectively� and let ND� be the

number of descendants of b�� Then b� dominates b� if and only if�

p� � p� � p� � ND�

We use a �two��nger� algorithm for comparing items de�ned in di�erent blocks�

We consider adjacent pairs of non�zero entries in the Blocks array� The b� variable

points to the �rst block of the pair in consideration� The b� variable points to the

second block� These two pointers move through the Blocks array until each pair of

adjacent blocks have been compared� For each pair� we check if b� dominates b�� If

so� we remove the instruction in the entry for block b�� otherwise� we set b� to point

to block b�� The �nal step is to move b� to the next non�empty entry in the Blocks

array�

��� AVAIL�Based Removal

The classical approach to redundancy elimination is to remove computations in the

set of available expressions �AVAIL� at the point where they appear in the routine �	��

This approach uses data��ow analysis to determine the set of expressions available

along all paths from the start of the routine� An expression is available if it is

computed along all paths from the beginning of the routine� If an operation computes

	

a value already in the set of available expressions then it can be removed� First� we

compute the AVAIL set for each block� then we remove any operations whose result

is in the set�

Properties of the value numbered SSA form let us simplify the formulation of

AVAIL� The traditional data��ow equations deal with the formal identity of lexical

names� while our equations deal with identical values ����� This is a very important

distinction� We need not consider the killed set for a block because no values are

rede�ned in SSA form� and value numbering preserves this property� Consider the

code fragment in Figure ���� Under the traditional data��ow framework� the assign�

ment to X would �kill� the Z expression� However� if the assignment to X caused

the two assignments to Z to have di�erent values� then they would be assigned dif�

ferent names� Since value numbering has determined that the two assignments to Z

are congruent� the second one is redundant and can be removed� The only way the

intervening assignment will be given the name X is if the value computed is equal to

the de�nition of X that reaches the �rst assignment to Z�

The simpli�ed data��ow equations are shown in Figure ��� Notice that the equa�

tion for AVOUTi does not include a term for the expressions killed in block i� As we

shall see in Chapter � the killed set requires a great deal of time to compute �O�N��

time� where N is the number of value numbers�� In our framework� we simply add

the set of values de�ned in the block �de�nedi� to the set of values available at the

beginning of the block �AVINi�� The set de�nedi is the set of value numbers with a

de�nition in block i� This is a superset of the set of values generated in i �geni� which

does not include any expressions whose de�nition is followed by a modi�cation of one

of its subexpressions� Further� de�nedi is much easier to compute than geni�

Once we have computed AVAIL for each block� we are ready to remove instructions

from the routine� We step through the blocks and use the AVIN set as a guide for

Z � X � Y

X � � � �

Z � X � Y

Figure ��� Example program

AVINi �

����
���
�� if i is the entry block�
j�pred�i�

AVOUTj� otherwise

AVOUTi � AVINi � de�nedi

Figure ��� Data��ow equations for AVAIL�based removal

removing instructions� We can remove any instruction whose result is in AVIN� If

the instruction is not removed� we add its de�nition to the AVIN set because it is

available to instructions later in the block�

��� Summary

This chapter presents two techniques for removing redundancies� Dominator�based

removal eliminates computations that are dominated by another computation with

the same value number� AVAIL�based removal is an improvement that relies on data�

�ow analysis to discover the set of available expressions and remove instructions whose

value is in the set� We improve the data��ow framework by taking advantage of the

properties of the value numbered SSA form� The improved framework deals with

identical values rather than lexical names� It is simpler and faster to compute and it

can remove more instructions than the traditional framework�

�

Chapter �

Code Motion

The compiler can eliminate redundancies not only by removing computations but also

by moving computations to less frequently executed locations� Many techniques rely

on data��ow analysis to determine the set of locations where each computation will

produce the same value and to select the ones that are expected to be least frequently

executed�

	�� Partial Redundancy Elimination

Partial redundancy elimination �PRE� is an optimization introduced by Morel and

Renvoise that combines common subexpression elimination with loop invariant code

motion �
�� 	��� Partially redundant computations are redundant along some� but not

necessarily all� execution paths� In general� PRE moves code upward in the routine

to the earliest point where the computation would produce that same value without

lengthening any path through the program� Notice that the computation of z in

Figure ��	 is redundant along all paths to block B�� so it will be removed by PRE�

On the other hand� the routine in Figure �� cannot be improved using AVAIL�based

HHHHHj

������

������

HHHHHj

if �� � � �B�

B� z � x� yB�

z � x� yB�

HHHHHj

������

������

HHHHHj

if �� � � �B�

z � x � yB� z� x � yB�

B�

Before After

Figure ��� Program improved by partial redundancy elimination

�

removal because z is not available along the path through block B�� The calculation of

z is computed twice along the path through B� but only once along the path through

B�� Therefore� it is considered partially redundant� PRE can move the computation

of z from block B� to block B�� This will shorten the path through B� and leave the

length of the path through B� unchanged�

	�� Lazy Code Motion

Knoop� R�uthing� and Ste�en describe a descendant of PRE� called lazy code mo�

tion �LCM� �	��
��� Drechsler and Stadel present a variation of this technique that

they claim is more practical �		�� The data��ow equations for this framework are

shown in Figures �
 and ��� One advantage that Drechsler and Stadel�s framework

has over Knoop et al� is that it never inserts instructions in the middle of a block�

Knoop et al� maintain an entry and an exit point for each expression in each block�

This requires a substantial amount of memory� speci�cally 	 � N � B pointers to

instructions� where N is the number of expressions and B is the number of blocks�

LCM avoids the unnecessary code motion inherent in PRE� This feature is im�

portant when code motion interacts with register allocation and other optimizations�

Each replacement a�ects register allocation because it has the potential of shortening

the live ranges of its operands and lengthening the live range of its result� Because

the precise impact of a replacement on the lifetimes of values depends completely on

context� the impact on demand for registers is di�cult to assess� In a three�address

intermediate code� each replacement has two opportunities to shorten a live range and

one opportunity to extend a live range� We will study this issue further in Chapter ��

Figure �	 gives an example of how unnecessary code motion can impact peephole

optimization� The original routine shows a sequence of three instructions to perform a

test and a branch� If PRE moves the �rst two instructions to each of the predecessor

blocks� it has not changed the length of any path through the routine� However�

notice the e�ect that this unnecessary code motion has on peephole optimization� This

optimization can combine the EQ and the BR instructions to produce a BReq instruction

if there is a single de�nition reaching the BR� The unnecessary code motion has resulted

in two de�nitions that reach the BR instruction� Therefore� the instructions cannot

be combined�

The common thread among all of these techniques is that they solve a sequence

of data��ow equations that drive code motion� The �rst step of the analysis is to

������

HHHHHj
r� � CMP � � �
r� � EQ r�
BR L� L� r�

� ������

HHHHHj

r� � CMP � � �
r� � EQ r�

r� � CMP � � �
r� � EQ r�

BR L� L� r�

Original After PRE

� �

������

HHHHHj
r� � CMP � � �

BReq L� L� r�

������

HHHHHj

r� � CMP � � �
r� � EQ r�

r� � CMP � � �
r� � EQ r�

BR L� L� r�

After Peephole Optimization After Peephole Optimization

Figure ��� Unnecessary code motion

�

assign a unique number �bit�vector index� to each expression in the program� In

our implementation� we enforce a naming scheme on the symbolic registers in the

intermediate representation� The �rst rule is that multiple computations of the same

register must compute the same expression� and all computations of the same expres�

sion must de�ne the same register� In other words� each symbolic register de�nes

exactly one lexical expression� This rule allows us to use the symbolic register name

as the bit�vector index for each expression� Secondly� register numbers must be as�

signed bottom�up in each expression tree in increasing order� In other words� the

register number de�ned by each expression must be higher than the register num�

bers of the operands� This rule allows us to simplify the analysis to determine which

values depend on each other� and it allows us to insert more than one instruction in

the same place in the correct order� Code that obeys these rules can be obtained in

a number of ways� First� a carefully coded front end can produce intermediate code

in this form by hashing each expression to determine the symbolic register that it

must de�ne� This approach may not be practical because it forces every front end

to produce code in the proper form� Another drawback is that code motion can only

be run once� and it must be the �rst optimization applied� A better approach is to

enforce the naming scheme during value numbering� Hash�based value numbering

will obey these rules if we simply assign value numbers in increasing order� Value

partitioning and SCC�based value numbering require a separate pass over the code to

enforce the naming scheme�

The next step is to determine which computations are eligible for motion and

which are not� Morel and Renvoise refer to these as expressions and variables� re�

spectively� Knoop et al� call them terms and variables� We will refer to them as

candidates for code motion and �xed values� For each candidate� we must determine

its subexpressions� This step is where we take advantage of the second rule in our

naming scheme� We walk each expression tree bottom�up by simply considering each

symbolic register in increasing order� At the point when we examine a symbolic regis�

ter we have already determined the subexpressions for each of its operands� Therefore�

the set of subexpressions for the current register is the union of the subexpressions

for its operands� Once we have computed the subexpressions for each candidate� we

are ready to compute the dependences for each �xed value� We say that a candidate�

c� depends on �xed value� f � if f is in the set of subexpressions of c� S�c�� To compute

dependences� we examine each S�c�� For each �xed value f in S�c�� we add c to the

�

set of dependences for f � This process requires O�N�� time� where N is the number

of names�

Once we have computed the dependences for each �xed value� we are ready to

compute the local predicates required for data��ow analysis� Each predicate is rep�

resented by a bit vector attached to each block� The �rst local predicate is altered �

the set of candidates whose value is changed in the block��� This is the union of the

dependences of every �xed value de�ned in the block� The comp predicate represents

the set of candidates de�ned in the block that are not later altered� The antloc set

contains the candidates that are de�ned before they are altered in the block� We

compute all three predicates with a single pass over the block� examining each de�ni�

tion in order� If the de�nition is a �xed value� f � we add the set of dependences for f

to the altered set and remove any dependences from the comp set� If the de�nition is

a candidate� c� we add c to the comp set� and we add c to antloc if it is not in altered�

The data��ow analysis uses the local predicates to solve a series of equations �See

Figures �
 and ���� The predicates used to modify the routine are INSERTi�j for

each edge �i� j� and DELETEi for each block i� When inserting instructions� we take

advantage of our second rule for naming symbolic registers � register numbers must

be assigned bottom�up in each expression tree� We ensure that no instruction is

placed before the de�nition of its operands by inserting the members of INSERTi�j in

increasing order�

	�� Critical Edges

In reality� we want to avoid inserting instructions on edges whenever possible�

Drechsler and Stadel point out that we can avoid this if critical edges have been

split� A critical edge is an edge between a block with multiple successors and a block

with multiple predecessors �i�e�� �i� j� is a critical edge if and only if jsucc�i�j � �

and jpred�j�j � ��� If edge �i� j� is the only predecessor of j� then LATERINj �

LATERi�j� so INSERTi�j � �� Further� if edge �i� j� is the only successor of i� then we

can insert the candidates in INSERTi�j at the end of block i� In general� we insert

�j�succ�i�INSERTi�j at the end of block i rather than on the edge�

Critical edges can be removed by splitting � inserting an empty basic block along

the edge� Figure �� shows a critical edge and how it could be split� It is not always

��The analogous predicate in Drechsler and Stadel is TRANSP�

�

AVINi �

����
���
�� if i is the entry block�
j�pred�i�

AVOUTj� otherwise

AVOUTi � AVINi � alteredi � compi

Availability

ANTOUTi �

����
���
�� if i is the exit block�
j�succ�i�

ANTINj� otherwise

ANTINi � ANTOUTi � alteredi � antloci

Anticipatability

EARLIESTi�j �

�����
����

ANTINj � AVOUTi� if i is the exit block

ANTINj � AVOUTi �

�alteredi � ANTOUTi�� otherwise

Earliest

Figure ��� Data��ow equations for lazy code motion � Part �

��

LATERINj �

����
���
�� if j is the entry block�
i�pred�j�

LATERi�j� otherwise

LATERi�j � LATERINi � ANTLOCi � EARLIESTi�j

Later

INSERTi�j � LATERi�j � LATERINj

DELETEi �

��
�
�� if i is the entry block

ANTLOCi � LATERINi� otherwise

Placement

Figure ��� Data��ow equations for lazy code motion � Part 	

������

������

HHHHHj

������

������

HHHHHj

HHHHHj

Before Split

Figure ��� Splitting a critical edge

��

possible to split critical edges� If the predecessor ends in a �jump register� instruction�

we cannot rewrite the code so that it will jump to the new block� This problem led

us to look at the sources of jump�register instructions� In our compiler� they are

generated for computed goto�s in Fortran and for switch statements in C� In both

cases� the code contains a speci�c sequence of instructions�

�� Compute the o�set into a table of addresses

	� Load the address from the table

� Jump to the location using a jump�register instruction

Given this sequence of instructions� we can split a critical edge if each jump�register

instruction uses a di�erent table and if we know which entry in the table corresponds

to the critical edge� If so� we simply change the address in the table to point to

the synthetic block� For this reason� we added a new opcode to our intermediate

language� called �jump table�� which tells the optimizer that the destination of the

jump was loaded from a table� Therefore� the optimizer can split any critical edges

leaving the block� This approach allows us to split all critical edges generated by C

or Fortran� However� languages with �rst�class labels �e�g�� continuations in Scheme�

can generate jump�register instructions that cannot be analyzed in this manner� In

general� the inability to split all critical edges means that the code motion framework

may be forced to place code on paths where it did not originally exist� However� the

lazy code motion framework described by Knoop et al� can produce incorrect code

for routines containing �unsplit� critical edges�

	�� Moving LOAD Instructions

Signi�cant improvements to the performance of optimized code can be gained by

including load instructions in the set of candidates� This is accomplished via the

tags in our intermediate representation� Tags are described in detail in Chapter 	�

The important feature of tags is that each instruction that might reference or de�ne

a memory location is labeled with the tag for that location� We extend the data��ow

analysis to include tags as well as registers� We must increase the size of the bit vectors

to hold both registers and tags� and we extend the analysis of subexpressions and

dependences to include tags� Suppose that a particular load instruction references

tag t and de�nes register r� We consider t to be an operand of r� so r is in the

�	

set of dependences for t� During the local analysis� whenever a de�nition of t is

encountered� r will be added to the altered set for the block� Therefore� the load

instruction cannot move past any de�nition of its tag� Note that the register operands

�controlling the address� of the load instruction will also inhibit its movement� Thus�

a load whose address varies with each iteration of a loop cannot be moved out of a

loop even if the tag is not modi�ed inside the loop�

We would like to allow store instructions to move as well� However� this exten�

sion is not as straightforward as it might seem� The problem lies in the fact that

anti�dependences are not explicitly represented by tags��� The example in Figure �

shows an anti�dependence between the reference of A�i� and the de�nition of A����

If this anti�dependence is ignored� the de�nition of A��� will be incorrectly moved

outside the loop because the address is loop invariant and the location is not written

inside the loop� However� this motion is clearly unsafe because it will alter the value

computed in the �sum� variable�

	�� Summary

This chapter presents techniques for moving computations to less frequently executed

locations� Partial redundancy elimination combines loop invariant code motion with

common subexpression elimination� Partially redundant computations are redundant

along some� but not necessarily all� execution paths� Lazy code motion is a descendant

of partial redundancy elimination that avoids unnecessary code motion� We have

extended these algorithms to allow motion of load instructions�

sum � ���
do i � �� N

sum � sum � A�i�
A��� � � � �

enddo

sum � ���
A��� � � � �
do i � �� N

sum � sum � A�i�
enddo

Before Antidependence Ignored

Figure ��� Incorrect motion of a store instruction

��An anti�dependence enforces the ordering between a read and a subsequent write of the same
location�

�

Chapter �

Value Driven Code Motion

Value�driven code motion �VDCM� is an improvement to classical code motion tech�

niques that takes advantage of the results of global value numbering� Traditional

data��ow analysis frameworks must assume that every de�nition produces a distinct

value� Therefore� an instruction cannot move past a de�nition of one of its subexpres�

sions� This restriction can be relaxed when certain de�nitions are known to produce

redundant values� This information is discovered during value numbering� but pre�

vious techniques for code motion have not exploited it� By understanding how code

motion interacts with global value numbering� we can simplify and improve the code

motion framework at the price of constraining the order of the optimizations� Our

approach is to modify the data��ow framework to account for the assumption that

each de�nition represents a value rather than a lexical name� This approach can be

applied to a variety of data��ow frameworks� In particular� this chapter focuses on

lazy code motion presented in Chapter � That algorithm is provably optimal� this

chapter shows that by changing our assumptions about the shape of the input pro�

gram� we can produce a technique that both eliminates more redundancies and runs

more e�ciently�

We can prepare the routine for VDCM using any of the value numbering algorithms

described in Chapters 	�
� or ���� In general� each algorithm discovers a di�erent

set of equivalences� The important feature that these algorithms share is that they

can rewrite the names in the entire routine consistently to re�ect the equivalences

discovered�

The ability of the compiler to perform code motion is in�uenced heavily by the

�shape� of the input program� Briggs and Cooper showed that global reassociation

followed by value partitioning will transform code into a form that makes PRE more

e�ective ���� Further improvements are still possible� The focus of this chapter is to

��In Chapter �� only the uni	ed hash table algorithm will provide the consistent naming that we
require�

��

extend the data��ow framework to operate on value equivalences rather than lexical

names� just as we extended the framework for available expressions in Section ��	�

Because values are never killed� a computation of an expression can move across

a de�nition of one of its operands if the value of that operand is available at the

point where the computation is placed� In other words� a computation can be placed

anywhere that the values of its operands are available�

��� VDCM Algorithm

The �rst step of VDCM is to �nd available expressions as described in Section ��	�

The only local predicate required for this framework is de�nedb � the set of values

de�ned in block b� Using the results of the available expressions calculation� we can

compute the other predicates needed for the remaining data��ow frameworks� These

predicates take on a di�erent meaning under VDCM because we are dealing with

values rather than lexical names�

The predicate alteredb represents the set of values that cannot move past some

de�nition in block b� In our framework an instruction can move past the de�nition

of one of its operands� However� an instruction cannot move to a point where the

values of its operands cannot be made available� The concept of ready is de�ned

recursively for each value v and each program point p� We say that v is ready if its

�xed operands are available and its candidate operands are ready at p� Given the

set of available values at point p� we can compute the set of ready values as follows�

Initially� the set of ready values is the set of available values� then we traverse each

expression tree bottom up and add any expression with all of its operands in the set�

Finally� the set of values altered in block b is simply the set of values that are ready

at the end of b but not at the beginning� In other words� a value is altered in block

b if at least one of its subexpressions is computed in block b for the �rst time along

some path in the CFG�

The algorithm for computing altered is shown in Figure ���� Intuitively� alteredb

for block b is derived by �rst computing the set of ready values at the beginning

and end of the block� and then �nding the di�erence� In practice� alteredb can be

computed more e�ciently by starting with AVOUTb � AVINb� then traversing each

expression tree bottom up and adding any expression with one of its operands in the

set� This requires O�N� time� where N is the number of names�

��

for each block b
alteredb � AVOUTb �AVINb

for each expression e in bottom�up order
for each operand o of e

if o 	 alteredb
alteredb � alteredb � feg

Figure ��� Algorithm for computing altered using values

for each expression e in bottom�up order
for each operand o of e

S�e� � S�e� � S�o� � o
for each �xed value f 	 S�e�

D�f � � D�f � � feg
for each block b

for each de�nition x in b
if x is a �xed value

alteredb � alteredb �D�x�

Figure ��� Algorithm for computing altered using lexical names

Compare this approach with the technique for computing the altered set using

lexical names� shown in Figure ��	� First� the subexpressions for each candidate

and the set of dependences for each �xed value must be computed� To compute

subexpressions� the analyzer must traverse each expression tree bottom up� for each

expression� it computes the union of the subexpressions of its operands� To compute

the set of dependences� it examines the subexpressions� S�e� for each expression e�

For each �xed value f 	 S�e�� it adds e to the set of dependences for f � This process

requires O�N�� time� where N is the number of expressions� Finally� for each block

b� the analyzer computes alteredb as the union of the dependences for any �xed value

de�ned in b�

To clarify the di�erences between the algorithms for computing altered� consider

the expression tree in Figure ��
� First� consider the value�driven algorithm� We will

assume that the �xed value a is in AVOUTb �AVINb� The algorithm will visit each

expression in bottom�up order� The expression e� will be considered �rst� since one

of its operands �a� is in the altered set� e� will be added� Since none of the operands

�

� �e��
���������

HHHHHHHHH
� �e��

�
�
�
��

�
�
�
��

� �e��
�
�

�
��

�
�
�
��

a x b y

Figure ��� Expression tree

of e� are in altered� e� will not be added� Finally� e� will be added to altered because

e� is a member of the set� Therefore� altered � fe�� e�g�

Now we will apply the algorithm based on lexical names to the expression tree

in Figure ��
� The �rst step is to compute the subexpressions for each expression

in bottom�up order� The set of subexpressions for e�� S�e��� is fa� xg� Similarly�

S�e�� � fb� yg� and �nally S�e�� � fe�� a� x� e�� b� yg� Notice that we have performed N

bit�vector operations� each of sizeN � where N is the number of expressions� Therefore�

computing subexpressions requires O�N�� time� The next step is to compute the set

of dependences for each �xed value� Since a is a member of S�e�� and S�e��� the

dependences for a� D�a�� will be fe�� e�g� Similarly� D�x� � fe�� e�g� D�b� � fe�� e�g�

and D�y� � fe�� e�g� Finally� we examine each de�nition in the block� When we

encounter a de�nition of a� we add D�a� �fe�� e�g� to the altered set�

The other predicate needed for each block b is the set of expressions that are

locally anticipatable� antlocb� Under the traditional framework� this is the set of

expressions e computed in b before any of e�s operands are modi�ed in b� However�

under the value�driven framework� antlocb is the set of values computed in b whose

de�nition could legally be placed at the beginning of b� Any value computed in b

can be computed at the beginning of b if that value is not altered in b� Therefore�

we de�ne antlocb as the set of values that are computed but not altered in b �i�e��

de�nedb � alteredb��

��

Given the value�driven versions of available expressions� altered� and locally an�

ticipatable� the code motion proceeds as before� Speci�cally� we compute the set of

values to insert on each edge �i�e�� INSERTi�j for each edge e � �i� j�� and the set of

values to delete from each block �i�e�� DELETEb for each block b��

��� Examples

The example in Figure ��� demonstrates how VDCM is more powerful than LCM�

The traditional framework would compute the set of subexpressions for r� as fxg�

and for r� as fr�� xg� Therefore� the set of dependences for x would be fr�� r�g� and

the store to x in block B� must be assumed to alter the values of both r� and r�

�i�e�� alteredB�
� fr�� r�g�� However� the value numbering has discovered that the

value of r� depends only on the value of r�� and it is independent of the value stored

into x inside the loop� In other words� r� must be the absolute value of the value of

x on entry to the loop�

We will now explain how value�driven code motion would analyze this example�

The �rst step is to compute available expressions using the equations in Figure ���

The solution to these equations shows that r� is available on entry and exit for block

B� �r� 	 AVINB�
and r� 	 AVOUTB�

�� We initialize the set alteredB�
with AVOUTB�

�

AVINB�
� Since r� �	 AVOUTB�

� AVINB�
� r� �	 alteredB�

� and VDCM is able to move

the de�nition of r� outside the loop� On the other hand� LCM must leave the de�nition

inside the loop�

Figure ��� demonstrates another example where VDCM is more powerful than

LCM� Notice that the code stores the value of r� into A�i� and later loads the value

back into a register without changing the value of i� Value numbering has determined

that the load will produce the same value as r�� Therefore� VDCM will remove the

load instruction� On the other hand� LCM must assume that the store a�ects the

value of the load� so it cannot remove it�

��� Summary

This chapter presents a new approach to data��ow analysis that takes advantage of

facts discovered during value numbering� Traditional data��ow analysis frameworks

operate on lexical names while our framework uses values� We apply this important

distinction to the framework for lazy code motion� Despite the fact that lazy code

motion is provably optimal� we can eliminate more redundancies using our technique�

��

r� � load x
B�

store x
r� � abs r�

B�

�

�
� �

� �
�

r� � load x
r� � abs r�B�

store xB�

�

�
� �

� �
�

Before After

Figure ��� VDCM example

r� � � � �
store A�i� r�
r� � load A�i�

Figure ��� Another VDCM example

Further� our algorithm runs faster than lazy code motion because the computation

of the altered set for each block is greatly simpli�ed�

��

Chapter �

Relief of Register Pressure

This chapter will discuss the use of redundancy elimination techniques to relieve

register pressure � the demand for registers at any point in a routine� It has been

argued that eliminating redundancies will always increase register pressure �	��
���

However� it is also possible that eliminating redundancies can reduce register pressure�

The example in Figure ��� demonstrates how this can happen� When the second

computation of x is removed� the lifetime of the �rst computation of x is lengthened�

On the other hand� the lifetimes of y and z are shortened because their last use is now

earlier in the program� The net e�ect is to reduce the number of live registers by one

at the point marked by the ���� There are two other issues that further complicate

the situation�

�� Increasing register pressure does not a�ect performance unless the pressure

becomes greater than the number of physical registers on the target machine�

	� Other optimizations that run after redundancy elimination can change the reg�

ister pressure in unpredictable ways�

x� y � z
� x

� y and z are live here

x� y � z
� x

x� y � z
� x

� only x is live here

� x
Before After

Figure ��� Example where redundancy
elimination decreases register pressure

��

Before Before After After

Routine Optimization Redundancy Redundancy Optimization

Elimination Elimination

fpppp �
� ���
��
��
twldrv ��� 	�	
��
		
deseco
 �� �
 ��	
supp �� ��� �
� �
�
subb �	� �	 �	� �	�
tomcatv ��
� �� ���
efill � � ��
 ���
prophy 	�
� �� ��
saturr ��� � �� ��
ddeflu �� �� �� ��
iniset � � � ��
bilan �� 	
 �� ��
debflu

 �� �� �
debico 	� �	 �� �

repvid 		 	 �� �
inisla 	�
� � �
paroi �� 	
 �
 �
bilsla �� �� �� ��
pastem 	� 	� �� ��
dyeh
� �� �� ��
drepvi
�
� �� ��
colbur
	 �� �� ��
ihbtr �� 	�

�
yeh

 �� �	
�
inithx �� 		 ��
�
integr �	 �
�
�
cardeb �� �� ��
�
orgpar 	�

�
gamgen �� 	� �	
	
heat 	
 	�
� 	�
inter �	 �� � �	
svd
�
� �	 ��
decomp 		 		
� ��
rkfs
�
� �	 ��
spline �� ��
�
�
fehl 		 	�
�
�
fmin 	� 		
	
�

Table ��� Register pressure at various points

��

Table ��� shows the register pressure at various points during optimization for

the routines in each benchmark suite in which the register pressure is above
	���

Each entry in the table represents the maximum register pressure at any point in

the routine� In almost all cases� redundancy elimination increased register pressure�

However� in only ��! of the routines did the register pressure cross the
	 register

threshold during the redundancy elimination phase� The register pressure in � of the

routines is reduced by eliminating redundancies� It is reduced signi�cantly for fpppp�

Finally� the later optimization passes change the register pressure in unpredictable

ways � usually the pressure is raised� it is lowered in
�! of the routines�

One approach to relief of register pressure might be to somehow limit redundancy

elimination so that it does not raise the register pressure above the number of physical

registers� However� this would still not account for the increase in register pressure

caused by later optimizations� Therefore� we feel that the most e�ective way to

relieve register pressure will be a transformation that runs immediately before register

allocation� Another advantage of this approach is that it does not depend on the

algorithm used for redundancy elimination� The idea is to insert instructions that

reduce the register pressure but are cheaper than the load and store operations that

will be inserted during register allocation ���� ��� Further� these instructions will be

placed on a more global basis than the spill code� In some sense� this transformation

will undo the adverse e�ects of redundancy elimination� This transformation will

operate as follows�

�� Perform value numbering to identify expressions with the same value�

	� Identify locations in the routine where the pressure is greater than R � the

number of physical registers on the target machine� This is accomplished using

traditional live variable analysis� The register pressure at each point in the

routine is estimated by the size of the �live� set� The true register pressure

in the block may change as a result of the copy coalescing that occurs during

register allocation�

� Heuristically identify calculations that will decrease the pressure� For each block

where the register pressure is too high� we search for expressions whose result

and operands are live at the beginning and end of the block but not mentioned

��We consider �� to be a good estimate of the number of physical registers on a typical machine�

�	

inside the block� Compile�time constants are particularly attractive because

they have no register operands� If such a calculation were placed at the end of

the block� the register pressure inside the block would decrease by one�

�� Select the location where inserting these calculations will result in the least

run�time impact� We will place instructions as late as possible without crossing

a use of the result or lengthening any path at a greater nesting depth�

�� Apply dead code elimination to remove any de�nitions that have been �masked�

by inserted instructions�

��� Identifying Blocks with High Register Pressure

We locate regions of high register pressure using data��ow analysis to identify live

registers� For each block� we begin with the LIVEOUT set and examine the instruc�

tions in reverse order� At each instruction� we remove any de�ned registers from the

set and insert any used registers� The register pressure is simply the size of the set at

any point� We record the maximum register pressure for any point inside each block�

��� Choosing Expressions to Relieve Pressure

Once we have identi�ed the blocks with high register pressure� we are ready to select

expressions to relieve the pressure� We begin with the set of expressions whose result

is live across the block and whose result and operands are not touched within the

block� For each expression in this set� we must also ensure that its operands are live

on exit to the block� Otherwise� inserting the expression at the end of the block would

shorten the live range of the result while lengthening the live range of one or more of

the operands� The net result would be unchanged or even increased register pressure�

Once we have narrowed down the choice of expressions� we heuristically choose

one expression at a time until the register pressure for the block drops to R or the

set becomes empty� We have identi�ed several heuristics�

Heuristic
 Choose expressions in any order�

Heuristic � Give priority to registers constrained in predecessors� The example in

Figure ��	 motivates this heuristic� It shows three consecutive blocks with high

register pressure� If three di�erent expressions are chosen to relieve pressure�

�

HP

e� �

�

HP

e� �

�

HP

e� �

HP

�

HP

�

HP

e� �

Di�erent expressions Same expression

Figure ��� Motivating example for heuristic �

then three instructions will be needed� However� if the same expression is chosen

for each block� only one instruction will be needed� During the next step� the

correct location for the calculation will be chosed at the end of the third block�

Heuristic � Allow existing de�nitions to participate in code motion� Figure ��

shows how inserting an expression at the end of a block with high pressure

can render another de�nition of the expression partially dead� If we treat both

de�nitions as candidates for code motion� we will eliminate the partially dead

computation�

Heuristic � Limit code motion to expressions actually inserted� Figure ��� shows

how heuristic 	 can move an expression into an empty basic block that would

otherwise have been removed by a later optimization pass� The result is that

the instruction is not executed on the �nal iteration of the loop at the cost of

executing an extra jump on every iteration� This problem occurs in the gamgen

routine� For this reason� it is often useful to limit the expressions to be moved

to only those involved in relieving pressure�

Heuristic � Give priority to compile time constants� Because these expressions have

no register operands� we can insert them without worrying about lengthening

the live range of the operands� This heuristic is similar to the rematerialization

��

e� �
�

�
�

�
���

Q
Q
Q
Q
QQs

� e�
Q
Q
Q
Q
QQs

HP

�
�

�
�

���

� e�

e� �
�

�
�

�
���

Q
Q
Q
Q
QQs

� e�
Q
Q
Q
Q
QQs

HP

e� �
�

�
�

�
���

� e�

Before Expression inserted

�
�

�
�

���

Q
Q
Q
Q
QQs

e� �

� e�
Q
Q
Q
Q
QQs

HP

�
�

�
�

���
e� �

� e�

Move expressions forward

Figure ��� Motivating example for heuristic 	

��

e� �

�
� e�

e� �

�

� ��

� �
�

e� �

�
� e�

�

� ��
e� �

� �
�

Before After

Figure ��� Motivating example for heuristic

technique of Briggs� Cooper� and Torczon ��� The key di�erence is where the

code to compute the constant is inserted� Rematerialization is attempted for

each live range that is spilled during register allocation� any use within the live

range that is shown to be a constant will be preceded by a load�immediate

instruction rather than a load� If all uses are handled in this fashion� then

no store instructions are needed at the de�nitions within the live range� In

contrast� this heuristic inserts a load�immediate instruction at the end of

a block with high pressure and moves that instruction forward based on the

analysis described in the next section�

Heuristic � Give priority based on nesting depth� Since expressions are moved as

close as possible to their uses� we look for expressions whose uses are at the

outermost nesting depth�

��� Selecting Locations to Insert Instructions

We select locations to insert each expression using data��ow analysis similar to

the second phase of lazy code motion �See Chapter �� We move each expression as

late as possible subject to the following�

�� Do not pass a use of the expression� Passing a use would force that use to obtain

its value from a de�nition before the block where we are attempting to relieve

pressure�

�

RELIEFINi �

�������
������

�� if i is the entry block�
j 	 pred�i�

depth�i� � depth�j�

RELIEFOUTj� otherwise

RELIEFOUTi � RELIEFINi � exposedi � reliefi

Relief

INSERTi�j � �RELIEFOUTi � RELIEFINj� � LIVEINj

Insert

Figure ��� Data��ow equations for relief of register pressure

	� Do not lengthen any path at a greater nesting depth� The restriction of not

lengthening any path can prohibit conditionally executed expressions from mov�

ing out of loops� On the other hand� allowing any path to be lengthened can

result in expressions moving into loops� Therefore� we have chosen to compro�

mise�

The data��ow equations for selecting insertion points are given in Figure ���� The

local predicates required for each block� i� are exposedi and reliefi� They represent

expressions with an exposed use in i and expressions initially inserted in i� respectively�

Notice that we only consider the predecessors with an equal or greater nesting depth

when computing RELIEFIN�

Recall that the data��ow framework for lazy code motion computes a set of ex�

pressions to insert on each edge of the CFG� In Section �
� we showed that inserting

expressions on edges was not necessary if critical edges in the graph had been split�

The same is true in this framework�

��

��� Results

Table ��	 shows the register pressure for several routines using each of the heuris�

tics described above� Since the heuristics can only relieve register pressure that exists

across basic blocks� they are not e�ective on fpppp� which contains only one basic

block� Also� the gamgen� heat� inter� and fmin routines are not a�ected because

their register pressure after optimization is below the
	 register threshold� When

the heuristics are applied� each one reduces the pressure signi�cantly� However� the

pressure in only 	�! of the routines was lowered below its level achieved before re�

dundancy elimination �see Table ����� Many of the heuristics reduce the maximum

pressure to the same level� If the maximum pressure is high� this means that all

possible expressions were chosen and there is simply no decision for the heuristics to

make� However� this does not mean that each heuristic will change the routine in the

same way� Recall that register pressure can vary throughout a routine and that even

though there are blocks where the pressure cannot be brought below the threshold�

there are other blocks where the pressure can be relieved� The di�erences between

the heuristics become evident in blocks where the pressure is near the threshold� In

these blocks� di�erent heuristics will choose di�erent expressions� and di�erent be�

havior will be observed at run time� The register pressure inside the iniset� ihbtr�

inithx� and cardeb routines was reduced to a point where it can be allocated on

a
	 register machine without spill code� We are not able to achieve this goal on

every routine simply because there are not enough expressions whose insertion would

relieve pressure� Chapter � will present data showing the improvements in instruction

counts that result from each of the heuristics�

��� Summary

We have presented a technique that can reduce register pressure by introducing re�

dundancies into a routine� As a result� less spill code will be inserted during register

allocation� and the running time of the routine is reduced� Intuitively� the tech�

nique proceeds by ��� identifying blocks with high register pressure in the routine�

�	� heuristically choosing expressions that will reduce register pressure if inserted at

the end of the block� and �
� moving de�nitions as close to their uses as possible�

One key aspect of this technique is that de�nitions cannot move past a use� This

includes uses in register�to�register copy instructions� Since many of these instructions

are removed during the coalescing phase of register allocation� further opportunities

��

Without Heuristic

Routine Relief � � � � 	

fpppp
��
��
��
��
��
��
��
twldrv
		 	� 	� 	� 	� 	� 	�
deseco ��	 �� �� �� �� �� ��
supp �
� �
� �
� �
� �
� �
� �
�
subb �	� �	� �	� �	� �	� �	� �	�
tomcatv ��� �	 �	 �	 �	 �	 �	
efill ��� �� �� �� �� �� ��
prophy �� �� �� �� �� �� ��
saturr �� �� �� �� �� �� ��
ddeflu �� � � � � � �
iniset ��
	
	
	
	
	
	
bilan �� �� �� �� �� �� ��
debflu � �� �� �� �� �� ��
debico �
 � � � � � �
repvid � � � � � � �
inisla � 	 	 	 	 	 	
paroi � �� �� �� �� �� ��
bilsla �� �� �� �� �� �� ��
pastem �� �� �� �� �� �� ��
dyeh �� �� �� �� �� �� ��
drepvi �� �� �� �� �� �� ��
colbur ��
�
�
�
�
�
�
ihbtr
�
	
	
�
	
	
	
yeh
�

inithx
�
	
	
	
	
	
	
integr
�
�
�

�
�
�
cardeb
�
�
�
�
�
�
�
orgpar
�
�
�

�
�
�
svd �� �� �� �� �� �� ��
decomp ��
�

rkfs �� �	 �	 �	 �	 �	 �	
spline
�
	
	 	�
	
�
	
fehl
�

Table ��� Register pressure using relief heuristics

��

for movement may be created� This observation leads us to believe that this technique

might be more e�ective as a part of the register allocator rather than a separate pass

that runs before allocation� Such an allocator could insert expressions and perform

forward motion following each application of the coalescing phase� Forward motion

could not only be applied to expressions inserted during the current phase� but also

to those expressions inserted in previous phases� Thus� any expression whose forward

motion was blocked by a copy that was subsequently coalesced could be moved closer

to its �true� uses�

Another advantage of incorporating this technique into the register allocator is

that code motion could be applied to the spill code� Rather than inserting a store

instruction after each de�nition in a live range and a load instruction before each

use� the allocator could identify regions of high pressure and insert a store at the

beginning and a load at the end� Then� the load instructions could be moved

forward as far as possible using the existing data��ow framework and the store

instructions could be moved as early as possible using an analogous framework�

��

Chapter 	

Experimental Results

A theoretical comparison of the redundancy elimination techniques reveals that SCC�

based value numbering and value�driven code motion are never worse than their

competitors in terms of eliminating redundancies� However� an equally important

question is how much this theoretical distinction matters in practice� Practical con�

siderations force us to ask two key questions�

�� How often do opportunities for improved redundancy elimination arise�

	� How does improved redundancy elimination interact with other optimization
passes�

To assess the real impact of these techniques� we have implemented all of the opti�

mizations in our experimental Fortran compiler�

��� Experimental Compiler

We have built an experimental compiler centered around our intermediate language�

called ILOC �pronounced �eye�lock��� ILOC is a pseudo�assembly language for a RISC

machine with an arbitrary number of symbolic registers� load and store operations

are provided to access memory� and all computations operate on symbolic registers�

Figure ��� shows a sample routine written in ILOC� Each basic block in the routine

is identi�ed by its label� and each block ends with an explicit �ow�of�control operation�

The routine begins with a frame operation that de�nes the registers passed from

the calling routine� It ends with a rtn operation� Each operation is labeled with

the a line number in the source code� Each operation consists of an opcode� a list

of constants� a list of referenced registers� and a list of de�ned registers� Any of

these lists can be empty� The ���� symbol indicates the beginning of the list of

de�ned registers� Constant integers appear with no pre�x� memory locations appear

with �"� as the �rst character� and registers appear with the letter �r� as the �rst

character� All opcodes that de�ne registers have a type �indicated by the �rst letter

��

�bubble � �� FRAME � �� r� r� r	 r

�� iSLDor "n � � r
 �� r�
� iSLI 	 r� �� r�
�� iLDI � �� r
� iADDI �� r� �� r�
� iSLI 	 r� �� r�
�� iCMP r� r �� r�
�� BRlt LL���� LL��� r�

LL���� � iADDI �� r	 �� r��
� iADD r� r�� �� r��
� iADD r� r�� �� r�	
� iADDI � r�� �� r	�
� JMPl LL����

LL����� � iADDI � r	� �� r�

�
 iCMP r�	 r�
 �� r��
�
 BRlt L� LL���� r��

L�� � i	i r	� �� r		
� JMPl LL����

LL����� � i	i r�
 �� r	

� i	i r	� �� r		
� JMPl LL����

LL����� �� iLDor "#a � � r	
 �� r��
�� iLDor "#a � � r		 �� r�
�� iCMP r�� r� �� r��
�� BRlt LL���� LL���� r��

LL����� � i	i r	
 �� r		
� JMPl LL����

LL����� � iADDI � r	
 �� r	

� iCMP r�	 r	
 �� r��
� BRge LL���� LL���� r��

LL����� �� iLDor "#a � � r	� �� r��
�� iLDor "#a � � r		 �� r	�
�� iSTor "#a � � r	� r	�
	� iSTor "#a � � r		 r��
		 iCMP r�� r�
 �� r	�
		 BRge L� LL���� r	�

L�� � i	i r�
 �� r	�
� JMPl LL����

LL����� 	
 RTN r�

Figure 	�� Sample ILOC routine

�	

of the opcode�� The following data types are supported� byte� integer� �oating point�

double precision� complex� and double precision complex� In this example� all registers

are integers� load and store operations support two addressing modes� The o�set�

register mode �e�g�� iLDor� computes the address by adding a constant o�set to the

value in a register� The register�register mode �e�g�� iLDrr� computes the address by

adding the values in two registers�

The front end translates Fortran into ILOC� The optimizer is organized as a col�

lection of Unix �lters that consume and produce ILOC� This design allows us to easily

apply optimizations in almost any order� The back end produces C code instrumented

to count the number of ILOC instructions executed� The number of instructions ex�

ecuted is a good �but not perfect� indication of the program�s execution time� The

following details are overlooked�

�� Not all instructions require the same number of cycles to execute�

	� The e�ects of a back end are not measured� In particular� the e�ects of register
allocation and scheduling might change the results� Solving these problems
globally requires a heuristic approximation to an NP�complete problem� The
heuristic chosen must be tailored to work well with the code expected from the
optimizer�

� Machine features such as pipelines and memory hierarchies are not taken into
account�

The common thread among these shortcomings is that they all depend on features

of a speci�c target machine� Therefore� we feel that our experiments are useful in

measuring the e�ectiveness of machine�independent optimizations�

��� Tests Performed

In this experiment� we optimized over �� routines from the Spec benchmark suite

and from Forsythe� Malcolm� and Moler�s book on numerical methods �	
�� We

refer to the latter as the FMM benchmark� Each routine was optimized in several

di�erent ways by varying the type of value numbering and code removal�motion�

Table ��� shows the possible combinations� The entries marked with a ��� represent

optimizations that existed prior to the beginning of this research� entries marked with

a ��� represent contributions of this research�

To achieve accurate comparisons� we varied only the type of redundancy elimina�

tion performed� Routines were optimized with the sequence of global reassociation ����

�

Single Extended Dominator AVAIL Lazy Value�driven
Basic Basic Based Based Code Code
Blocks Blocks Removal Removal Motion Motion

Hash�based � � � � � �
Partitioning � � � �
SCC � � � �

Table 	�� Tests performed

redundancy elimination �di�erent in each test�� global constant propagation ����� oper�

ator strength reduction �see Appendix A�� redundancy elimination�	� global constant

propagation�	� global peephole optimization� dead code elimination ���� Section �����

copy coalescing� and a pass to eliminate empty basic blocks�

��� Raw Instruction Counts

Figures ��	 through ��� present ILOC instruction counts for each combination in

Table ���� Table ��	 presents a guide for these �gures� Remember that the instruction

counts show the performance of the di�erent techniques in the context of an optimiz�

ing compiler� Thus� even though one technique may remove more redundancies than

another� subsequent optimization passes may negate this improvement�

Type of redundancy elimination Spec FMM

Hash�based� vary code removal�motion Figure ��	 Figure ���
Partitioning� vary code removal�motion Figure ��
 Figure ��
SCC�based� vary code removal�motion Figure ��� Figure ���

Table 	�� Key to raw instruction count �gures

��These optimizations are repeated to clean up after strength reduction�

��

Hash Based
Single Extended Dominator AVAIL LCM VDCM

tomcatv 391116123 324009765 321398525 321398525 227904139 226608739
twldrv 77380898 65204805 62457308 62394396 63462668 61658575
gamgen 102266 86685 86282 86282 86256 86256
iniset 84119 38115 38115 38115 38077 38077
deseco 17500 16271 15622 15608 14863 14823
debflu 5164 4855 4553 4553 4364 4330
prophy 5026 4342 3777 3757 3939 3939
pastem 4817 4078 3570 3570 3582 3576
fpppp 3925 3922 3922 3922 3990 3922
repvid 3858 3427 3074 3021 2859 2846
bilan 3670 3721 3419 4034 3452 3452
paroi 3591 3574 3495 3503 3724 3601
debico 3567 3393 3364 3335 3061 3061
inithx 3121 2874 2552 2552 2628 2620
integr 2479 2338 2124 2124 2444 2444
sgemv 1236 1042 1035 1035 791 791
cardeb 1132 1076 1029 1042 785 785
sgemm 1130 982 981 981 834 834
inideb 982 920 891 891 788 775
supp 896 812 693 693 693 693
saxpy 859 759 759 759 467 467
ddeflu 809 773 741 739 704 701
subb 630 539 539 539 539 539
fmtset 604 365 360 360 343 360
ihbtr 492 450 456 456 478 487
drepvi 372 329 272 268 267 267
x21y21 358 299 299 299 263 263
saturr 316 318 244 242 243 243
fmtgen 280 232 205 200 176 176
efill 270 251 216 213 215 215
si 246 177 164 164 165 165
heat 215 212 178 178 177 177
dcoera 171 153 144 144 155 144
lclear 165 127 127 127 91 91
orgpar 154 134 129 129 117 117
yeh 147 142 124 124 134 124
colbur 132 130 117 117 117 117
coeray 131 113 104 104 100 96
drigl 124 120 115 115 115 115
lissag 106 89 89 89 82 82
aclear 101 79 79 79 59 59
sortie 90 88 81 81 78 78
sigma 54 48 48 48 48 48
hmoy 27 23 23 23 23 23
dyeh 25 25 25 25 25 25
vgjyey 22 22 20 20 20 20
arret 19 19 19 19 19 19
inter 10 10 10 10 10 10
bilsla 6 6 6 6 6 6
inisla 6 6 6 6 6 6

Figure 	�� Number of ILOC operations for hash�based
value numbering techniques � Spec benchmark

��

Partitioning
Dominator AVAIL LCM VDCM

tomcatv 429513447 429513447 228685858 227390458
twldrv 65643989 65581077 66494004 64689911
gamgen 152725 152725 137858 137858
iniset 38115 38115 38077 38077
deseco 15117 15066 14723 14710
debflu 4987 4987 4569 4535
prophy 3419 3447 4045 4045
pastem 3717 3717 3675 3669
fpppp 3988 3988 4056 3988
repvid 3215 3162 2915 2915
bilan 3560 3560 3544 3544
paroi 4147 4151 4145 4039
debico 3809 3627 3375 3375
inithx 2653 2653 2682 2675
integr 2124 2124 2444 2444
sgemv 1834 1834 1197 1197
cardeb 1540 1525 884 884
sgemm 1230 1230 838 838
inideb 1175 1175 916 916
supp 693 693 693 693
saxpy 1009 1009 472 472
ddeflu 762 761 726 725
subb 539 539 539 539
fmtset 416 416 354 371
ihbtr 465 465 475 484
drepvi 305 301 300 300
x21y21 299 299 263 263
saturr 244 242 243 243
fmtgen 214 215 180 180
efill 219 215 217 217
si 169 169 170 170
heat 181 181 180 180
dcoera 149 149 160 149
lclear 127 127 91 91
orgpar 132 132 118 118
yeh 124 124 134 124
colbur 129 129 129 129
coeray 109 109 105 101
drigl 129 129 129 129
lissag 102 102 89 89
aclear 79 79 59 59
sortie 85 85 82 82
sigma 48 48 48 48
hmoy 34 34 34 34
dyeh 26 26 26 26
vgjyey 20 20 20 20
arret 19 19 19 19
inter 13 13 13 13
bilsla 6 6 6 6
inisla 6 6 6 6

Figure 	�� Number of ILOC operations for value
partitioning techniques � Spec benchmark

�

SCC-Based
Dominator AVAIL LCM VDCM

tomcatv 321393425 321393425 227899039 226603639
twldrv 63070603 63007691 64169355 62365262
gamgen 83855 83855 86256 86256
iniset 38115 38115 38077 38077
deseco 14018 14018 14462 14423
debflu 4553 4553 4364 4330
prophy 3297 3325 3923 3923
pastem 3544 3544 3566 3550
fpppp 3922 3922 3990 3922
repvid 2912 2859 2779 2766
bilan 3055 3055 3369 3369
paroi 3497 3505 3726 3603
debico 3070 3070 2963 2963
inithx 2552 2552 2627 2620
integr 2124 2124 2444 2444
sgemv 1035 1035 791 791
cardeb 1029 1042 785 785
sgemm 981 981 834 834
inideb 892 892 789 776
supp 693 693 693 693
saxpy 759 759 467 467
ddeflu 735 734 702 701
subb 539 539 539 539
fmtset 360 360 343 360
ihbtr 432 432 478 476
drepvi 272 268 267 267
x21y21 299 299 263 263
saturr 244 242 243 243
fmtgen 205 200 176 176
efill 216 213 215 215
si 164 164 165 165
heat 178 178 177 177
dcoera 144 144 155 144
lclear 127 127 91 91
orgpar 129 129 117 117
yeh 124 124 134 124
colbur 117 117 117 117
coeray 104 104 100 96
drigl 115 115 115 115
lissag 90 90 83 83
aclear 79 79 59 59
sortie 81 81 78 78
sigma 48 48 48 48
hmoy 23 23 23 23
dyeh 25 25 25 25
vgjyey 20 20 20 20
arret 19 19 19 19
inter 10 10 10 10
bilsla 6 6 6 6
inisla 6 6 6 6

Figure 	�� Number of ILOC operations for SCC�based
value numbering techniques � Spec benchmark

��

Hash-Based
Single Extended Dominator AVAIL LCM VDCM

svd 6392 5502 5081 5059 4445 4281
fmin 2072 1138 941 941 880 881
zeroin 1418 912 836 836 748 748
spline 1054 937 928 928 895 886
decomp 847 724 714 707 658 657
fehl 744 708 704 704 646 646
rkfs 552 384 332 332 279 279
urand 226 225 223 223 225 223
solve 208 189 186 186 187 185
seval 121 113 78 78 77 77
rkf45 35 35 35 35 35 35

Figure 	�� Number of ILOC operations for hash�based
value numbering techniques � FMM benchmark

Partitioning
Dominator AVAIL LCM VDCM

svd 5362 5340 4532 4384
fmin 941 941 880 881
zeroin 836 836 748 748
spline 972 972 924 915
decomp 713 706 659 659
fehl 704 704 646 646
rkfs 332 332 279 279
urand 223 223 225 223
solve 208 208 196 196
seval 82 82 81 81
rkf45 48 48 48 48

Figure 	�� Number of ILOC operations for value
partitioning techniques � FMM benchmark

��

SCC Based
Dominator AVAIL LCM VDCM

svd 5061 5039 4444 4281
fmin 941 941 880 881
zeroin 836 836 748 748
spline 928 928 895 886
decomp 711 704 658 657
fehl 704 704 646 646
rkfs 332 332 279 279
urand 223 223 225 223
solve 186 186 187 185
seval 78 78 77 77
rkf45 35 35 35 35

Figure 	�� Number of ILOC operations for SCC�based
value numbering techniques � FMM benchmark

��

��� Normalized Instruction Counts

Table ��
 provides a guide to Figures ��� through ��	�� Each of these �gures

compares normalized execution times for either a row or column in Table ����

��� Comparison with Previous State of the Art

Since each of the techniques described in this thesis contributes in its own way to run�

time improvements� we made a �nal comparison showing the sum of all contributions�

Our reference point will be the combination of value partitioning and lazy code motion

as presented in ���� by Briggs and Cooper ���� We compare this combination with

SCC�based value numbering and value�driven code motion� The results are shown in

Figures ��		 and ��	
�

��	 Compile Times

We compared the time required by each of the redundancy elimination techniques for

some of the larger routines in the test suite� The number of blocks� SSA names� and

operations are given to indicate the size of the routine being optimized�

Table ��� compares the compile times of the three value numbering techniques�

The SCC technique is signi�cantly faster than partitioning� it is competitive with

hashing until a routine has enough SCCs to make iteration its dominant behavior�

We also compared the compile�times required by each of the code removal and

motion techniques� Table ��� compares the running times of the code removal tech�

niques�

Type of redundancy elimination Spec FMM

Hash�based� vary code removal�motion Figure ��� Figure ����
Partitioning� vary code removal�motion Figure ��� Figure ���
SCC�based� vary code removal�motion Figure ���� Figure ����
Dominator�based removal� vary value numbering Figure ���� Figure ����
AVAIL�based removal� vary value numbering Figure ���	 Figure ����
Lazy code motion� vary value numbering Figure ���
 Figure ��	�
Value�driven code motion� vary value numbering Figure ���� Figure ��	�

Table 	�� Key to normalized instruction count �gures

���

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Single

Extended

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Single

Extended

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Single

Extended

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Single

Extended

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Single

Extended

Dominator

AVAIL

LCM

VDCM

Figure 	�� Comparison of hash�based value
numbering techniques � Spec benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Dominator

AVAIL

LCM

VDCM

Figure 	�	 Comparison of value partitioning techniques � Spec benchmark

��	

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Dominator

AVAIL

LCM

VDCM

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Dominator

AVAIL

LCM

VDCM

Figure 	��
 Comparison of SCC�based value
numbering techniques � Spec benchmark

��

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Partitioning

Hash-based

SCC-based

Figure 	��� Comparison of value numbering techniques
using dominator�based removal � Spec benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Partitioning

Hash-based

SCC-based

Figure 	��� Comparison of value numbering techniques
using AVAIL�based removal � Spec benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Partitioning

Hash-based

SCC-based

Figure 	��� Comparison of value numbering
techniques using lazy code motion � Spec benchmark

��

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Partitioning

Hash-based

SCC-based

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Partitioning

Hash-based

SCC-based

Figure 	��� Comparison of value numbering techniques
using value�driven code moion � Spec benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Single

Extended

Dominator

AVAIL

LCM

VDCM

Figure 	��� Comparison of hash�based value
numbering techniques � FMM benchmark

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Dominator

AVAIL

LCM

VDCM

Figure 	��� Comparison of value
partitioning techniques � FMM benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Dominator

AVAIL

LCM

VDCM

Figure 	��� Comparison of SCC�based value
numbering techniques � FMM benchmark

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Partitioning

Hash-based

SCC-based

Figure 	��� Comparison of value numbering techniques
using dominator�based removal� FMM benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Partitioning

Hash-based

SCC-based

Figure 	��	 Comparison of value numbering techniques
using AVAIL�based removal � FMM benchmark

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Partitioning

Hash-based

SCC-based

Figure 	��
 Comparison of value numbering techniques
using lazy code motion � FMM benchmark

���

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Partitioning

Hash-based

SCC-based

Figure 	��� Comparison of value numbering techniques
using value�driven code motion � FMM benchmark

Table �� compares the running times of the code motion techniques� Since the

di�erences in running times are determined primarily by the size of the bit vectors and

the time required to compute the altered set for each block� these times are included

in the comparison� Notice that the bit vector sizes used by VDCM are larger than

those used by LCM� This is due to the fact that there are more values than lexical

names �i�e�� the same name can have many values�� However� the reduction in the

time required to compute the altered sets more than compensates for this di�erence�

In every instance� VDCM ran faster than LCM�

routine blocks SSA names operations hash�based SCC�based partitioning

tomcatv ��� ���� ���� 	�	
 	�	� 	�	�
ddeflu �	 �� ���� 	��� 	��� 	���
debflu ��� ���� �
�� 	�	� 	��� 	��
deseco �
� ��
	� ����� 	��	 	��� ���

twldrv ��� ���� �
��� 	��	 ���� ��	
fpppp � ��
�� �
�� 	��� 	��
 ����

Table 	�� Compile times of value numbering techniques

���

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco debflu prophy pastem fpppp repvid

Partitioning/LCM

SCC/VDCM

0

0.2

0.4

0.6

0.8

1

1.2

bilan paroi debico inithx integr sgemv cardeb sgemm inideb supp

Partitioning/LCM

SCC/VDCM

0

0.2

0.4

0.6

0.8

1

1.2

saxpy ddeflu subb fmtset ihbtr drepvi x21y21 saturr fmtgen efill

Partitioning/LCM

SCC/VDCM

0

0.2

0.4

0.6

0.8

1

1.2

si heat dcoera lclear orgpar yeh colbur coeray drigl lissag

Partitioning/LCM

SCC/VDCM

0

0.2

0.4

0.6

0.8

1

1.2

aclear sortie sigma hmoy dyeh vgjyey arret inter bilsla inisla

Partitioning/LCM

SCC/VDCM

Figure 	��� Comparison with previous
�state of the art� � Spec benchmark

��	

0

0.2

0.4

0.6

0.8

1

1.2

svd fmin zeroin spline decomp fehl rkfs urand solve seval rkf45

Partitioning/LCM

SCC/VDCM

Figure 	��� Comparison with previous
�state of the art� � FMM benchmark

routine blocks SSA names operations dominator AVAIL

tomcatv ��� ���� ���� 	�	� 	�	�
ddeflu �	 �� ���� 	�	� 	�	�
debflu ��� ���� �
�� 	�	� 	�	�
deseco �
� ��
	� ����� 	�	� 	�	
twldrv ��� ���� �
��� 	�	 	���

Table 	�� Compile times of code removal techniques

LCM VDCM
routine set size altered total set size altered total

tomcatv �	 	�� 	�
	 �� 	�	� 	��
ddeflu ���� ���� ���� ���� 	��� 	��
debflu ��	� 	��� 	��� ��� 	��� 	��
deseco �
�� ���	 ���� �	�� 	�
� ���

twldrv ��� ��� �	��� ����	 	�� ����

Table 	�� Compile times of code motion techniques

��

��� Relief of Register Pressure

Figures ��	� through ��	� compare each of the heuristics for relief of register pressure

�see Chapter �� to allocation without relief for the routines in our test suite� Since

our goal is to replace the memory operations that would be inserted during register

allocation with less expensive computations� we perform comparisons with load and

store operations weighted by � and then by
� As the weight is increased� further

improvements are seen until they eventually level o�� The code generated in this

experiment was instrumented not only to count the total number of instructions

executed but also to count the number of load and store instructions executed�

We then use this secondary count to vary the weight of memory operations� In our

experiments� heuristics 	 and � perform consistently well�

��� Summary

This chapter presents experimental data comparing the e�ectiveness of the techniques

presented in this thesis� Experiments are run in the context of our optimizing com�

piler� and the number of ILOC operations executed are measured� The basis for each

experiment is varying only a single pass in the sequence of optimizations�

The �rst set of experiments compares the e�ectiveness of various redundancy

elimination techniques� In general� each re�nement to the technique results in an

improvement in the results� When comparing techniques for value numbering� we see

that hash�based value numbering almost always eliminates signi�cantly more redun�

dancies than value partitioning� SCC�based value numbering removes slightly more

redundancies than hash�based value numbering� When comparing the techniques

for code removal and motion� we see signi�cant improvements when moving from

single basic blocks to extended basic blocks and again to dominator�based removal�

One surprising aspect of this study is that the di�erences between dominator�based

removal and AVAIL�based removal are small in practice� AVAIL�based removal is

slightly better than dominator�based removal� The di�erences between AVAIL�based

removal and lazy code motion are signi�cant� This is because moving invariant code

out of loops provides a great deal of improvement� However� there are some examples

where AVAIL�based removal is better than lazy code motion because it is based on

values while lazy code motion is based on lexical names� The di�erences between lazy

code motion and value�driven code motion are small because lazy code motion is a

provably optimal technique�

���

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco fpppp debflu prophy bilan paroi

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0.4

0.6

0.8

1

1.2

repvid debico pastem inithx integr supp ddeflu subb cardeb sgemm

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0.4

0.6

0.8

1

1.2

sgemv inideb ihbtr saxpy efill saturr fmtset drepvi x21y21 heat

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0.4

0.6

0.8

1

1.2

fmtgen si dcoera yeh colbur orgpar drigl coeray lclear lissag

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

sortie aclear sigma dyeh hmoy vgjhey arret inter inisla bilsla

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

Figure 	��� Comparison of relief heuristics � Spec
benchmark� LOAD�STORE weight � �

���

0

0.2

0.4

0.6

0.8

1

1.2

tomcatv twldrv gamgen iniset deseco fpppp prophy debflu bilan repvid

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0

0.2

0.4

0.6

0.8

1

1.2

paroi debico pastem integr inithx supp ddeflu subb cardeb sgemm

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

inideb sgemv efill saturr saxpy ihbtr fmtset drepvi x21y21 yeh

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0

0.2

0.4

0.6

0.8

1

1.2

colbur heat fmtgen si drigl dcoera orgpar lclear lissag sortie

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

coeray aclear sigma dyeh hmoy arret vgjhey inter inisla bilsla

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

Figure 	��� Comparison of relief heuristics � Spec
benchmark� LOAD�STORE weight �

��

0.4

0.6

0.8

1

1.2

svd spline fmin decomp zeroin fehl rkfs urand solve seval rkf45

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

Figure 	��� Comparison of relief heuristics � FMM
benchmark� LOAD�STORE weight � �

0.4

0.6

0.8

1

1.2

svd spline decomp fehl fmin rkfs zeroin urand solve seval rkf45

Without

Heuristic 0

Heuristic 1

Heuristic 2

Heuristic 3

Heuristic 4

Heuristic 5

Figure 	��� Comparison of relief heuristics � FMM
benchmark� LOAD�STORE weight �

���

Anomalous behavior is seen in a few instances� There are three reasons to account

for these results�

�� Removing more redundancies can result in partially dead code �see Section 	����

	� Changes in the live ranges can inhibit copy coalescing �see Chapter ���

� Improved redundancy elimination introduces more opportunities for operator
strength reduction �see Appendix A��

Negative results from improved redundancy elimination are never more than a few

percent while positive results can be as much as ��!�

The second set of experiments compares the heuristics for relief of register pressure�

The amount of improvement depends on the cost of load and store instructions

relative to register�to�register instructions� The higher the cost� the greater the im�

provement� When the register pressure is high� each of the heuristics will improve

the performance except in a few anomalous cases� Improvements as high as �! are

seen when the cost of memory operations is three times the cost of register�to�register

operations� However� decreased in performance are also seen in a few cases�

��� Recommendations

When choosing algorithms to implement in a compiler� the developer must weigh the

tradeo�s between three areas�

�� Execution time of the optimized program

	� Execution time of the compiler

� Amount of programmer time required for implementation

For each of these areas� this thesis has provided the information necessary for

the compiler writer to make an informed decision about which form of redundancy

elimination to implement� The decision should be based engineering decisions and

the amount of importance placed on each of the above areas�

For the value numbering phase� the choice is between hash�based value numbering�

value partitioning� and SCC�based value numbering� Value partitioning can be elimi�

nated from consideration because it is more di�cult to implement� it runs slower� and

it eliminates fewer redundancies in practice than the other two options� The choice

���

between hash�based and SCC�based value numbering is not so clear� Even though

SCC�based value numbering will �nd more redundancies� our experiments indicate

that the improvements made in practice are small� On the other hand� hash�based

value numbering can run signi�cantly faster than SCC�based value numbering� We

can characterize the types of redundancies identi�ed by SCC�based value numbering

that are not discovered by hash�based value numbering as equal values involved in a

cycle �e�g�� two induction variables with the same initial value that are incremented

by the same amount each trip through a loop�� We do not expect to see these types

of redundancies in code written by programmers� In fact� in our experiments� no code

generated by the front�end contains these types of redundancies� However� certain

transformations applied by the compiler can introduce them� In our experiments� the

operator strength reduction pass can introduce them even though it is fairly care�

ful not to introduce redundancies� Other optimizations such as loop unrolling and

transformations intended to improve cache performance can introduce them ����� If

any of these transformations are performed before redundancy elimination� then the

compiler writer might give more weight to SCC�based value numbering�

For the code motion phase� the choice is between lazy code motion and value�

driven code motion� Value�driven code motion is the clear winner because it wins in

all three areas� On the other hand� if an implementation of lazy code motion already

exists and programmer time is at a premium� the compiler writer might consider

using the existing implementation and accepting the loss in optimization time and

performance�

Selecting which heuristic is appropriate for relief of register pressure will depend

on the characteristics of the target machine as well as the register allocator� In our

experiments� heuristics 	 and � perform consistently well� On large routines� heuristic

	 performs better than the other heuristics� However� this heuristic can increase the

running time of small routines� This is due to the fact that it can move code into an

empty block that could have otherwise been removed �see Figure ����� The result is

an increase in the number of jump instructions executed� If the target processor has

an instruction prefetch bu�er with zero�cost jumps� then this e�ect will not matter�

In this case� heuristic 	 would be the clear choice� On the other hand� heuristic �

is simple to implement� and it did not increase the running time of any routine in

our test suite� There may be some combination of compiler and processor where this

heuristic performs best�

���

Chapter �

Summary of Contributions

Optimizing compilers apply a sequence of transformations to a routine in order to im�

prove the performance of the target program� One or more of these passes is devoted

to redundancy elimination� The primary focus of this thesis has been to improve

upon known techniques for redundancy elimination� Redundancies can be eliminated

by removing instructions or moving them to less frequently executed locations� In the

past� the algorithms for removing computations have been designed and implemented

independently from algorithms for moving instructions� The primary contribution of

this thesis is to unify these techniques� By understanding how these two optimiza�

tions interact� we can simplify each of them� and the resulting combination will be

more powerful than the sum of the two parts�

Value numbering attempts to discover which instructions compute the same value�

It assigns numbers to values in such a way that two values are assigned the same

number if the compiler can prove they are equal� There are three main approaches

to value numbering�

Hashbased value numbering This algorithm uses a hash table to map expres�
sions to value numbers� It was originally applied to single basic blocks and
extended basic blocks� We have extended this technique to operate over the
dominator tree and to use a uni�ed hash table�

Value partitioning This algorithm uses a variation of Hopcroft�s DFA minimization
algorithm to partition the values in a routine into congruence classes� We have
extended this technique to handle commutative operations and to eliminate
redundant stores�

SCCbased value numbering This is an original technique that combines the fea�
tures of hash�based value numbering and value partitioning� It is easy to under�
stand and to implement� it can handle constant folding and algebraic identities�
and it is global� We can prove that the algorithm �nds at least as many con�
gruences as hash�based value numbering or value partitioning�

�	�

Value numbering will renumber the registers and ��nodes in a routine so that

congruent values are given the same number� However� renumbering alone will not

improve the running time of the routine� we must remove computations or move them

to less frequently executed locations�

Dominatorbased removal This technique was suggested by Alpern� Wegman� and
Zadeck� It removes instructions that are dominated by a congruent computa�
tion�

AVAILbased removal This technique relies on data��ow analysis to discover the
set of available expressions and remove instructions whose value is in the set�
We have improved this technique so that it operates on values rather than lexical
names�

Partial redundancy elimination�Lazy code motion These algorithms combine
loop invariant code motion with common subexpression elimination� They rely
on data��ow analysis to move instructions� We have extended these techniques
to allow motion of load instructions�

Valuedriven code motion This original approach to data��ow analysis is based
on values rather than lexical names� Traditional data��ow frameworks cannot
move an instruction past a de�nition of one of its subexpressions� This re�
striction can be relaxed when value numbering has identi�ed the computations
that produce redundant values� By understanding how code motion interacts
with value numbering� we can simplify and improve the code motion frame�
work� This algorithm is faster than lazy code motion and it can eliminate more
redundancies�

Redundancy elimination can change the live ranges in a routine which can po�

tentially have a negative impact on register allocation� We have invented a new

technique to relieve register pressure by reintroducing redundancies into the routine�

As a result� less spill code will be inserted during register allocation� and the running

time of the routine is reduced�

A theoretical comparison of the redundancy elimination techniques reveals that

SCC�based value numbering and value�driven code motion are never worse than their

competitors in terms of eliminating redundancies� However� an equally important

question is how much this theoretical distinction matters in practice� Chapter �

experimentally compares all of the techniques described in this thesis�

Appendix A gives a new algorithm for operator strength reduction that improves

on existing algorithms in several ways� It takes advantage of the properties of SSA

form and the �shape� of a routine after redundancy elimination�

�	�

Appendix A

Operator Strength Reduction

Operator strength reduction is a transformation that a compiler uses to replace costly

�strong� instructions with cheaper �weaker� ones� The algorithm replaces an iterated

series of strong computations with an equivalent series of weaker computations� The

classic example replaces certain multiplication operations inside a loop with equivalent

addition operations� This case arises routinely in loop�based array address calcula�

tions� and many other operations can be reduced in this manner� Allen� Cocke� and

Kennedy provide a detailed catalog of such reductions �
��

Strength reduction has been an important transformation for two principal rea�

sons� First� multiplying integers has usually taken longer than adding them� This

made strength reduction pro�table� the amount of improvement varied with the rel�

ative costs of addition and multiplication� Second� strength reduction decreased the

�overhead� introduced by translation from a high�level language down to assembly

code� Opportunities for this transformation are frequently introduced by the com�

piler as part of address translation for array elements� In part� strength reduction�s

popularity stems from the fact that these computations are plentiful� stylized� and�

in a very real sense� outside the programmer�s concern�

In the future� we may see microprocessors where an integer multiply and an in�

teger add both take a single cycle� On such a machine� strength reduction will still

have a role to play� In combination with algebraic reassociation ��� ��� ��� strength

reduction may let the compiler use fewer induction variables in a loop� lowering both

the operation count inside the loop and the demand for registers� This e�ect may

be especially pronounced in code that has been automatically blocked to improve

locality ��� ���

This chapter presents a new algorithm for performing strength reduction� It pro�

duces results similar to those of Allen� Cocke� and Kennedy�s classic algorithm �
��

By assuming some speci�c prior optimizations and operating on the SSA form of the

procedure ����� we have derived a method that ��� is simple to understand and to

implement� �	� relies on the dominator tree which must be computed during SSA

�		

sum � ���
do i � �� ���

sum � sum � a�i�
enddo

sum� ���
i� �

L� t� � i� �
t	 � t�� �
t
 � t	 � a
t� � load t

sum� sum� t�
i� i � �
if �i � ���� goto L

sum� � ���
i� � �

L� sum� � ��sum�� sum��
i� � ��i�� i��
t�� � i� � �
t	� � t�� � �
t
� � t	� � a
t�� � load t
�
sum� � sum� � t��
i� � i� � �
if �i� � ���� goto L

Source code Intermediate code SSA form

Figure A�� Example

construction rather than the loop structure of the program �which can be costly to

compute�� �
� avoids instantiating the sets of induction variables and region constants

required by other algorithms� ��� processes each candidate instruction immediately

rather than maintaining a worklist� and ��� greatly simpli�es linear function test re�

placement� Its asymptotic complexity is� in the worst case� the same as the Allen�

Cocke� and Kennedy algorithm�

Opportunities for strength reduction arise routinely from details that the compiler

inserts as it converts from a source�level representation to a machine�level represen�

tation� To see this� consider the simple Fortran code fragment shown in Figure A���

The left column shows source code� the central column shows a low�level intermediate

code version of the same loop� Notice the four instruction sequence that begins at

the label L� The compiler inserted this code �with its multiply� as the expansion of

a�i�� The right column shows the code in pruned SSA form�

The left column of Figure A�	 shows the result of strength reduction and the

optimizations described in Section A�	��� The compiler created a new variable t�

to hold the value of the expression �i � ��� � a� We will describe an algorithm to

automate this process inside a compiler�

Of course� further improvement may be possible� For example� if the only remain�

ing use for i� is in the control��ow tests that govern the loop� the compiler could

reformulate the tests to use t��� making the instructions that de�ne i useless �or

�	

sum� � ���
i� � �
t�� � a

L� sum� � ��sum�� sum��
i� � ��i�� i��
t�� � ��t��� t���
t�� � load t��
sum� � sum� � t��
i� � i� � �
t�� � t�� � �
if �i� � ���� goto L

sum� � ���
t�� � a

L� sum� � ��sum�� sum��
t�� � ��t��� t���
t�� � load t��
sum� � sum� � t��
t�� � t�� � �
if �t�� �
� � a� goto L

After strength reduction After linear function test replacement

Figure A�� Transformed code

�dead��� This transformation is called linear function test replacement �LFTR�� The

results of applying LFTR appear in the right column of Figure A�	�

A�� The Algorithm

A���� Preliminary Transformations

To simplify the algorithm� we assume that some prior optimization has been per�

formed� This preprocessing simpli�es the task of strength reduction by encoding

certain facts in the �shape� of the code� For example� after invariant code has been

moved out of loops� we can easily identify loop invariant values based on the location

of their de�nition�

Chapters 	 through � describe the algorithms for redundancy elimination which

combines loop invariant code motion and common subexpression elimination� We

perform global reassociation and global renaming prior to redundancy elimination ����

Because our algorithms for redundancy elimination will not move conditionally

executed code out of loops� it is possible that some loop invariant code will remain

inside a loop� We account for this by de�ning a region constant to be either a compile�

time constant or a value whose de�nition is outside the loop� This does not identify all

possible region constants� but our experiments indicate that the missed opportunities

are insigni�cant in practice� Since we consider compile�time constants to be region

�	�

constants� we require some form of constant propagation to identify as many constants

as possible� We use Wegman and Zadeck�s sparse conditional constant algorithm �����

We construct the pruned SSA form of the program ����� In the program�s SSA

graph� each node represents an operation or a ��node� and edges �ow from uses to

de�nitions� The SSA graph can be built from the resulting program by adding the

use�de�nition chains� which can be represented as a lookup table indexed by SSA

names� Figure A�
 shows the SSA graph for the example program in Figure A���

A���� Finding Region Constants and Induction Variables

Previous strength reduction algorithms have been centered around loops� or regions�

inside a procedure� These are detected using Tarjan�s �ow�graph reducibility algo�

rithm ��
�� Given a region r� a node in the SSA graph is a region constant with respect

to r if its value does not change inside r� A variable is an induction variable with

respect to region r if within the region r its value is only incremented or decremented

by a region constant� We avoid the need to build the loop tree by using the dominator

tree that was constructed during the conversion to SSA form �

�� We take advantage

of two key properties of SSA form to identify region constants and induction variables�

�� After invariant code has been moved out of loops� each region constant with
respect to region r will either be a compile�time constant or its de�nition will
strictly dominate every block in r� The SSA construction algorithm ensures
this� if it is not true� the SSA form must have a ��node inside r�

	� Every induction variable forms a strongly connected component �SCC� in the
SSA graph� Notice that the converse is not true �i�e�� not every SCC represents
an induction variable�� In Figure A�
� the SCC containing sum� and sum� does
not represent an induction variable because t�� is not a region constant�

The idea of �nding induction variables as SCCs of the SSA graph is due to Wolfe �����

To discover the SCCs� we will use Tarjan�s algorithm based on depth��rst search�

shown in Figure A�� ��	�� It uses a stack to determine which nodes are in the same

SCC� nodes not contained in any cycle are popped singly� while all the nodes in the

same SCC are popped together�

Tarjan�s algorithm has an interesting property� when a collection of one or more

nodes is popped from the stack� all of the operands referenced in those nodes that

are de�ned outside the collection have already been popped� We can capitalize on

�	�

�
��

� i�

�
��
� i�

���

���
��

� i�

�

��	
�
��

�

�
��

� t��
��	��I �
��

�

�
��

#t	�
��	��I �
��

�

�
��

�t
�
��	��I �
��

a

�
��
loadt��

��I

�
��
���sum�

�
��
�sum�

���

��
�
��

�sum�

�

�
�

��I

Figure A�� SSA graph

DFS�node�
node�DFSnum� nextDFSnum� �
node�visited� TRUE

node�low� node�DFSnum
PUSH�node�
for each o 	 foperands ofnodeg

if not o�visited
DFS�o�
node�low� MIN�node�low� o�low�

if o�DFSnum � node�DFSnum and o 	 stack

node�low� MIN�o�DFSnum�node�low�
if node�low � node�DFSnum

SCC � �
do

x� POP��
SCC� SCC � fxg

while x �� node

ProcessSCC�SCC�

Figure A�� Tarjan�s SCC �nding algorithm

�	

while there is an unvisited node n
DFS�n� �see Figure A���

ProcessSCC�SCC�
if SCC has a single member n

if n is of the form x� iv� rc� x� rc� iv� x� iv � rc� or x� rc � iv

Replace�n� iv� rc�
else

n�header� NULL

else
ClassifyIV�SCC�

RegionConst�name�header�
return name�op � load immediate or name�block� header

ClassifyIV�SCC�
for each n 	 SCC

if headerRPOnum� n�blockRPOnum

header� n�block
for each n 	 SCC

if n�op �	 f������copyg
SCC is not an induction variable

else
for each o 	 foperands of ng

if o �	 SCC and not RegionConst�o�header�
SCC is not an induction variable

if SCC is an induction variable
for each n 	 SCC

n�header� header

else
for each n 	 SCC

if n is of the form x� iv� rc� x� rc� iv� x� iv � rc� or x� rc � iv

Replace�n� iv� rc�
else

n�header� NULL

Figure A�� Operator strength reduction algorithm

�	�

this observation and process the nodes as they are popped from the stack� In our

method� the SCC��nder drives the entire strength reduction process�

Figure A�� shows the algorithm for identifying induction variables� As each SCC

is identi�ed� the algorithm decides immediately if it represents an induction variable�

The test is simple and e�cient� The �rst step is to consider all basic blocks containing

a de�nition inside the SCC and to identify the header block � the block with the small�

est reverse�postorder number� We use this information to identify region constants

with respect to this SCC� a region constant must either be a compile�time constant

or its de�nition must strictly dominate the header block� The RegionConst function

in Figure A�� implements the test to determine if an SSA name is a region constant

with respect to a header block�� The next step is to check that each operation and

��node in the SCC has the proper form� For ��nodes� each argument must be either

a member of the SCC or a region constant� For addition operations� one operand

must be a member of the SCC and the other operand must be a region constant� For

subtraction operations� the left operand must be a member of the SCC and the right

operand must be a region constant� The only other permissible operation is a copy� If

the SCC is determined to be an induction variable� we label each node with a pointer

to the header block� Otherwise� we check if any of the members are candidates for

reduction�

For each node that is not a member of an SCC� we can decide immediately if it

is a candidate for strength reduction and perform the code replacement described in

the next section� This is an improvement over previous algorithms that require a

worklist of candidate instructions� For simplicity� we will restrict our discussion to

instructions of the following forms�

x� i� j x� j � i x� i � j x� j � i

where i is an induction variable and j is a region constant with respect to the header

block for i� Allen� Cocke� and Kennedy describe a variety of other candidate types

�
�� These are straightforward extensions to the technique� If this operation is a

candidate for reduction� the Replace function described in the next section is invoked

immediately� Since this function transforms x into an induction variable� x is labeled

as an induction variable with the same header block as i� This allows further reduction

of operations using x�

��We use the notation B� � B� to signify that B� strictly dominates B��

�	�

A���� Code Replacement

Once we have found a candidate instruction of the form x � i � j� we update

the code so that the multiply is no longer performed inside the loop� The compiler

creates a new SCC in the SSA graph and replaces the instruction with a copy from

the node representing the value of i � j� This process is handled by three mutually

recursive functions �shown in Figure A���

Replace Replace the current operation with a copy from its reduced counterpart�

Reduce Insert code to strength reduce an induction variable and return the SSA

name of the result�

Apply Insert an instruction to apply an opcode to two operands and return the SSA
name of the result� Simpli�cations such as constant folding are performed if
possible�

The replacement process is supported by a hash table that tracks the results

of reduction �	��� This prevents us from performing the same reduction twice and

causes the recursion in Reduce to terminate� Access to the hash table is through two

functions�

search takes an expression �an opcode and two operands� and returns the SSA name
of the result�

add takes an expression and the name of its result and adds an entry to the table�

The Replace function is straightforward� It provides the top�level call to the re�

cursive function Reduce and replaces the current operation with a copy� The resulting

operation must be an induction variable�

The Reduce function is responsible for adding the appropriate operations to the

procedure� The �rst step is to check the hash table for the desired result� If the

result is already in the hash table� then no additional instructions are needed� and

Reduce returns the SSA name of the result� Otherwise� it must copy the operation

or ��node that de�nes the induction variable and assign a new name to the result�

The copyDef function does this� Next� Reduce considers each argument of the copy�

If the argument is de�ned inside the SCC� Reduce invokes itself recursively on that

argument� Arguments de�ned outside the SCC are either the initial value of the

induction variable or the value by which the induction value is incremented� The

initial value must be an argument of a ��node� and the increment value must be an

�	�

Replace�node� iv� rc�
result� Reduce�node�op� iv� rc�
Replace node with a copy from result

node�header � iv�header

SSAname Reduce�opcode� iv� rc�
result� search�opcode� iv� rc�
if result is not found

result� inventName��
add�opcode� iv� rc� result�
newDef� copyDef�iv� result�
newDef�header� iv�header
for each operand o of newDef

if o�header � iv�header
Replace o with Reduce�opcode� o� rc�

else if opcode � � or newDef�op � �
Replace o with Apply�opcode� o� rc�

return result

SSAname Apply�opcode� op�� op��
result� search�opcode� op�� op��
if result is not found

if op��header �� NULL and RegionConst�op�� op��header�
result� Reduce�opcode� op�� op��

else if op��header �� NULL and RegionConst�op�� op��header�
result� Reduce�opcode� op�� op��

else
result� inventName��
add�opcode� op�� op�� result�
Choose the location where the operation will be inserted
Decide if constant folding is possible
Create newOper at the desired location
newOper�header� NULL

return result

Figure A�� Code replacement functions

�
�

operand of an instruction� The reduction is always applied to the initial value� but

the reduction is only applied to the increment if we are reducing a multiply� In other

words� when the candidate is an add or subtract instruction� we modify only the

initial value� but if the candidate is a multiply� we modify both the initial value and

the increment� Therefore� Reduce invokes Apply on arguments de�ned outside the

SCC only if we are reducing a multiply or if we are processing the arguments of a

��node�

The Apply function is conceptually simple� although there are a few details that

must be considered� The basic function of Apply is to create an operation with the

desired result� We rely on the hash table to determine if such an operation already

exists� It is possible that the operation we are about to create is a candidate for

strength reduction� If so� we perform the reduction immediately by calling Reduce�

This case often arises from triangular loops � where the bounds of an inner loop are

a function of the index of an outer loop�

Before inserting the operation� the algorithm must select the location where it

is legal to do so� Rather than construct �landing pads� before the loop being re�

duced� our algorithm relies on dominance information created during SSA construc�

tion� Intuitively� the instruction must go into a block that is dominated by both

operands� If one of the operands is a constant� we may have to copy its de�nition to

satisfy this condition� Otherwise� both operands must be region constants� so their

de�nitions dominate the header block� One operand must be a descendant of the

other in the dominator tree� so the operation can be inserted immediately after the

descendant� This avoids the need for landing pads� it may place the operation in a

less deeply nested location than the landing pad�

A���� Example

As an example of how the code replacement functions operate� we will apply them to

the SSA graph in Figure A�
� The �rst candidate identi�ed is t��� We invoke Replace

with iv � i� and rc � �� The hash table search in Reduce will fail� so the �rst SSA

name invented will be osr�� We add this entry to the hash table and create a copy

of the ��node for i�� Next� we process the arguments of the copy� Since the �rst

argument� i�� is a region constant� we replace it with the result of Apply� which will

perform constant folding and return the SSA name slosr�� The second argument� i��

is an induction variable� so we recursively invoke Reduce� Since no match is found

�
�

�
��

� i�

�
��
� i�

���

����
��

� i�

�

��	
�
��

�

�
��

� osr�

�
��
� osr�

���

����
��

� osr�

�

��	
�
��

�

�
��
copy t��
��I

�
��

� osr�

�
��
� osr�

���

����
��

� osr�

�

��	
�
��

�

�
��
copy t	�
��I

�
��

a osr�

�
��
� osr�

���

����
��

� osr	

�

��	
�
��

�

�
��
copy t
�
��I

�
��
load t��
��I

�
��
���sum�

�
��
�sum�

���

���
�
��

�sum�

�

B
B
B
B
B
B
BM

Figure A�� After operator strength reduction

in the hash table� we invent a new SSA name� slosr�� add an entry to the hash table�

and copy the operation for i�� The �rst argument is the region constant �� which will

be left unchanged� The second argument is i�� which is an induction variable� The

recursive call to Reduce will produce a match in the hash table with slosr� as the

result� At this point� the calls to Reduce �nish� and the SSA name osr� is returned to

Replace� We replace the operation de�ning t�� with a copy from osr�� We label t��

as an induction variable so that t	� and t
� will also be identi�ed as candidates for

strength reduction� Figure A�� shows the SSA graph of our example program after

operator strength reduction is completed�

A���� Running Time

The time required to identify the induction variables and region constants in an

SSA graph is O�N � E�� where N is the number of nodes and E is the number of

edges� The Replace function performs work that is proportional to the size of the SCC

containing the induction variable� which can be as large as O�N�� Since Replace can

be invokedO�N� times� the worst case running time is O�N��� This seems expensive�

unfortunately� it is necessary� Figure A�� shows a program that generates this worst

�
	

i� �

while �P�� do

if �P�� then

i� i � �
k � i� c�

if �P�� then

i� i � 	
k � i� c�

� � �
if �Pn� then

i� i � n
k � i� cn

end

i� � t� � �
t� � � � � �

tn � �
while �P�� do

if �P�� then

t� � t� � c� tn � tn � cn
t� � t� � c� i� i � �
� � � k � t�

if �P�� then

t� � t� � 	 � c� tn � tn � 	� cn
t� � t� � 	 � c� i� i � 	
� � � k � t�

� � �
if �Pn� then

t� � t� � n � c� tn � tn � n� cn
t� � t� � n � c� i� i � n
� � � k � tn

end

Original code Transformed code

Figure A�� A worst�case example

�

case behavior in the replacement step� It requires introduction of a quadratic number

of updates� Note that this behavior is a function of the code being transformed�

not any particular details of our algorithm� Any algorithm that performs strength

reduction on this code will have this behavior� In practice� experience with strength

reduction suggests that this problem does not arise� In fact� we have not seen this

problem mentioned in the literature� Since the amount of work is proportional to the

number of instructions inserted� any algorithm for strength reduction that reduces

these cases will have the same� or worse� complexity�

A�� Linear Function Test Replacement

After strength reduction� the code often contains induction variables whose sole use

is to govern control �ow� If so� linear function test replacement can convert them into

dead code� The compiler should look for comparisons between an induction variable

and a region constant� For example� the comparison �if �i� � ���� goto L� in our

example program �see Figure A��� could be replaced with �if �osr	 �
��a� goto L��

This transformation is called linear function test replacement �LFTR��

Previous methods would search the hash table for an expression containing the in�

duction variable referenced in the comparison� In the example in Figures A�
 and A���

a �chain� of reductions was applied to node i�� If LFTR is to be e�ective� we must

follow the entire chain quickly� To facilitate this process� Reduce records the reduc�

tions it performs on each node in the SSA graph� Each reduction is represented by

an edge from a node to its strength�reduced counterpart labeled with the opcode and

the region constant of the reduction� When a candidate for LFTR is found� it is a

simple matter of traversing these edges� inserting code to compute the new region

constant for the test� and updating the compare instruction� We use two procedures

to support this process�

FOLLOW EDGES Follow the LFTR edges and return the SSA name of the last one
in the chain�

ApplyEdges Apply the operations represented by the LFTR edges to a region con�
stant and return the SSA name of the result�

The ApplyEdges function can be easily implemented using the Apply function

described in Section A���
� For each LFTR candidate� we replace the induction vari�

�
�

able with the result of FOLLOW EDGES� and we replace the region constant with the

result of ApplyEdges� In the example in Figure A�	� there are two sets of these edges�

� i�
��
� osr�

��
� osr�

�a
� osr�

� i�
��
� osr�

��
� osr�

�a
� osr	

To transform the test i� � ���� we replace i� with the result of FOLLOW EDGES� osr	�

and we replace ��� with the result of ApplyEdges� �������������a� �
��a� Notice

that LFTR renders the original induction variable dead� Subsequent optimizations

should remove the associated instructions�

A���� Followup Transformations

The algorithm presented here operates in a compiler that performs a suite of opti�

mization passes� To provide a good separation of concerns� we leave much of the

�cleaning up� to other well�known optimizations that should be run after operator

strength reduction�

Since operator strength reduction has the potential to introduce equal induc�

tion variables� we need either value partitioning or SCC�based value numbering �see

Chapters
 and �� to detect these equalities� Hash�based value numbering �see

Chapter 	 will be unable to detect the equality of SCCs because they contain values

�owing through back edges�

The SSA graph in Figure A�� contains a great deal of dead code� This is because

many of the use�de�nition edges in the original SSA graph have been changed� re�

sulting in �orphaned� nodes� We rely on a separate pass of dead code elimination to

remove these instructions ���� Section �����

Many of the copies introduced during strength reduction can be eliminated� For

example� the copy into t
� in Figure A�� can be eliminated if the load into t�� uses

the value of osr� directly� We rely on the copy coalescing phase of a Chaitin�style

graph coloring register allocator to accomplish this task ���� ���

A�� Previous Work

Reduction of operator strength has a long history in the literature� The classic method

is presented in a paper by Allen� Cocke� and Kennedy �
�� It� in turn� builds on earlier

work by Cocke and Kennedy ���� 	��� These algorithms transform one loop at a time�

�
�

working outward through each loop nest� making passes to generate def�use chains�

�nd loops and insert landing pads� �nd region constants and induction variables� and

to perform the actual reduction and instruction replacement� Linear function test

replacement is a separate pass for each loop� Chase extended the Allen� Cocke� and

Kennedy method to reduce more additions ��	��

A second family of techniques has grown up around the literature of data��ow

analysis ���� 	� 	��
��� These methods use the careful code placement calculations

developed for code motion to perform strength reduction� These methods avoid the

control��ow analysis used in the Allen� Cocke� and Kennedy methods� our algorithm

uses properties of SSA for the same purpose� Their placement techniques avoid length�

ening execution paths� our algorithm cannot make the same claim� Their principal

limitation is that they work from a simpler notion of a region constant$only literal

constants can be found� The Allen� Cocke� and Kennedy�style techniques� including

ours� include loop invariant values as region constants�

Paige has looked at reducing a number of set operators �
�
�� and using multiset

discrimination as an alternative to hashing to avoid its worst case behavior ���� Sites

looked at the related issue of minimizing the number of loop induction variables �����

Markstein� Markstein� and Zadeck� in a chapter for a forthcoming ACM Press Book�

present an algorithm that combines strength reduction� expression reassociation� and

code motion� Our work has treated these issues separately�

A�� Summary

This chapter presents a simple and elegant algorithm for performing reduction of op�

erator strength� The results of applying our method are similar to those achieved by

the Allen� Cocke� and Kennedy algorithm� Our technique relies on prior optimiza�

tions and properties of the SSA graph to produce an algorithm that ��� is simple to

understand and to implement� �	� relies on the dominator tree which must be com�

puted during SSA construction rather than the loop structure of the program �which

can be costly to compute�� �
� avoids instantiating the sets of induction variables and

region constants required by other algorithms� ��� processes each candidate instruc�

tion immediately rather than maintaining a worklist� and ��� greatly simpli�es linear

function test replacement� The result is an e�cient algorithm that is both easy to

understand and easy to implement�

�

Bibliography

��� Alfred V� Aho� John E� Hopcroft� and Je�rey D� Ullman� The Design and Anal�

ysis of Computer Algorithms� Addison�Wesley� Reading� Massachusetts� �����

�	� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers� Principles� Tech�

niques� and Tools� Addison�Wesley� ����

�
� Frances E� Allen� John Cocke� and Ken Kennedy� Reduction of operator strength�

In Steven S� Muchnick and Neil D� Jones� editors� Program Flow Analysis� The�

ory and Applications� Prentice�Hall� �����

��� Bowen Alpern� Mark N� Wegman� and F� Kenneth Zadeck� Detecting equality

of variables in programs� In Conference Record of the Fifteenth Annual ACM

Symposium on Principles of Programming Languages� pages ����� San Diego�

California� January �����

��� Preston Briggs and Keith D� Cooper� E�ective partial redundancy elimination�

SIGPLAN Notices� 	������������ June ����� Proceedings of the ACM SIG�

PLAN ��� Conference on Programming Language Design and Implementation�

�� Preston Briggs� Keith D� Cooper� and Linda Torczon� Rematerialization� SIG�

PLAN Notices� 	�����
���
	�� July ���	� Proceedings of the ACM SIGPLAN

��� Conference on Programming Language Design and Implementation�

��� Preston Briggs� Keith D� Cooper� and Linda Torczon� Improvements to graph

coloring register allocation� ACM Transactions on Programming Languages and

Systems� ��
���	������ May �����

��� Jiazhen Cai and Robert Paige� �Look Ma� no hashing� and no arrays neither��

In Conference Record of the Eighteenth Annual ACM Symposium on Principles

of Programming Languages� pages ��
����� Orlando� Florida� January �����

��� David Callahan� Steve Carr� and Ken Kennedy� Improving register allocation for

subscripted variables� SIGPLAN Notices� 	�����
��� June ����� Proceedings

�
�

of the ACM SIGPLAN ��� Conference on Programming Language Design and

Implementation�

���� Steve Carr� Kathryn S� McKinley� and Chau�Wen Tseng� Compiler optimizations

for improving data locality� In Proceedings of the Sixth International Conference

on Architectural Support for Programming Languages and Operating Systems�

pages 	�	�		� San Jose� California� �����

���� Gregory J� Chaitin� Marc A� Auslander� Ashok K� Chandra� John Cocke� Mar�

tin E� Hopkins� and Peter W� Markstein� Register allocation via coloring� Com�

puter Languages� ������� January �����

��	� David R� Chase� Brief survey of optimizations� Unpublished paper� �����

��
� Cli� Click� Combining Analyses� Combining Optimizations� PhD thesis� Rice

University� �����

���� John Cocke� Global common subexpression elimination� SIGPLAN Notices�

�����	��	�� July ����� Proceedings of a Symposium on Compiler Optimization�

���� John Cocke and Ken Kennedy� An algorithm for reduction of operator strength�

Communications of the ACM� 	������ November �����

��� John Cocke and Peter Markstein� Measurement of program improvement algo�

rithms� In Proceedings of Information Processing 	�� North Holland Publishing

Company� �����

���� John Cocke and Jacob T� Schwartz� Programming languages and their compilers�

Preliminary notes� Technical report� Courant Institute of Mathematical Sciences�

New York University� �����

���� Ron Cytron� Jeanne Ferrante� Barry K� Rosen� Mark N� Wegman� and F� Ken�

neth Zadeck� E�ciently computing static single assignment form and the control

dependence graph� ACM Transactions on Programming Languages and Systems�

�
������������ October �����

���� Dhananjay M� Dhamdhere� On algorithms for operator strength reduction� Com�

munications of the ACM� pages
���
�	� May �����

�
�

�	�� Dhananjay M� Dhamdhere� A new algorithm for composite hoisting and strength

reduction� International Journal of Computer Mathematics� pages ����� �����

�	�� Karl�Heinz Drechsler and Manfred P� Stadel� A solution to a problem with

Morel and Renvoise�s �Global optimization by suppression of partial redundan�

cies�� ACM Transactions on Programming Languages and Systems� ������
��

��� October �����

�		� Karl�Heinz Drechsler and Manfred P� Stadel� A variation of Knoop� R�uthing�

and Ste�en�s �lazy code motion�� SIGPLAN Notices� 	�����	��
�� May ���
�

�	
� George E� Forsythe� Michael A� Malcolm� and Cleve B� Moler� Computer Methods

for Mathematical Computations� Prentice�Hall� Englewood Cli�s� New Jersey�

�����

�	�� Particia C� Goldberg� A comparison of certain optimization techniques� In

Rustin� editor� Design and Optimization of Compilers� pages
����� Prentice�

Hall� ���	�

�	�� Matthew S� Hecht� Flow Analysis of Computer Programs� Programming Lan�

guages Series� Elsevier North�Holland� Inc�� �	 Vanderbilt Avenue� New York�

NY ������ �����

�	� J�R� Issac and Dhananjay M� Dhamdhere� A composite algorithm for strength

reduction and code movement� International Journal of Computer and Informa�

tion Sciences� pages 	�
�	�
� �����

�	�� John B� Kam and Je�rey D� Ullman� Global data �ow analysis and iterative

algorithms� Journal of the ACM� 	
������������ January ����

�	�� Ken Kennedy� Reduction in strength using hashed temporaries� SETL Newsletter

��	� Courant Institute of Mathematical Sciences� New York University� March

���
�

�	�� Jens Knoop� Oliver R�uthing� and Bernhard Ste�en� Lazy code motion� SIG�

PLAN Notices� 	�����		��	
�� July ���	� Proceedings of the ACM SIGPLAN

��� Conference on Programming Language Design and Implementation�

�
�� Jens Knoop� Oliver R�uthing� and Bernhard Ste�en� Lazy strength reduction�

Journal of Programming Languages� ����������� ���
�

�
�

�
�� Jens Knoop� Oliver R�uthing� and Bernhard Ste�en� Optimal code motion� The�

ory and practice� ACM Transactions on Programming Languages and Systems�

��������������� July �����

�
	� Donald E� Knuth� An empirical study of Fortran programs� Software
 Practice

and Experience� �������

� �����

�

� Thomas Lengauer and Robert Endre Tarjan� A fast algorithm for �nding domina�

tors in a �owgraph� ACM Transactions on Programming Languages and Systems�

������	������ July �����

�
�� Etienne Morel and Claude Renvoise� Global optimization by suppression of par�

tial redundancies� Communications of the ACM� 		�	������
� February �����

�
�� Robert Paige and Shaye Koenig� Finite di�erencing of computable expressions�

ACM Transactions on Programming Languages and Systems� ��
����	����� July

���	�

�
� Robert Paige and Jacob T� Schwartz� Reduction in strength of high level oper�

ations� In Conference Record of the Fourth ACM Symposium on Principles of

Programming Languages� pages ������ Los Angeles� California� January �����

�
�� Gordon D� Plotkin� Call�by�name� call�by�value� and the ��calculus� Theoretical

Computer Science� ���	������ �����

�
�� Lori L� Pollock� An Approach to Incremental Compilation of Optimized Code�

PhD thesis� University of Pittsburgh� ����

�
�� John H� Reif� Symbolic programming analysis in almost linear time� In Confer�

ence Record of the Fifth Annual ACM Symposium on Principles of Programming

Languages� pages ���
� Tucson� Arizona� January �����

���� Vatsa Santhanam� Register reassociation in PA�RISC compilers� Hewlett�

Packard Journal� pages

�
�� June ���	�

���� Richard L� Sites� The compilation of loop induction expressions� ACM Transac�

tions on Programming Languages and Systems� ����������� July �����

��	� Robert E� Tarjan� Depth �rst search and linear graph algorithms� SIAM Journal

on Computing� ��	�������� June ���	�

���

��
� Robert Endre Tarjan� Testing �ow graph reducibility� Journal of Computer and

System Sciences� ��
���
�� �����

���� Mark N� Wegman and F� Kenneth Zadeck� Constant propagation with condi�

tional branches� In Conference Record of the Twelfth Annual ACM Symposium on

Principles of Programming Languages� pages 	���	��� New Orleans� Louisiana�

January �����

���� Mark N� Wegman and F� Kenneth Zadeck� Constant propagation with condi�

tional branches� ACM Transactions on Programming Languages and Systems�

�
�	������	��� April �����

��� Michael E� Wolf and Monica S� Lam� A data locality optimizing algorithm�

SIGPLAN Notices� 	���
����� June ����� Proceedings of the ACM SIGPLAN

��� Conference on Programming Language Design and Implementation�

���� Michael Wolfe� Beyond induction variables� SIGPLAN Notices� 	������	�����

July ���	� Proceedings of the ACM SIGPLAN ��� Conference on Programming

Language Design and Implementation�

