This page contains pointers to COMP 540 handouts for the Spring semester
of 2006.
Copyright © 2006 by Devika Subramanian
These materials are for educational use by members of the Rice
Computer Science Department. Use for other purposes requires
permission of the author.
Support Vector Machines and their applications
Support vector machines: the theory
SVMs for cancer diagnosis from gene expression data
- Molecular
classification of cancer: class discovery and class prediction by gene
expression monitoring, Golub TR, Slonim DK, Tamayo P, Huard C,
Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA,
Bloomfield CD, Lander ES, Science. 1999 Oct 15;286(5439):531-7.
- Knowledge-based
analysis of microarray gene expression data by using support vector
machines, Michael P. S. Brown, William Noble Grundy, David Lin,
Nello Cristianini, Charles Walsh Sugnet, Terrence S. Furey, Manuel
Ares, Jr., and David Haussler, PNAS 2000; 97: 262-267.
- Support
vector machine classification and validation of cancer tissue samples
using microarray expression data, Furey TS, Cristianini N, Duffy
N, Bednarski DW, Schummer M, Haussler D, Bioinformatics. 2000
Oct;16(10):906-14.
- Tissue classification with gene expression profiles,
Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M, Yakhini Z,
Comput Biol. 2000;7(3-4):559-83.
-
Multiclass
cancer diagnosis using tumor gene expression signatures, Sridhar
Ramaswamy, Pablo Tamayo, Ryan Rifkin, Sayan Mukherjee, Chen-Hsiang
Yeang, Michael Angelo, Christine Ladd, Michael Reich, Eva Latulippe,
Jill P. Mesirov, Tomaso Poggio, William Gerald, Massimo Loda, Eric
S. Lander, and Todd R. Golub, PNAS 2001 98: 15149-15154;
- Selection bias in gene extraction on the basis of
microarray gene-expression data, Christophe Ambroise and Geoffrey
J. McLachlan, PNAS 2002 99: 6562-6566.
- Classification
of multiple cancer types by multicategory support vector machines
using gene expression data, Lee Y, Lee CK, Bioinformatics. 2003
Jun 12;19(9):1132-9.
More SVM applications in computational biology
- Estimating
dataset size requirements for classifying DNA microarray data,
Mukherjee S, Tamayo P, Rogers S, Rifkin R, Engle A, Campbell C, Golub
TR, Mesirov JP, J Comput Biol. 2003;10(2):119-42.
-
Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data, Qian J, Lin J, Luscombe NM, Yu H, Gerstein M, Bioinformatics. 2003 Oct 12;19(15):1917-26.
- SVM-Prot:
Web-based support vector machine software for functional
classification of a protein from its primary sequence, Cai CZ, Han
LY, Ji ZL, Chen X, Chen YZ, Nucleic Acids Res. 2003 Jul
1;31(13):3692-7.
-
Classifying G-protein coupled receptors with support vector
machine, Karchin R, Karplus K, Haussler D, Bioinformatics. 2002
Jan;18(1):147-59.
-
Bio-support vector machines for computational proteomics, Yang ZR,
Chou KC, Bioinformatics. 2004 Jan 29.
Applications in text mining
-
Mapping
subsets of scholarly information, Paul Ginsparg, Paul Houle,
Thorsten Joachims, and Jae-Hoon Sul, PNAS published February 6, 2004,
- Mapping
knowledge domains, Richard M. Shiffrin and Katy Börner, PNAS
published January 23, 2004.
SVM Software
- mySVM, an SVM
implementation for pattern recognition and regression.
- Spider, A
library in MATLAB for classification, regression, clustering. For
SVMs it uses LIBSVM and SVMLight.
- More SVM software
Last modified: 10 January 2006 by
Devika Subramanian
devika@rice.edu