COMP 551: Advanced Robotics Lab

Lec02: Sensors, Pose Estimation, Simple Python Projects

James McLurkin Rice University jmclurkin@rice.edu

Sensors

Sensors, sensors, everywhere

We're surrounded by sensors

You can sense anything and everything.

For example, let's say you want to sense obstacles:

Lever Switch

IR Range Finder

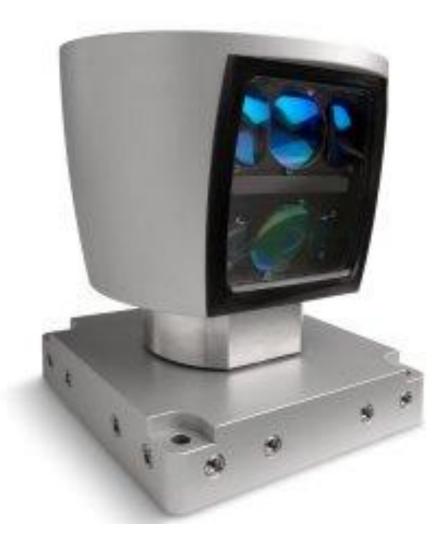
Sonar

Radar

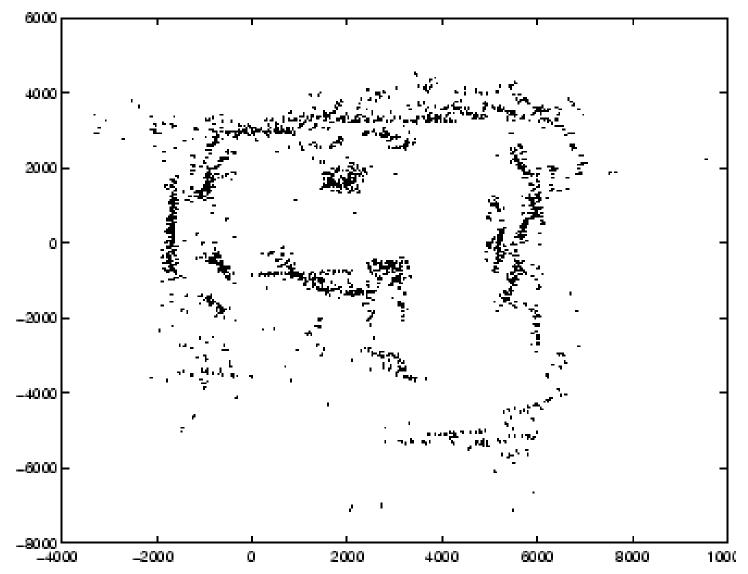
Lidar

Lidar (smaller)

Lidar (insane)



Map from Sonar

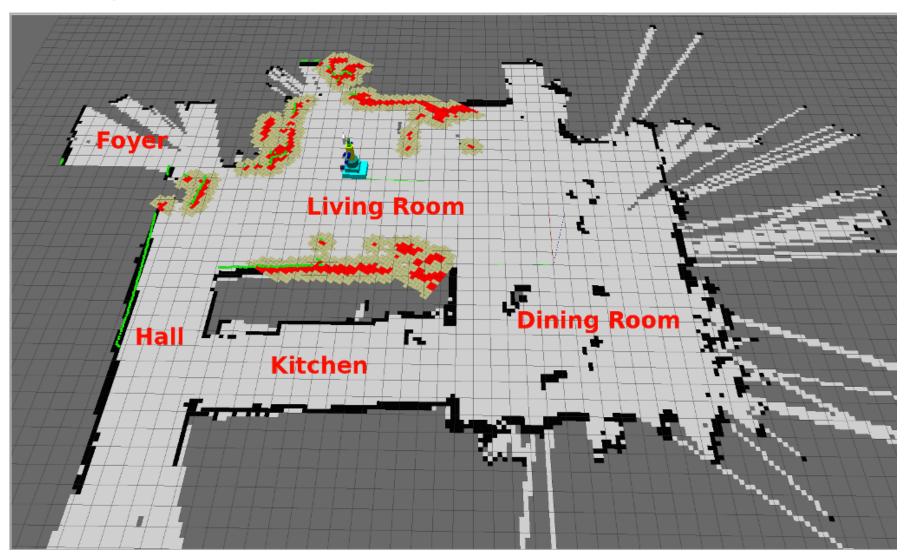


Map from Sonar



Map from Lidar

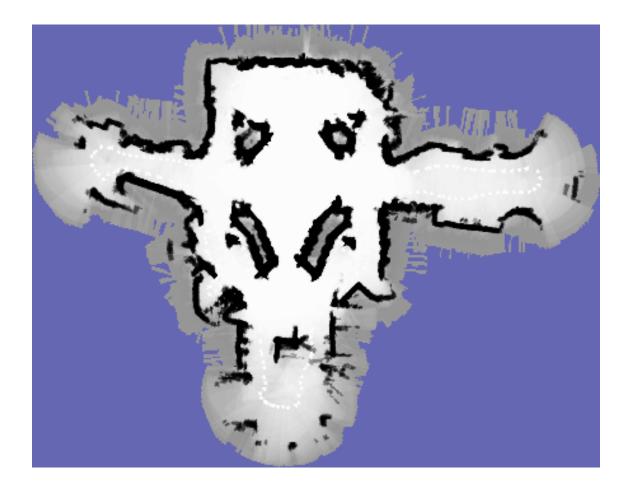
Map from Lidar



Occupancy Grid Mapping

Use laser scanner to detect obstacles

Use sensor model and "better pose" to produce a map



Particle Filter Localization (MCL)

Produce lots of estimates of current position Keep the good ones

KLD-Sampling: Adaptive Particle Filters. D. Fox. NIPS-01.

Particle Filter Localization (MCL)

Produce lots of estimates of current position Keep the good ones

KLD-Sampling: Adaptive Particle Filters. D. Fox. NIPS-01.

SLAM in Large-Scale Cyclic Environments Using the Atlas Framework

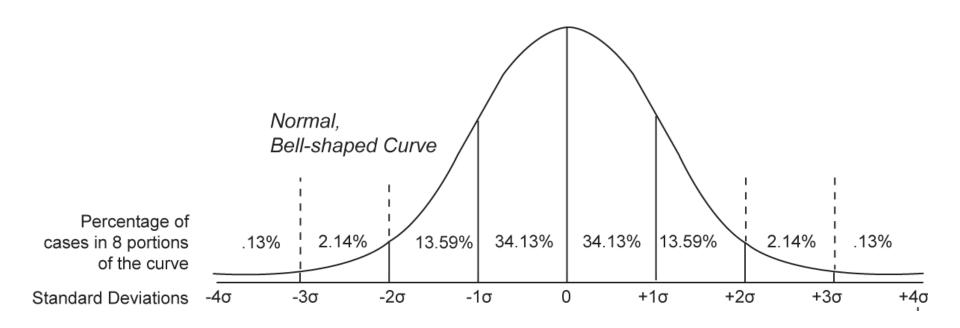
Michael Bosse, Paul Newman, John Leonard, Seth Teller

International Journal of Robotics Research February, 2004

The Sensor Model

There are many ways to sense any physical quantity
Each approach has trade-offs in cost, complexity, and accuracy
We need to understand these basic parameters of the *sensor model* in order to select the right sensors for the job
We often represent this model as a *normal distribution...*

Normal Distribution



Looks complex, but can be represented with two parameters

- This is convenient for math
- It can be easily manipulated

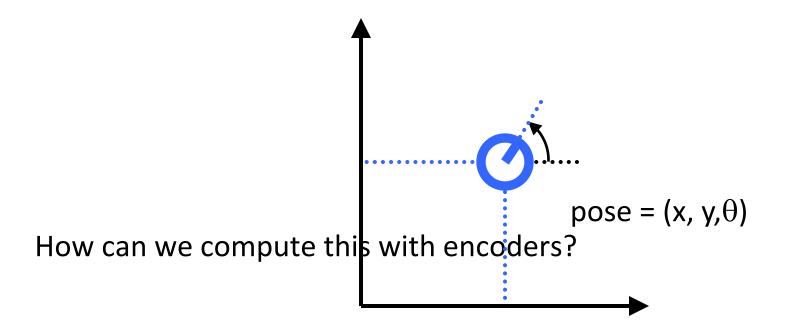
Surprisingly accurate

• Even when the underlying physical phenomena is not normal

Using Sensors: Odometry

Pose Estimation

We can describe the robot's *pose* in an external reference frame: This is useful for getting the robots around in the world

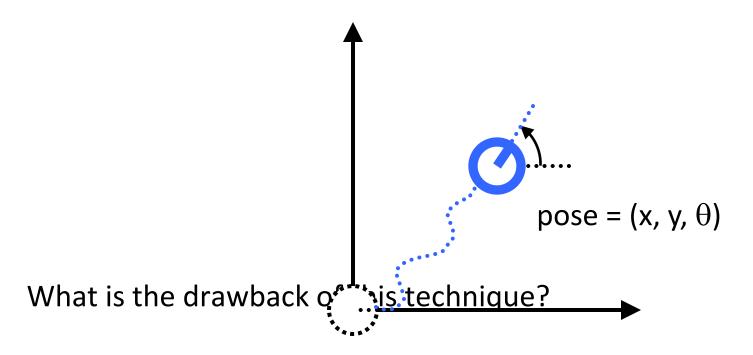


Pose Estimation

We assume the robot starts at (0, 0, 0)

We compute incremental changes to the pose using the encoders

This is called *dead reckoning*

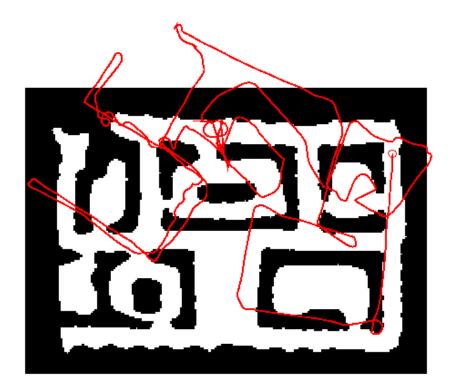


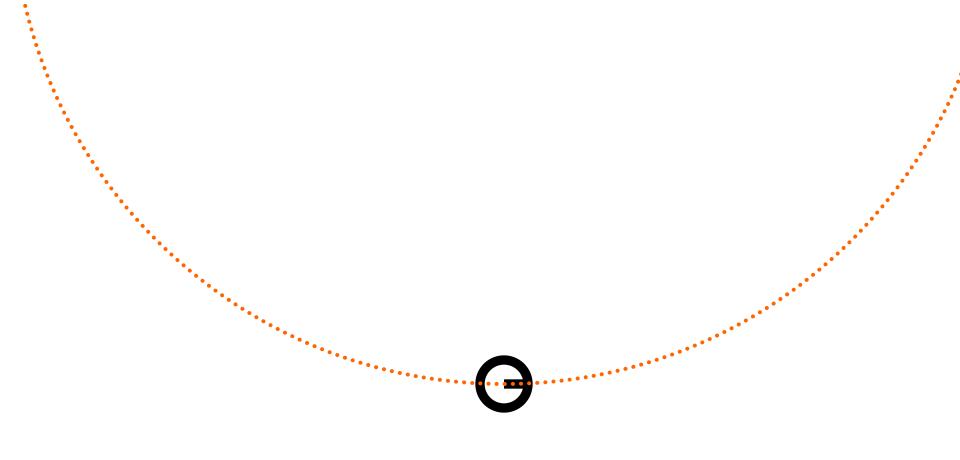
Wheel Slippage

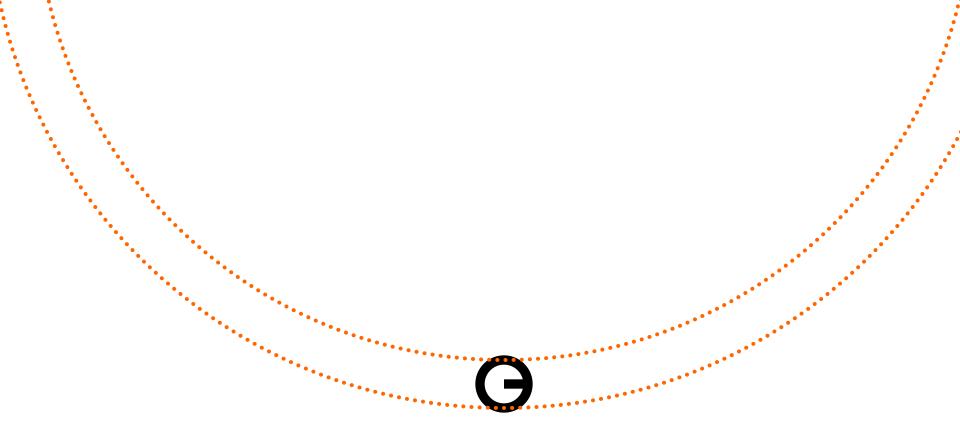
Wheels are always slipping, therefore Dead Reckoning is always accruing errors

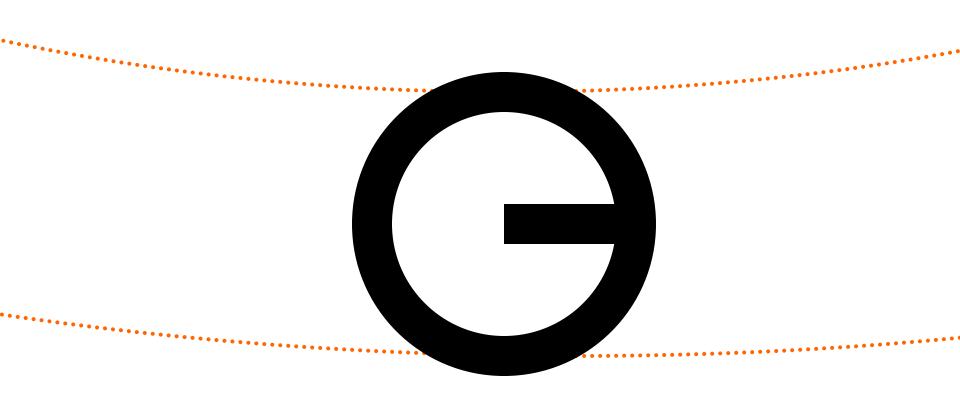
Even worse, the errors *integrate*, i.e. they increase little by little but have no bound. Soon the robot has **no idea** where it is.

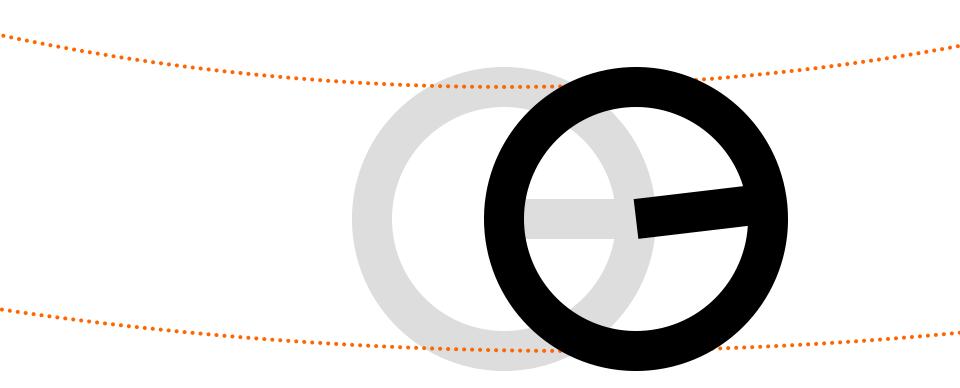
We can do better, right?

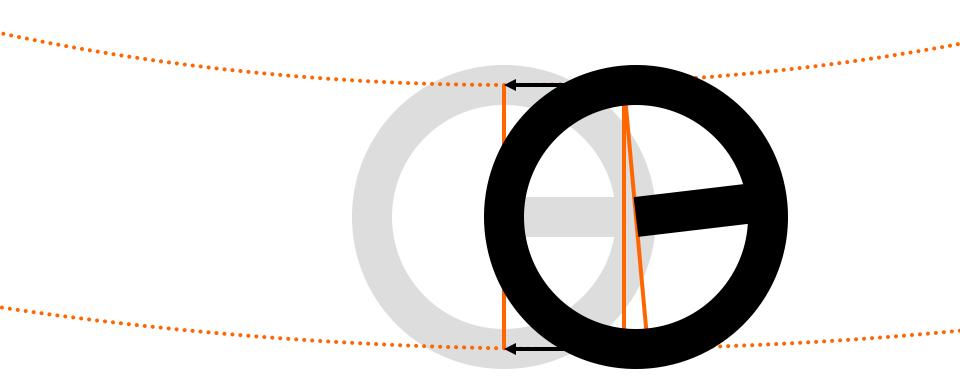




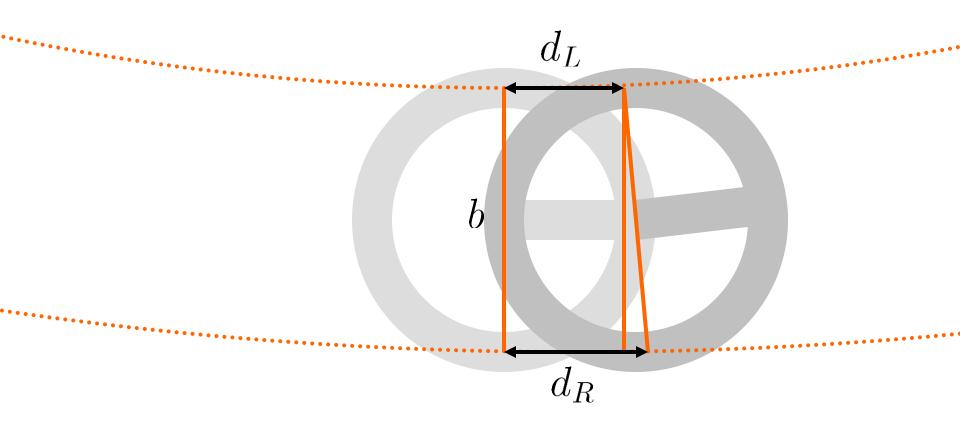




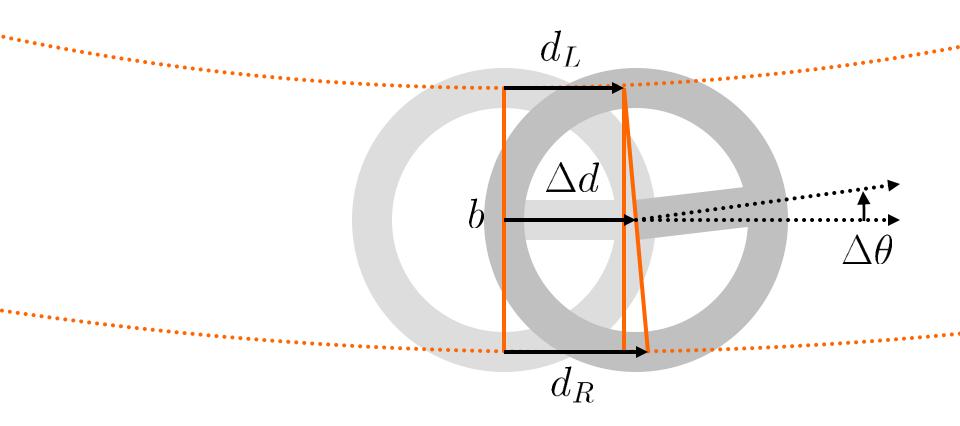




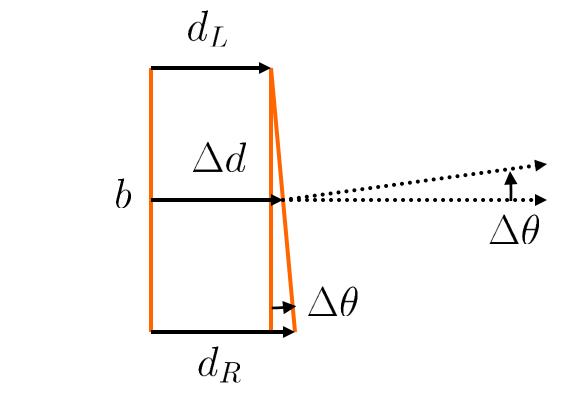
Parameters we know



Parameters we want to compute



One Update Step

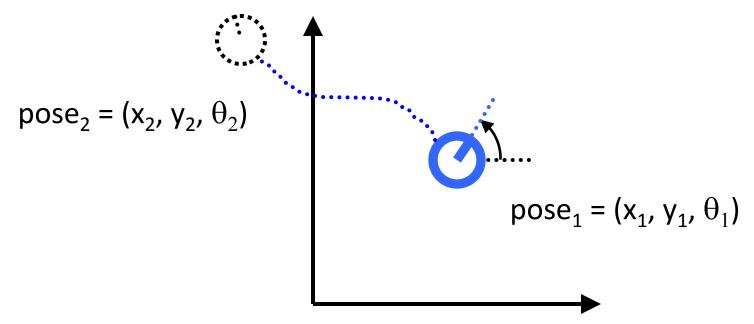


[The rest is homework]

Using Odometry: Waypoint Navigation

Waypoint Navigation

We assume that we know our current pose How can we get from one point to another? We don't want to specify θ_2 , just (x₂, y₂)



Waypoint Navigation

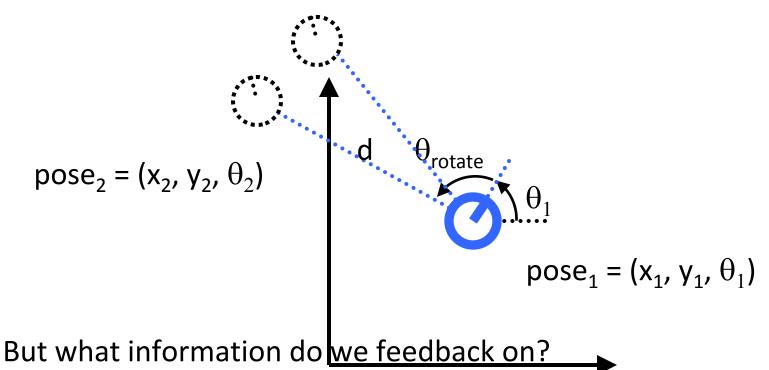
- 1. Compute θ_{rotate} and d
- 2. Rotate, then move a fixed distance

pose₂ = (x₂, y₂,
$$\theta_2$$
)
will this work? Will it work well?

No

Small angular errors will be magnified over long d

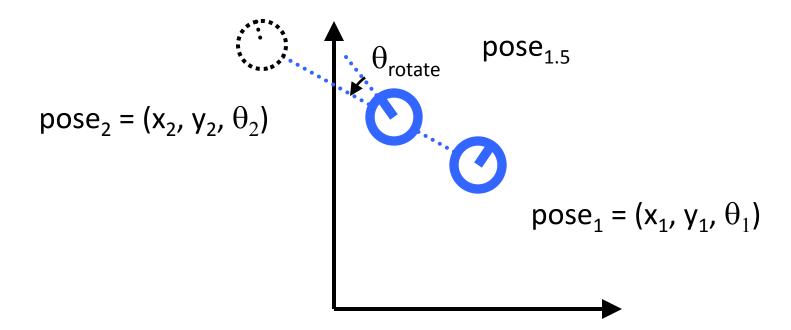
But we know how to deal with errors: a feedback controller



Waypoint Navigation with a controller

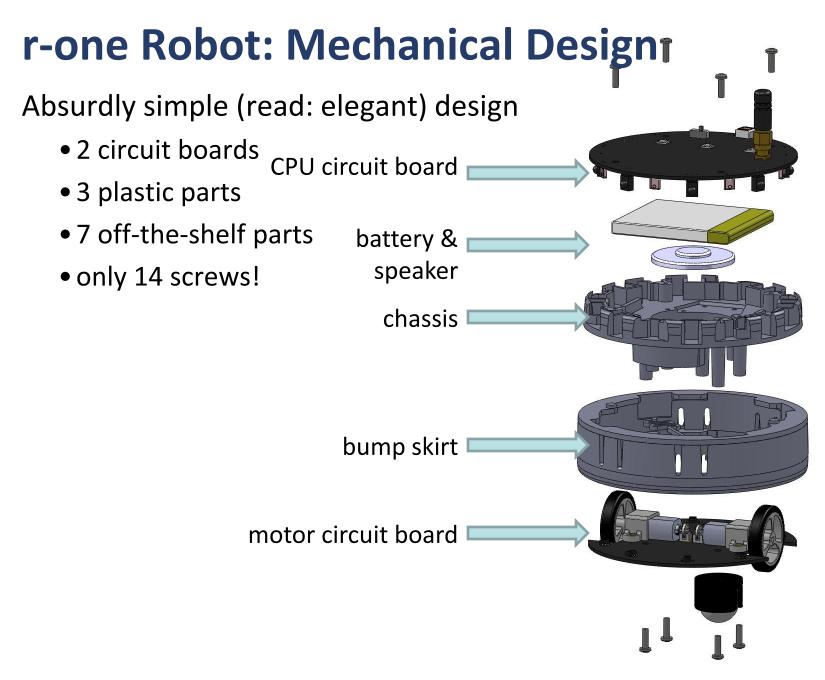
1. While d > ε:

- 2. Compute θ_{rotate} and d
- 3. Rotate while translating

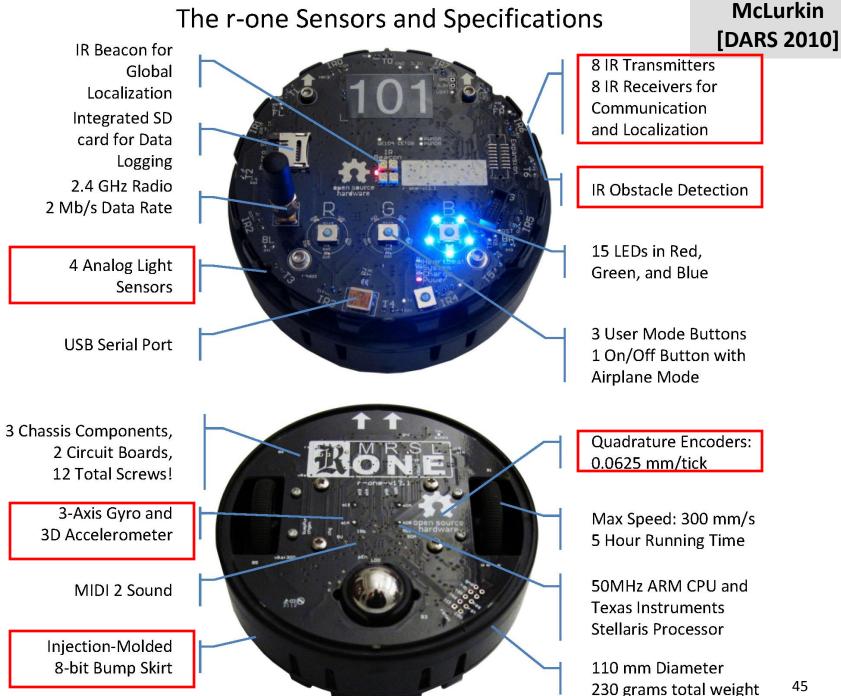


Topic 5: The "r-one" robot

Sensors and Actuators on the r-one Robot



The r-one Sensors and Specifications



Rice I