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Braitenberg Vehicles 
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Braitenberg “Vehicles” 

Simplest possible controller 

Directly connect sensors to actuators 

[refer to pdf file] 
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Finite-State Machines 
(Discrete Finite Automata) 
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Finite-State Machines (Discrete Finite Automata) 

Second most simple controller: 

Sample FSM diagram: 

 

 

 

 

 

 

 

Q: What does this program do? 
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An Example FSM: Wall detection 
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An Example FSM: Wall detection 
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An Example FSM: Wall detection 
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Q: Note that the left sensor triggers a right rotate.  Does this make 
sense? 
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An Example FSM: Wall detection 
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An Example FSM: Wall detection 
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[Review dark avoid code in editor] 
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Finite-State Machines 
(Quidditch Version) 



For example 

Let’s say you are programming a “Seeker” robot… 

reset 
move 

around 



For example 

Let’s say you are programming a “Seeker” robot… 
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For example 

Let’s say you are programming a “Seeker” robot… 
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For example 

Let’s say you are programming a “Seeker” robot… 
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score! 



Yikes! 

Don’t worry, it looks simpler in code… 

[switch to PS01.py file] 
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Behavior-Based 
Robot Programming 
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Behavior-Based Control 

A behavior is a small program (or finite-state machine) that reads 
the sensors and controls the robot 

• Each behavior only does one simple thing 
• Each behavior has access to all the sensors of the robot and 

produces motor outputs (tv, rv, active) 

Only one behavior can be active at a time 
• There is a prioritization of behaviors 
• More important ones override, or subsume, less important ones 
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An Example Behavior-Based Program 

Follow a robot 
• Sensor: IR Communications 
• Behavior: Follow another robot  

Avoid Obstacles 
• Sensors: Bump sensor to detect wall 
• Behavior: Move away from wall 

Wander 
• Sensor: Encoders 
• Behavior: Move forward and turn occasionally 

 

Q: Which behavior should have the highest priority? 

Q: Which behavior should have the lowest priority? 



Combining Behaviors 

We combine behaviors by overriding, or subsuming lower-priority 
behaviors if a higher-priority behavior becomes active 
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Genghis 

The behavior-based poster child 

Really simple hardware 
• 6 legs, 2 motors per leg 

•  a-motor for forward/back, b-motor for up/down 

• 2 bump sensors (feelers) 
• 2 ground detection sensors (switches) 
• 6 heat sensors (but they weren’t used for walking) 

R. Brooks. “A Robot that Walks; Emergent Behavior from a Carefully Evolved Network”, ICRA 1989 



Genghis in Action 



Subsumption Architecture 

R. Brooks. “A robust layered control system for a mobile robot”, ICRA 1986 



Combining Behaviors 

We combine behaviors by overriding, or subsuming lower-priority 
behaviors if a higher-priority behavior becomes active 

Wander 

Behavior: move and turn 

Follow a robot 

Behavior: Follow another robot 
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Great, but how to you program this? 

You can abstract this a bit more: 
• Write each behavior as a function that returns a tuple of 

(tv, rv, active) 
• write a beh_subsume(high_priority, low_priority) function that 

returns the high_priority or low_priority output, depending on 
which has active == True 

• If neither behavior is active, it returns the INACTIVE_BEH output 

INACTIVE_BEH = (False, 0.0, 0.0) 

wander_out = wander(foo, bar) 

gps_out = gps_navigation(bang, zoom) 

obstacle_out = obstacle_avoidance(bif, bop) 

 

beh = beh_subsume(gps_out, wander_out) 

beh = beh_subsume(obstacle_out, beh) 

velocity.set_tvrv(beh_get_tv(beh), beh_get_rv(beh)) 
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Great, but how to you program this? 

There are several ways: 
• Write each behavior as a function that returns a tuple of 

(active, tv, rv) 
• Write getters to extract the different parts of the tuple 
• Use if statements to overwrite the outputs of lower-priority 

behaviors 

INACTIVE_BEH = (False, 0.0, 0.0) 

wander_out = wander(foo, bar) 

gps_navigation_out = gps_navigation(bang, zoom) 

obstacle_avoidance_out = obstacle_avoidance(bif, bop) 

 

beh = INACTIVE_BEH 

if beh_get_active(wander_out): 

    beh = wander_out 

if beh_get_active(gps_navigation_out ): 

    beh = gps_navigation_out 

if beh_get_active(obstacle_avoidance_out): 

    beh = obstacle_avoidance_out 

velocity.set_tvrv(beh_get_tv(beh), beh_get_rv(beh)) 


