
COMP 551
ADVANCED ROBOTICS LAB

Lecture 05:
Braitenberg Vehicles,
Finite State Machines,

Behavior-Based Programming

James McLurkin
Rice University

jmclurkin@rice.edu

1

2

Braitenberg Vehicles

3

Braitenberg “Vehicles”

Simplest possible controller

Directly connect sensors to actuators

[refer to pdf file]

4

Finite-State Machines
(Discrete Finite Automata)

5

Finite-State Machines (Discrete Finite Automata)

Second most simple controller:

Sample FSM diagram:

Q: What does this program do?

waiting
blink blue

lights

no
button
press

button
press

reset

reset
transition

transition

state

transition
condition

6

An Example FSM: Wall detection

reset
move

forward

7

An Example FSM: Wall detection

reset
move

forward

?

?

8

An Example FSM: Wall detection

reset
move

forward

rotate
left

rotate
right

?

?

?

9

An Example FSM: Wall detection

no wall

reset
move

forward

rotate
left

rotate
right

right sensor
detect wall

left sensor
detect wall

Q: Note that the left sensor triggers a right rotate. Does this make
sense?

10

An Example FSM: Wall detection

reset

?
move

forward

rotate
left

rotate
right

?

?

?

no wall

right sensor
detect wall

left sensor
detect wall

11

An Example FSM: Wall detection

reset

|angle|
< p/2

move
forward

rotate
left

rotate
right

|angle|
< p/2

|angle|
≥ p/2

|angle|
≥ p/2

[Review dark avoid code in editor]

no wall

right sensor
detect wall

left sensor
detect wall

12

Finite-State Machines
(Quidditch Version)

For example

Let’s say you are programming a “Seeker” robot…

reset
move

around

For example

Let’s say you are programming a “Seeker” robot…

no
event

wall
detector reset

wait
for

timer
timer
done

move
around

avoid wall

For example

Let’s say you are programming a “Seeker” robot…

no
event

wall
detector reset

wait
for

timer
timer
done

detect
snitch

no
snitch

move
around

avoid wall

move to
snitch

For example

Let’s say you are programming a “Seeker” robot…

no
event

wall
detector reset

wait
for

timer
timer
done

detect
snitch

capture
snitch

no
snitch

move
around

avoid wall

move to
snitch

score!

Yikes!

Don’t worry, it looks simpler in code…

[switch to PS01.py file]

18

Behavior-Based
Robot Programming

19

Behavior-Based Control

A behavior is a small program (or finite-state machine) that reads
the sensors and controls the robot

• Each behavior only does one simple thing
• Each behavior has access to all the sensors of the robot and

produces motor outputs (tv, rv, active)

Only one behavior can be active at a time
• There is a prioritization of behaviors
• More important ones override, or subsume, less important ones

20

An Example Behavior-Based Program

Follow a robot
• Sensor: IR Communications
• Behavior: Follow another robot

Avoid Obstacles
• Sensors: Bump sensor to detect wall
• Behavior: Move away from wall

Wander
• Sensor: Encoders
• Behavior: Move forward and turn occasionally

Q: Which behavior should have the highest priority?

Q: Which behavior should have the lowest priority?

Combining Behaviors

We combine behaviors by overriding, or subsuming lower-priority
behaviors if a higher-priority behavior becomes active

Wander

Behavior: move and turn

Avoid Obstacle

Behavior: avoid walls

Follow a robot

Behavior: Follow another robot S
e
n
so

rs

A
c
tu

a
to

rs

S

S

subsume
operator

highest priority

lowest priority

Genghis

The behavior-based poster child

Really simple hardware
• 6 legs, 2 motors per leg

• a-motor for forward/back, b-motor for up/down

• 2 bump sensors (feelers)
• 2 ground detection sensors (switches)
• 6 heat sensors (but they weren’t used for walking)

R. Brooks. “A Robot that Walks; Emergent Behavior from a Carefully Evolved Network”, ICRA 1989

Genghis in Action

Subsumption Architecture

R. Brooks. “A robust layered control system for a mobile robot”, ICRA 1986

Combining Behaviors

We combine behaviors by overriding, or subsuming lower-priority
behaviors if a higher-priority behavior becomes active

Wander

Behavior: move and turn

Follow a robot

Behavior: Follow another robot

Avoid Dark

Behavior: avoid shadow at walls S
e
n
so

rs

A
c
tu

a
to

rs

S

S

subsume
operator

highest priority

lowest priority

26

Great, but how to you program this?

You can abstract this a bit more:
• Write each behavior as a function that returns a tuple of

(tv, rv, active)
• write a beh_subsume(high_priority, low_priority) function that

returns the high_priority or low_priority output, depending on
which has active == True

• If neither behavior is active, it returns the INACTIVE_BEH output

INACTIVE_BEH = (False, 0.0, 0.0)

wander_out = wander(foo, bar)

gps_out = gps_navigation(bang, zoom)

obstacle_out = obstacle_avoidance(bif, bop)

beh = beh_subsume(gps_out, wander_out)

beh = beh_subsume(obstacle_out, beh)

velocity.set_tvrv(beh_get_tv(beh), beh_get_rv(beh))

27

Great, but how to you program this?

There are several ways:
• Write each behavior as a function that returns a tuple of

(active, tv, rv)
• Write getters to extract the different parts of the tuple
• Use if statements to overwrite the outputs of lower-priority

behaviors

INACTIVE_BEH = (False, 0.0, 0.0)

wander_out = wander(foo, bar)

gps_navigation_out = gps_navigation(bang, zoom)

obstacle_avoidance_out = obstacle_avoidance(bif, bop)

beh = INACTIVE_BEH

if beh_get_active(wander_out):

 beh = wander_out

if beh_get_active(gps_navigation_out):

 beh = gps_navigation_out

if beh_get_active(obstacle_avoidance_out):

 beh = obstacle_avoidance_out

velocity.set_tvrv(beh_get_tv(beh), beh_get_rv(beh))

