-y R ay IRZ
dvanced Roboti

2.3\ &

=5 \'\ %B*{‘i
ng po™

2,
Bl @

2. Why Develop on the “Metal”?

What is “Metal”?

Why develop here?

1. Your system is constrained by power, space, or budget
2. You have “Hard Real Time” constraints

3. You have an obsessive-compulsive need to control every aspect of
your processor

p-type substrate

Why Develop on the “Metal”?

System Constraint: Consumer electronics
e (This slide is from 2005: A lot has changed since then...)

Treo sso
® @ @

™ i
- 8-
3

So much more (k=
@ than just talk. |Exee

=
_—
) *
-
—_
—
—
Lo
" —
=
T
—
p—
{o==>
—
s R
-

Why Develop on the “Metal”?

Hard Real Time:
Airbag
Deployment

http://www.motionengineering.com/slow_motion_video_archive2.cfm

Why Develop on the “Metal”?

Hard Real Time: Supersonic Fighter Jet Control Systems

Why Develop on the “Metal”?

System Constraint: Tightly integrated robots

3. System Architecture

Life is different at the bottom of the food chain...
e Microcontrollers
e User Interfaces

The Microcontroller
AT91FR4081

T™MS
TDO

TDI
TCK

vDD
GND

NRST

MCKI
P25/MCKO

P12/FIQ
P9/IRQO
P10/IRQ1
P11/IRQ2

P13/SCKO
P14/TXDO
P15/RXD0O

P20/SCK1
P21/TXD1/NTRI
P22/RXD1

P16
P17
P18
P19

P23
P24/BMS

NWDOVF

AIMEL

Embedded
ICE

ARM7TDMI Core

SRAM
128K Bytes

Reset

RAM
8K Bytes

] ¢4

Clock

ASB
Controller

h 4

AIC: Advanced ‘
Interrupt Controller

| AMBA Bridgel

[—

A /

DO - D15

Al-A19

EBI: External Bus Interface

EBI User
Interface

APB

USARTO

2 PDC
Channels

USART1

2 PDC
Channels

PS: Power Saving

Chip ID

P

Tty

WD: Watchdog Timer

TC: Timer
Counter

------_-
P I

9 —HH
gl |- -1
m

GND

VPP

vCcC
\"[elele!
BYTE
RESET
RDY/BUSY
CE

I

TCO |

TC1 |

TC2 |

\ 4

—

P1O: Parallel 1/O Controller

Block Diagram

P D0-D15

P A1-A19

AO0/NLB

NWR1/NUB
NWAIT

NCS0

NCS1
NRD/NOE
NWRO/NWE
P26/NCS2
P27/NCS3
P28/A20/CS7
P29/A21/CS6
P30/A22/CS5
P31/A23/CS4

GND
VPP
VDD
VDD
VDD
NRSTF
NBUSY
NCSF

PO/TCLKO
P3/TCLK1

P6/TCLK2
P1/TIOAO

P2/TIOBO
P4/TIOA1
P5/TIOB1
P7/TIOA2
P8/TIOB2

The User Interface

4. Hard Real Time Software

What is “Hard Real Time” Software?

e But my system is I/O bound, and my processor is not working very
hard. Do | still need to worry about worst-case performance?

What is “Soft Real Time” Software?

In order to make my software run, | need a “kernel” of code to decide
what my processor will do at any given time. Ideally, we can design
this program to place a bound on our max latency.

My First Scheduler

main() {
while(true) {

readSingleCharFromSerialPort(); (3usecs/char)
readAndProcessSensors(); (10ms +5ms)
controlMotor(); (10us)

}
}

The r-one serial port runs at 230
kbps = 43usecs/char

The serial port hardware does
not buffer chars

Motor control wants to run at
500hz

Does this code guarantee these
constraints?

My Second Scheduler

main() {
while(true) {
readSerialPortSoftwareBuffer(); (1us)
readAndProcessSensors(); (10ms +5ms)

controlMotor(); (10us)
}

}
The r-one serial port runs at 230
interrupt serialPortHandler() { kbps = 43usecs/char
readSerialPortHardwareBuffer() the serial port hardware does
writeSerialPortSoftwareBuffer();

}

not buffer chars

Motor control wants to run at
500hz

Does this code guarantee these
constraints?

My Third Scheduler

main() {
while(true) {
readSerialPortSoftwareBuffer(); (1us)
writeMotorCommand(); (1us)
readAndProcessSensors(); (10ms +5ms)

}

}
The r-one serial port runs at 230
interrupt serialPortHandler() { kbps = 43usecs/char
readSerialPortHardwareBuffer() the serial port hardware does

writeSerialPortSoftwareBuffer(); ot buffer chars

}

interrupt timerHandler() { Motor control wants to run at
readMotorCommand(); 500hz
controlMotor();

} Does this code guarantee these

constraints?

My Third Scheduler

main() {
while(true) {
readSerialPortSoftwareBuffer();
writeMotorCommand();
readAndProcessSensors();

}
}

interrupt serialPortHandler() {
readSerialPortHardwareBuffer();
writeSerialPortSoftwareBuffer();

}

interrupt timerHandler() {
readMotorCommand();
controlMotor();

}

thread 1

interrupt

thread 2

Glossary Summary

Kernel
Scheduler
Interrupt
Thread

Context Switch
Shared Memory
Message Queue
Process

Don’t Write a Scheduler!

Buy one!

VxWorks

Nucleus RTOS

-
b ’
D "

QNX Neutrino Realtime Operating
System

Since 1930, manufacturers have relied on QNx O3S
technology to power their mission-critical applications
— everything from medical instruments and Internet
routers to telematics devices, 9-1-1 call centers,
process contral applications, and air traffic control
systems, Small or large, simple or distributed, these
systemns share an unmatched reputation for operating
24 hours a day, 365 days a year, nonstop,
Time-tested and field-proven, the QrX Neutrino
realtime operating system (RTOS) sets the industry

standard for reliability, fault tolerance, and scalability,

what makes QN» Neutrino so remarkable? It's a true
microkernel operating system, Under QX Neutrino,
every driver, application, protocol stack, and file

More from this section

HEHENEZEHEDEEDEHEHEBE

QNX Neutrine - at a Glance
Microkemel Architecture
Realtime Performance

POSIE Support

Power Management Framewaork
Symmetric Multiprocessing
Instrumented Kemel

Critical Process Monitoring
Transparent Distributed Processing
Metworking Technologies

File Systams

Resource Manager Framework

Programming Multi-Threaded Systems

Why Threads? Why not Processes?

IPC = InterProcess(or) Communications
Simple Languages

e Assembly, C, C++

e No Java, yet.
Processor Limitations

e No FPU (Floating Point Unit)

e No MMU (Memory Management Unit)
Static Memory Allocation

