
COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
Janurary 22th, 2015

PS01: Braitenberg Vehicles, Pose Estimation, Waypoint Navigation
v1.1

Due: Feburary 3rd, 2015

1 Braitenberg Vehicles

In this section, you will build several Braitenberg vehicles. We’ve given you a sample file to
get started, PS01 Braitenberg.py. We don’t want you to struggle with the Python programming
language, so we’ve given you a lot of code to start with. Look for the lines: “# student code
start”, and the matching end line to know where to put your code.

1.1 Write motion helper functions

Finish the four motion helper functions:
move stop(time),
move forward(time),
move rotate right(time), and
move rotate left(time).
Each of these functions takes one argument, time. They move the wheels in the proper directions
for the desired time to produce motion. Use the motor PWM function:

rone.motor set pwm(’l’, pwm arg)
rone.motor set pwm(’r’, pwm arg)

To directly control the left or right motor’s PWM, where pwm arg is the desired pwm. We have
defined a global variable, MOTOR PWM to use as the PWM value in all of these helper functions.
This way, if you want to change the PWM, you can do so in one place. PWM values less than
60 won’t produce motion, and PWM of more than 80 will make the robot move too fast. Use
sys.sleep(time) to wait for a certain amount of time, units are milliseconds.

Hand-in: Write move stop(time), move forward(time),
move rotate right(time),move rotate left(time). (2 pts each)

1 2015-01-28



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
Janurary 22th, 2015

1.2 “Boredom” (Square motion)

Use your motion functions to write square motion(), which will drive the robot in a 1 foot ×
1 foot square. Your answer must use a for loop, and your robot must use move stop() after the
square is finished.

Hand-in: Use the motion helper functions and a for loop to write square motion(). (5 pts)

1.3 “Love” (Move towards light)

We will use these motion functions and the light sensors to drive the robot towards light. Use
these functions from the r-one library to read the light sensors:
light fl = rone.light sensor get value(’fl’)
light fr = rone.light sensor get value(’fr’)

1.3.1 Write light diff

This function should read the two front light sensors, then return the difference between the left
sensor and the right sensor: diff = left − right.

Hand-in: Write light diff() (3 pts)

1.3.2 Complete light follow()

Use your light diff() function to complete light follow(). We’ve given you a bit of starter
code. Use an if, elif, else structure and your motion primitives from Section 1.1 to make
the robot drive towards the light.

Hand-in: Use the motion helper functions, light diff(), and a if, elif, else structure
to write light follow(). Explain why we are storing the initial diff value in diff start (10
pts)

Check-off: Demonstrate your robot moving towards (loving?) a flashlight.

1.4 “Fear”: Avoiding Obstacles with the Bump Sensors

Driving towards things is only half of what robots do. Now let’s drive away from things. In this
section, we will move away from obstacles we run into using the bump sensors.

We’ve given you three nifty functions: bump left get value(), bump front get value(),
bump right get value(). They each return a boolean variable indicating if the bump sensor is
pressed from the indicated direction. Finish bump avoid() to move the robot away from colli-
sions. We’ve given you a bit of starter code. Use an if, elif, elif, else structure and your
motion primitives from Section 1.1 to finish this. This answer will look similar to the answer from
Section ??.

Hand-in: Use the bump sensor helper functions and a if, elif, elif, else structure to
write bump avoid() (10 pts)

2 2015-01-28



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
Janurary 22th, 2015

1.5 “Fear, Distantly”: Avoiding Obstacles with the IR Sensors

Running into walls is sooo last problem. In the fourth half of this problem set, we will avoid walls
altogether using the IR system to detect them from a distance.

We’ve given you a nifty function: obstacle detect(). It returns a tuple of boolean variables
indicating where the obstacle is relative to the front of the robot. Move your hands around the
robot and watch the output. The range is pretty far, you will need to get your robot away from
things around you to see the program work.

Use obstacle detect() to move the robots away from walls. Use an if, elif, else
structure and your motion primitives from Section 1.1 to finish this. This answer will look similar
to the answer from Section 1.4, copy and paste your code and modify it, don’t start from scratch.
We have given you the code to call obstacle detect() and unpack the tuple into three vari-
ables: obs front, obs left, obs right. After they have been unpacked, you can forget
about the tuple, and use these booleans just like any other variable.

Hand-in: Use the motion helper functions, obstacle detect(), and a if, elif, else
structure to write obstacle avoid() (10 pts)

2 Pose estimation

2.1 Getting Started

Download the distribution code and library zip file from the website. Program the following
modules into flash memory on your robot:
owlpy.connect()
... Robot Startup Stuff ...
owlpy>loadrun PS01 netid.py PS01Libs.zip

2.2 Derive the pose update equation

Recall the derivation we started in lecture for the incremental pose update equation:

Rice University, COMP 551, Spring 2010 28

Parameters we want to compute

Complete this derivation. Solve for (x′, y′, θ′) in terms of (x, y, θ), dL, dR, and b. Assume the change
in heading, ∆θ, is very small, so you can make use of the trigonometric approximation tan(θ) ≈ θ.

Hand-in: Your derivation.

3 2015-01-28



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
Janurary 22th, 2015

2.3 Implement the pose update function

Complete the pose estimator in Python on your robot. Use these equations to write pose update(pose state).
The trigonometric functions sin and cos are part of the math package, call them with the syntax:
math.sin(angle). We’ve provided a math2.normalize angle(theta) function that takes
an angle theta, and returns the same angle, but within the bounds of −π < θ ≤ π. Use it on θ after
you update it in Equation ??, but before you store it in pose state

You will also make an odometer, a counter of the total distance the robot has travelled since it
was reset. It always increases, even when the robot is driving backwards. It should be a float.
You will need to update it in this function, and store its current value in the pose state so that
poseX.get odometer() returns the correct value.
Hand-in: Write pose update()(20 pts).

2.4 Run a Sanity Check

Run your pose estimator program. The distribution code prints the pose every 250ms. You may
test your program by imagining a coordinate axis on the floor. Put your robot at a pose of (0, 0, 0),
which is the origin, facing the x-axis. Move your robot forwards, this should increase the x value.
Rotate it π/2 degrees counter-clockwise (left turn). This should increase θ to π/2. Now push it
forward again. This should increase the y value. If you don’t get these kind of output, check your
code for bugs, it was quite accurate on my desk. Maybe you need a better desk.

Check-off: Working pose estimator(2 pts).
Recall from lecture that you can program waypoint navigation by combining translational ve-

locity and rotational velocity. In this section, you will refine this idea into a slick motion controller,
then measure how well it works.

2.5 Review the Motion Controller API

Review the motion controller API we’ve provided: motionX.init(),motionX.update(),
motionX.is done(), motionX.set goal(goal pos, tv max), motionX.get goal()

2.6 Write helper functions

You’ll need three functions to compute the distance and the direction to the goal position. Write a
function called topolar(x, y) to convert cartesian coordinates to polar coordinates and return
a tuple of the form: (r, theta). We use this to compute the distance to the goal. You can
compute x2 in two ways: x**2.0 or x*x. Use the second way, it’s faster. The square root function
is in the math package, access it with the statement a = math.sqrt(b).
Hand-in: Write topolar(x, y)(4 pts).

Second, write compute goal distance and heading(). This returns a tuple of the form
(goal distance, goal heading, robot heading). The goal heading is the angle between
the current (x, y) position and the goal (x, y) position. In other words, this is the heading along
which the robot must travel. It is not the angle the robot needs to rotate to point itself at the goal
position. That is the next function.
Hand-in: Write compute goal distance and heading()(10 pts).

4 2015-01-28



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
Janurary 22th, 2015

Finally, write a third function called smallest angle diff(current angle, goal angle)
that computes the smallest angle difference from the current angle to the goal angle. This is
the angle that the robot needs to rotate from its current heading to the goal heading, heading error.
Normalize this error to lie between −π < θ ≤ π, in other words, compute the most direct rotation
to point the robot towards the goal position. The robot should never robot more than π or −π.
Computing this angle is tricky. Test this function carefully. Be sure to test with start and goal po-
sitions in multiple quadrants. Pay careful attention as all the different angles wrap around from 0
to 2π and −π to π. Review the lecture notes on global coordinates before you start this section.
Hand-in: Write smallest angle diff()(6 pts).

2.7 Build a Controller for tv

We want the robot to slow down as it approached the goal position. In order to do this, we want
to command a velocity profile of the form:

tv profile vs. distance

0

20

40

60

80

100

120

140

0 50 100 150

distance to goal (mm)

tv
 (m

m
/s
)

tvtemp = ktv · d+ tvmin (1)

tv =

{
tvtemp if tvtemp ≤ tvmax

tvmax otherwise
(2)

You need to write motion controller tv(d, tv max) We’ve provided these parameters for
you:
tvmax = tv max, an argument to the function
tvmin = MOTION TV MIN
ktv = MOTION TV GAIN
Hand-in: Write motion controller tv()(6 pts).

2.8 Build a Controller for rv

The controller for rv is simpler:

rv = krv · θrotate (3)

Set krv = MOTION RV GAIN and use the math2.bound(rv, MOTION RV MAX)function to limit
the values of rv to MOTION RV MAX.
Hand-in: Write motion controller rv()(4 pts).

5 2015-01-28



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
Janurary 22th, 2015

2.9 Test with the waypoint list

Build a list to store a series of waypoints, which are (x, y) tuples that are the points that the robot is
supposed to visit. We’ve given you the example list I used to test with the 1 ft-square tiles in my
office. Units are in millimeters. Make your list appropriate for the tiles you have to work with.
The list is on line 165 of the code.
Hand-in: Waypoint list working?(1 pt).

3 Data Collection

Find a floor with a regular grid tile pattern. We’ll use these to make collecting data easier. Note
how many tiles can fit into a meter, probably three, if your tiles are one foot squares. This dis-
tance will be our reference distance, d. Place the robot at a tile intersection. This will define our
coordinate system:

x

y

error

The program we’ve given you waits for the user to press the red button to load the waypoint list.
Modify this waypoint list to move the robot in a square 1 m on a side. Measure the actual final
position, (x, y), of the robot. Measure from the center of the robot. This is one experimental trial.
Move the robot back to the starting position and run the program for a total of 10 trials. Each robot
will perform differently in these tests and the measurements will vary. Make a scatter plot of the
(x, y) positions of the robot.
Hand-in: A plot of the final positions of the robot after moving in a 1 m square.(8 pts).

4 Write-up

Write a one-page report about your experimental results. Longer reports will not be graded. Be
sure to include your data plots from Section 3. Answer the following questions in your report:

• Why do you think your robot does not move straight, even with your velocity controller and
pose estimator? (answers may vary by robot and location)?

• What kind of sensors could improve your robot’s ability to get to waypoints with higher
precision?

6 2015-01-28


	Braitenberg Vehicles
	Write motion helper functions
	``Boredom'' (Square motion)
	``Love'' (Move towards light)
	Write light_diff
	Complete light_follow()

	``Fear'': Avoiding Obstacles with the Bump Sensors
	``Fear, Distantly'': Avoiding Obstacles with the IR Sensors

	Pose estimation
	Getting Started
	Derive the pose update equation
	Implement the pose update function
	Run a Sanity Check
	Review the Motion Controller API
	Write helper functions
	Build a Controller for tv
	Build a Controller for rv
	Test with the waypoint list

	Data Collection
	Write-up

