
COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

PS02: Multi-Robot Systems
v1.2

Due: February 26, 2015

Multi-Robot Systems

Multi-robot systems need to sense, communicate, compute, and move in a distributed fashion. For
this assignment, you will build two basic multi-robot behaviors for coordinated motion: follow-
the-leader, which is built from several primitive behaviors from many motion controllers, includ-
ing navigation, and flocking, which has a deep theoretical underpinning in consensus.

1 Follow-the-Leader:

In this part, you will warm up to multi-robot communications by implementing a Follow-the-
Leader program that uses the infrared (IR) and radio communication systems on the robots. You
will need to test your code in groups of three. There will be three robot roles:

1. Remote Robot: Serves as a remote control to send radio commands to the leader robot.
2. Leader Robot: Accepts radio commands and moves accordingly, while simultaneously broad-

casting its ID over IR.
3. Follower Robot: Receives IR messages, and moves towards a leader robot.

We have gotten you started with PS02.py as a starting code base, and have provided a neighbor
system library to ease communicating with nearby robots. You must work with two other people
on this assignment. You will need to write code for each pat of the assignment. During class, we
will check-ff each team with robots in random roles. We understand that you and your partners
will have very similar code for each part of the assignment, but the code on your robot must be
written by you.

1.1 Getting Started

Use the buttons to select a role for the robot: red = remote control robot, green = leader robot, blue
= follower robot. When the robot is in each mode, use the circling lights indicate that the robot is
idle, and the solid lights to indicate that it is active. In the remote control mode, the robot is idle
when there are no buttons being pressed, and active when a button is pressed. In the leader mode,
the robot is idle when it is not receiving a radio message, and active when it is. In the follower
mode, the robot is idle when it is not receiving an IR message, and active when it is. These lights
will help you debug your program when the robot is disconnected from the computer.
owlpy.connect()
... Robot Startup Stuff ...
owlpy>loadrun PS02 netid.py PS02Libs.zip

1 2015-02-20



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

1.2 Communications with the r-one

Find a partner. First test the radio functions:

rone.radio send message(msg)
rone.radio get message usr newest()

from the interactive prompt to send and receive radio messages back and forth to your partner.
Note the largest message that can be sent is 30 characters long. Likewise, test the:

rone.ir comms send message()
rone.ir comms get message()

functions to send and receive IR messages with your partner. Both of these functions return None
if there is no message, but sure to check for this. The rone.radio get message() function re-
turns a string is a message was received, and None if one was not. The rone.ir comms get message()
function returns a tuple of:
(nbr id, receivers list, transmitters list, range)

This is the id of the neighboring robot, a list of the receivers which received this message, a list of
the transmitters of the neighboring robot that the message was transmitted from, and the range
estimate to the neighbor. We will use these lists to compute the bearing and orientation of the
transmitting robot.

1.2.1 The PS07.py distribution code

We’ve given you a lot of code in this distribution. There is a neighbor system, and velocity pack-
age, and a LED animation package. The distribution code also includes the main loop. When the
program starts, it checks the buttons to select a different role for the robot: red = remote control
robot, green = leader robot, blue = follower robot. Once a mode is selected, the robot blinks the
lights of the corresponding color. When the robot is in each mode, circling lights indicate that the
robot is idle, and solid lights indicate that it is active. In the remote control mode, the robot is idle
when there are no buttons being pressed, and active when a button is pressed. In the leader mode,
the robot is idle when it is not receiving a radio message, and active when it is. In the follower
mode, the robot is idle when it is not receiving an IR message, and active when it is. These lights
will help you debug your program when the robot is disconnected from the computer.

1.3 Remote Control Robot

The remote control robot will process button pushes from a user holding it. When a person presses
buttons on the Remote Robot, it sends a radio signal to control the Leader Robot. Keep in mind all
radios are on the same channel so be careful when testing your program with other robots nearby.

1.3.1 Write check buttons()

Complete the check buttons function to read the buttons and return a string of characters con-
sisting of ’r’, ’g’, ’b’. For example, if the user presses only the red button, the message would be

2 2015-02-20



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

’r’. If multiple buttons are pressed, the string might be ’rg’, ’rb’, or even ’rgb’.
When you have this function implemented correctly, you should be able to run the distribu-

tion code, press a button and place the robot in one of three modes: remote(red), leader(green),
follower(blue). Hand-in: Write check buttons().

1.3.2 Write test radio receive() and test ir receive()

Complete the test radio receive() and test ir receive() functions. This test functions
run forever, and print IR or radio messages if they receive them. When you get a message, print
it and turn on the green LEDs. If not, turn on the red LEDs. When you have this function imple-
mented properly, you should be able to receive radio and IR messages from your partner’s robot
running in remote mode. Hand-in: Write test radio receive() and test ir receive().

But wait, there’s more...

1.4 Leader Robot

The leader robot will receive radio commands from the remote control and move according to the
button presses.

1.4.1 Write leader motion controller()

This function takes the received radio message and controls the motors. It returns a tuple of (tv,
rv). In the distribution code, this tuple is sent to the velocity.set tvrv(tv, rv) function
to control the motors. Use the FTL TV and FTL RV global variables as the velocities you are com-
manding. You can decide how you want to process the buttons. One option uses red for left
wheel forward, blue for right wheel forward1. I prefer green for forward, red to rotate left, and
blue to rotate right. You can do anything you want2. When you have this function implemented
properly, the motors will turn, and you will have a remote controlled robot! Hand-in: Write
leader motion controller().

But wait, there’s more...

1.5 Follower Robot

The follower robot will receive messages from a nearby leader robot over the InfraRed (IR) com-
munications system. Once a message has been received, you will need to compute the bearing
and orientation to the leader robot. IR signals are directional and will not work if occluded.

1.5.1 Write compute bearing() and compute orientation()

We’ve done most of the hard work of receiving and processing the IR message for you. You
will need to do the last step and compute the bearing and orientation of the neighboring robot.
Figure 1(a) shows the local coordinate system around a robot.

1This is like the classic 1980’s video game ”Battlezone”. A game worthy of Googling and playing.
2If you want to be hardcore, you can use the accelerometer x and y axes to compute a linear tv and rv, but transmit-

ting and processing will be tricky. (and no, there is no extra credit)

3 2015-02-20



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

orientation

ya

bearing
x a

local coordinates

robot a

robot b

range

(a) Local coordinate system.

Ang
le

slice

(b) Sectors from the IR receivers.

Figure 1: a: The local coordinate system of the blue robot, ’a’. The bearing to robot ’b’ is measured in
robot ’a’s coordinate system. The orientation of robot ’b’ is measured from the line between ’a’ and ’b’. The
range. is the distance between the two robots, but this measurement isn’t very accurate. b: Each IR receiver
can receive from a wide angle. The sectors are designed to overlap so that a message from a transmitting
robot will be received on either one or two receivers. Depending on which receiver(s) get the message, the
bearing of the transmitting robot can be measured. measuring orientation works in a similar way, but by
noting which transmitters on the neighboring robot sent the message.

In lecture, we talked about the measurement of bearing and orientation using the IR communi-
cations system. Now let’s put that knowledge to use. Recall that the robot can transmit and receive
messages on many different transmitters and receivers. Figure 1(b) shows the sectors of the 8 re-
ceivers, and how they overlap. When a message is received, it will be received on one or more
receivers. We need a way to convert the list of receivers to a bearing and the list of transmitters to
an orientation.

The rone.ir comms get message() function returns a tuple of (message, receivers list,
transmitters list). The transmitters and receivers are labeled on the top of your robot as {T1
- T8} and {IR1 - IR8} respectively. These indices start from 0 in the software, so the transmitter and
receiver lists will contain numbers from {0 - 7}. In order to compute the bearing, or the orientation
you will need to average the angles from the sectors that a message was received on.
The IR receivers are located at angles of: {1π8 ,

3π
8 ,

5π
8 ,

7π
8 ,

9π
8 ,

11π
8 , 13π8 , 15π8 }

The IR transmitters are located at angles of: {0π4 ,
1π
4 ,

2π
4 ,

3π
4 ,

4π
4 ,

5π
4 ,

6π
4 ,

7π
4 }.

Note that we usually use angles within [π,−π), but using larger angles will be ok for this part of
the assignment, they will be normalized to [π,−π) by the trigonometric functions.

Hand-in: Write compute bearing() and compute orientation().

1.5.2 Write follow motion controller()

Finally, the good stuff! The last function you need to implement is the heading controller in the
follow motion controller() function. This is responsible for taking a neighbor, finding the
bearing, and steering the follower robot in the proper direction. Remember, the bearing is mea-

4 2015-02-20



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

sured in the robot’s local coordinate system, see Figure 1(a).
You want to design a controller to set the translational velocity, , tv, and the rotational velocity,

rv, to steer the follower robot towards the leader robot. To accomplish this, we’ll compute the
angular error: θerror, between the our current heading and the bearing of the leader robot. If the
leader robot is to the left, the error should be positive. If the leader is to the right, the error should
be negative, i.e θerror ≤ π then you rotate left, otherwise rotate right.

Once you have determined θerror, you need to compute the rotational velocity (rv) as a function
of this error, rv = Krvθerror. Positive values of rv will make the robot turn to the left, negative
values will make it turn to the right. Your function will require you to tune Krv to get the best
performance. This will behave similar to your velocity controller; making this constant too small
will make your follower slugish, but making it too large will make the system unstable. Hand-in:
Write follow motion controller().

2 Following with Distributed Algorithms

In this section, you will adapt the code from Section 1. You will make one function that programs
the robots to follow in order of their robot ID. Each robot will run the same program, so you will
need to design a distributed algorithm that let’s them sort themselves. The lowest ID robot will
become the group leader, and can simply move straight. You can have it avoid walls if you wish
to overachieve.

Design a symmetry-breaking algorithm to ensure that the follower robot with the lowest ID
becomes the leader, the next lowest ID follows the leader, the next lowest ID follows the follower,
and so on. Using explicit IDs is not allowed, your code needs to be self-stablizing and robust
to population changes. Done properly, any robot from any group shold work together. You can
program the leader robot to drive straight, or in a large circle, or avoid walls, or anything you
wish to test this section.

2.1 Hand-In / Check-Off

1. Check-off: Demonstrate your code with leader and two follower robots, sorted in order.

3 Distributed Agreement Theory

The remainder of this lab will deal with distributed agreement. Recall from lecture the difference
between at agreement is the continuous version. In this section, we will construct some proofs
about two different types of agreement.

3.1 Pairwise Agreement

In this section, we will use agreement to compute the average value of a quantity on each robot.
Assume each robot ri has a quantity xi. We wish to compute the mean of these quantities, µ. We
will do so by selecting two neighboring robots at each round, and having them compute their
pairwise average. The number of robots, n is not known, and the number of neighbors of each
robot is also unknown and time-varying.

5 2015-02-20



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

Existence: Show that a global average, µ, does indeed exist, and provide an expression for it.
(Yes, this is a gimmie)

Conservation: Show that local pairwise averages between two robots, ri and rj , preserve the
global average, i.e. the global average is invariant to pairwise averages.

Convergence: Show that each local pairwise average between two non-equal values reduces the
global variance, σ2, of the distribution of averages. Explain how this provides convergence in a
well-mixed network of robots, i.e. one in which the likelihood of robot ri being a neighbor of robot
rj is uniform and bounded away from 0 for all robots i, j. Use the formula for sample variance to
get started:

σ2 =
1

N

N∑
i=1

(xi − µ)2

3.2 Tolerating Errors:

In a real-world application, robots will have multiple neighbors. There will need to be some
kind of communications protocol (a simple algorithm) to select pairs of neighbors who will then
compute their pairwise average.

Protocol Design: Design a communications handshaking protocol to compute a correct pairwise
average. Your answer does not need to be very detailed, just describe which robot says what
to which other robot. Explain how they eventually agree to average with each other and then
compute the correct average.

Correctness: Sometimes messages are lost during communication. Explain if your protocol will
work if messages are lost between the two robots during communication. If the answer is no, what
can you do to fix it? Spend no more than 20 minutes on this question.

3.3 General Agreement

Let’s remove our pairwise average constraint from above and have each robot compute a local
average of all its neighbors simultaneously.

Conservation: Show that local averages between all the robots that are neighbors of ri, does not
preserve the global average. It is sufficient to provide a counterexample to demonstrate this, and
it it possible to do so with a network of three robots. Do not construct a full proof of the eventual
average to answer this part.

Convergence: Show that each local average between neighbors with non-equal values reduces
the global variance of the distribution of averages. Again, start with the sample variance formula
from above to show this.

6 2015-02-20



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
February 10, 2015

Calculation: Describe what information you would need to know to analytically compute the
final agreement value, but do not attempt to derive a analytical formulation for this value. (Hint:
You can illustrate the information required with a network of three robots)

3.4 Hand-In / Check-Off

1. Hand-in: Answers to the above questions.

4 Distributed Agreement in Practice

Now we’ll implement both of these agreement algorithms on the robots.

4.1 Orientation Math

Refer to the local coordinate system for the robots shown in Figure 1(a). Derive an expression for
the angle the reference robot would need to rotate to face in the same direction (the same global
heading) as its neighbor. Assume that the reference robot can measure the bearing, range, and
orientation of the neighboring robot.

4.2 Pairwise Orientation Matching

Using only two robots, write a match orientation() function that makes the robot with the
higher ID face the same direction as the robot with the lower ID. You should reuse your heading
controller from Section 1.5, but with the equation you derived above.

4.3 General Orientation Agreement

Write a average orientation() function that has each robot face the average heading of all of
its neighbors. Be careful how you compute the average of angles, there are many clever-sounding
ways, but only one correct way to do this. Test this with all the robots you can find. Is this cool or
what? But wait, it gets better...

4.4 Flocking

We will combine the remote control from follow-the-leader with this application with the process
of superposition. Write a flock() function that combines the (tv, rv) from the leader robot
with the (tv, rv) from the average orientation() function. (Hint: This is easier than it
sounds.) Test your massive multi-robot flocking with-distributed-agreement machine! w00t!

4.5 Hand-In / Check-Off

1. Hand-in: Your bearing equation from Section 4.1.
2. Check-off: Your match orientation() function in operation.
3. Hand-in: Your bearing equation from Section 4.3.
4. Check-off: Your average orientation() function in operation.
5. Check-off: Your flock() function in operation.

7 2015-02-20


	Follow-the-Leader: 
	Getting Started
	Communications with the r-one
	The PS07.py distribution code

	Remote Control Robot
	Write check_buttons()
	Write test_radio_receive() and test_ir_receive()

	Leader Robot
	Write leader_motion_controller()

	Follower Robot
	Write compute_bearing() and compute_orientation()
	Write follow_motion_controller()


	Following with Distributed Algorithms
	Hand-In / Check-Off

	Distributed Agreement Theory
	Pairwise Agreement
	Tolerating Errors:
	General Agreement
	Hand-In / Check-Off

	Distributed Agreement in Practice
	Orientation Math
	Pairwise Orientation Matching
	General Orientation Agreement
	Flocking
	Hand-In / Check-Off


