
COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

PS03: Multi-Threaded Robot Programming in C
Due: March 26, 2014

Robot systems need to sense, process, and act on information in real-time, with strict timing guar-
antees. For this assignment, you will experiment with the multi-threaded kernel on the rone
robots, and then build four fun behaviors in C: Avoid obstacles, wall-follow, orbit, and tree navi-
gation.

1 Setup

We have created a VirtualBox image to save time and effort installing the C development environ-
ment on your computers. We will use Git for version control. You must learn some basics of Git
to get started, but you do not need to become an expert.

1. Install VirtualBox - https://www.virtualbox.org/wiki/Downloads
2. Download the VirtualBox Appliance - https://www.clear.rice.edu/comp551/resources/

Ubuntu-14.04-COMP551.ova
3. Import VirtualBox Image onto your computer

Open VirtualBox; File->Import Appliance->Select File Location->Select Settings->Import
4. Fork the rice-comp551 Git repository - https://github.com/mrsl/comp551
5. Clone the Git repository onto your VirtualBox machine

You are now setup and can program the robots from Eclipse within the virtual box.

1.1 JTAG Programmer

The JTAG programer is used to flash your C programs on to the r-one. It also allows you to debug
your programs by stepping through your program’s execution and set breakpoints in your code.

Listing 1: jtag test.c
#include "roneos.h"
#include "ronelib.h"

int main (void)
{

systemInit();
systemPrintStartup();

ledsSetPattern(LED_ALL, LED_PATTERN_CIRCLE, LED_BRIGHTNESS_MED, LED_RATE_MED);

osTaskStartScheduler();
//Program should never get here
return 0;

}

1 2015-03-17

https://www.virtualbox.org/wiki/Downloads
https://www.clear.rice.edu/comp551/resources/Ubuntu-14.04-COMP551.ova
https://www.clear.rice.edu/comp551/resources/Ubuntu-14.04-COMP551.ova
https://github.com/mrsl/comp551


COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

2 Tasks, Mutexes, and Messages

Tasks (Threads) are separate execution instances. They each have their own stack, but they share
the general memory with each other. One reason why you would have multiple tasks running
on an embedded system is to separate sensor processing, motor control, and other system tasks
from your program. For example, the IR communication system tracks the robot’s neighbors. It
operates as a background task that updates a neighbor data structure periodically. Your program
will read from this neighbor data structure to learn about neighboring robots. The writes to this
neighbor data dnd the reads from this neighbor data must be mutually exclusive, or mutex, with
each other, to ensure that the shared data does not get corrupted. Please review the FreeRTOS
user guide in the docs directory of the Git repo for a good discussion of tasks and mutexes, we
will present a brief summary here.

A mutex is an operating system object that allows multiple tasks to share a common resource.
In our example, your program and the background neighbor task would like to use the neighbor
data structure. Your task needs to lock the mutex before accessing the neighbor data structure to
prevent conflicts with the other task. If the mutex is taken by another task, then your task would
enter a blocked state and will wait until the mutex becomes available again. A task releases the
mutex after utilizing the data structure so other tasks can continue executing.

A couple problems with using mutexes for concurrent programming is deadlock and priority
inversion. Deadlock occurs when two tasks are waiting for some resource held by the other task
and so cannot make progress. Priority inversion occurs when a higher priority task is delayed by
some lower priority task. For example, suppose a low-priority task takes a mutex to perform some
computation. Then, along comes a high-priority task that also wants to use the same mutex. Since
the mutex is already in-use, the high-priority task enters a blocked state. During the low-priority
task’s execution, a medium-priority task preempts the low-priority task. Now, the low-priority
task is no longer executing and the high-priority task is blocked, waiting for the low priority task
to release the mutex. The medium-priority task is controlling the execution flow when the high-
priority task is supposed to have the highest priority. A solution to priority inversion is priority
inheritance where the low-priority task is raised to priority of the highest priority task waiting for
a mutex. Thus, preventing another task from interrupting the execution of the low-priority task.

Listing 2: led.c
// Testing the colored LEDs.
void buttonColors(void* parameters)
{

uint32 lastWakeTime = osTaskGetTickCount();
uint8 buttonRedOld = 0;
uint8 buttonGreenOld = 0;
uint8 buttonBlueOld = 0;
uint8 buttonRed, buttonGreen, buttonBlue;

while(TRUE)
{

buttonRed = buttonsGet(BUTTON_RED);
buttonGreen = buttonsGet(BUTTON_GREEN);
buttonBlue = buttonsGet(BUTTON_BLUE);
if (buttonRed & !buttonRedOld)
{

2 2015-03-17



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

ledsSetPattern(LED_RED, LED_PATTERN_CIRCLE, LED_BRIGHTNESS_MED,
LED_RATE_MED);

}
else if (buttonGreen & !buttonGreenOld)
{

ledsSetPattern(LED_GREEN, LED_PATTERN_CIRCLE, LED_BRIGHTNESS_MED,
LED_RATE_MED);

}
else if (buttonBlue & !buttonBlueOld)
{

ledsSetPattern(LED_BLUE, LED_PATTERN_CIRCLE, LED_BRIGHTNESS_MED,
LED_RATE_MED);

}
buttonRedOld = buttonRed;
buttonGreenOld = buttonGreen;
buttonBlueOld = buttonBlue;

osTaskDelayUntil(&lastWakeTime, BEHAVIOR_TASK_PERIOD*10);
}

}

int main (void)
{

systemInit();
systemPrintStartup();

behaviorSystemInit(buttonColors, 4096);

osTaskStartScheduler();
//Program should never get here
return 0;

}

The git repository contains the FreeRTOS Documentation. The password for the pdf document
is found the text document in the folder.

Make a two-thread program based on led.c. Each thread should print a unique string 10
times. Something like, “Hippopotamus” and “Platypus”. Do not use any yield or delay functions
from the FreeRTOS API. Use cprintf() to print over the serial port. Use osTaskCreate() to
create the tasks in order to set the task priority. For the other tasks, use behaviorSystemInit()
which is the default function in the behavior system api. Run ./rcs/build/RCSRIO from the ter-
minal command line to read the print statements from the serial port.

1. Make thread 1 a higher priority than thread 2. Capture the output and hand in.
2. Make the two threads the same priority. Capture the output and hand in.
3. Make a new function, serial send string mutex(). Use a mutex to ensure that only

one thread can print at a time. Capture the output and hand in.

Make a three-thread program and a message queue. Thread 1 and 2 should put 10 total messages
on the queue, one every 0.5 second. The messages should be pointers to the strings from above,
and use a different string for each thread. Thread 3 should read the queue and print the message.
You will need to read about how to implement periodic threads in the FreeRTOS book.

3 2015-03-17

https://github.com/mrsl/comp551/raw/master/support/FreeRTOS_Documentation/Using%20the%20FreeRTOS%20Real%20Time%20Kernel%20-%20A%20Practical%20Guide%20-%20Cortex-M3%20Edition.pdf


COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

1. Make thread 1, 2, and 3 the same priority. Capture the output and hand in.

3 Obstacle Detection and Wall Following

Listing 3: basic motion.c
#include "roneos.h"
#include "ronelib.h"

void behaviorTask(void* parameters) {
uint32 lastWakeTime = osTaskGetTickCount();

Beh behOutput;
while (TRUE)
{

/* Initialize the output behavior to inactive */
behOutput = behInactive;

behSetTv(&behOutput, 100);
motorSetBeh(&behOutput);
osTaskDelayUntil(&lastWakeTime, BEHAVIOR_TASK_PERIOD*10);

}
}

int main (void)
{

systemInit();
systemPrintStartup();

behaviorSystemInit(behaviorTask, 4096);

osTaskStartScheduler();
//Program should never get here
return 0;

}

Make a new program based on basic motion.c. Use a background thread to read the ob-
stacle detector with the irObstaclesGetRangeBits() function.

1. Make an obstacleAngleCompute() function that takes the obstacle bits and computes
the direction of the obstacle. Refer to the process nbr message() function for inspiration
on computing direction from bits. Note that you will potentially need to deal with obstacles
on many different sides of the robot.

2. Make a avoidObstacles() function that takes the obstacle angle and steers the robot
away from obstacles. Put this function into a program to make the robot wander around the
environment.

3. Make a followWall() function that takes the obstacle angle and drives the robot along a
wall. Print the turning angle around corners to the console.

4 2015-03-17



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

3.1 API hints

Here are some of the functions you will need to implement this section. Full details are in the rone
API web pages.

Behavior System

1. struct Beh - roneLib/src/Behaviors/behaviorSystem.h - the values that move the robot
2. motorSetBeh(behOutputPtr) - Move robot based on beh struct
3. irObstaclesGetBits - roneOS/src/irComms/neighbors.h - the directions the IR sensors detect

obstacles
4. irObstaclesGetRangeBits - roneOS/src/irComms/neighbors.h - the estimated distance to

the obstacles - IR range bits

4 Orbit

Make a new program that creates an orbit task. Select a leader out of the neighboring robots using
the robot id. The leader stays in-place while the other robots rotate around the leader. The orbiting
robot should follow a circle centered at the leader with the distance from the robot to the leader as
the radius.

4.1 API hints

Here are some of the functions you will need to implement this section. Full details are in the rone
API web pages.

Neighbor System - roneos/src/IRComms/neighbors.h

1. NbrList - Array of neighbor data
2. nbrListCreate(nbrListPtr)
3. nbrListClear(nbrListPtr)
4. nbrListPrint(nbrListPtr, string name)
5. nbrListGetSize(nbrListPtr)
6. nbrListGetNbr(nbrListPtr, index)
7. nbrListFindSource(nbrListPtr, broadcastMsgPtr) - find the neighbor that is the source of the

broadcast
8. nbrListPrintHops(nbrListPtr, broadcastMsgPtr, string name) - print neighbors and hop count

Broadcast Communication - roneLib/src/NeighborListOps/BroadcastComms.c

1. BroadcastMessage struct
2. broadcastMsgCreate(broadcastMsgPtr, MAX HOPS) - Create broadcast message
3. broadcastMsgIsSource - Check if this robot is the source of the broadcast message
4. broadcastMsgUpdateLeaderElection - Select leader by changing broadcast message to the

robot with the lowest id and hop count
5. broadcastMsgUpdate - Update broadcast message; Allows for multiple sources but no leader

election

5 2015-03-17



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

6. broadcastMsgUpdateNbrData - Update local neighbor data with the incoming data from the
sender of broadcast message

5 Tree Navigation

Create a self-stabilizing tree that allows the leaf nodes to navigate to the root node.

5.1 Write self stabilizing tree function

Select the robot with the lowest id as the root node. The remaining robots should select the neigh-
bor with the smallest number of hops to the root as their parent. Break ties between each robot by
choosing the robot with the lowest id.

Turn on all R,G,B leds for the root node. Use the circle red led pattern when the robot does not
have any neighbors. Set the count on each color of leds with the function:
ledsSetPattern(color, LED PATTERN COUNT, brightness, count)

Where count ranges from 0-5. This will show colors on one led, and clear the rest. You can
indicate more than 5 hops with different colors:

1. Red - 1-5 hop
2. Green - 6-10 hops
3. Blue - 11-15 hops

5.2 Add tree navigation functionality

Select a robot in the tree using a button push. The robot will then use the tree to navigate to
the root node. The robots should update their hop count and parent nodes, allowing the tree to
self-stabilize.

5.3 Special Case

Consider if you select a robot in the tree that is not a leaf node. You could potentially separate some
of the robots from the rest of the tree because they are no longer connected by the intermediate
parent node. Implement some basic changes to your algorithm to improve its resilience to this
scenario and summarize your design choices.

API Reference

1. ledsSetPattern(color, pattern, brightness, flash rate) - roneos/src/InputOutput/leds.h
2. ledsClear(ledColor)
3. buttonsGet(buttonID) - roneos/src/InputOutput/buttons.h

6 Hand-In / Check-Off

1. Hand-in: Your traces from Section 2.
2. Check-off: Your avoidObstacles() and followWall() function in operation.
3. Check-off: Your orbit() function in operation

6 2015-03-17



COMP 551: Advanced Robotics Lab
Spring, 2015

Rice University
March 12, 2014

4. Check-off: Your self stabilizing tree() functions in operation
5. Hand-in: A summary of how your implementation handles the tree navigation special case

7 2015-03-17


	Setup
	JTAG Programmer

	Tasks, Mutexes, and Messages
	Obstacle Detection and Wall Following
	API hints

	Orbit
	API hints

	Tree Navigation
	Write self_stabilizing_tree function
	Add tree_navigation functionality
	Special Case

	Hand-In / Check-Off

