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Abstmct- This paper describes decentralized control laws 
for the coordination of multiple vehicles performing spa- 
tially distributed tasks. The control laws are based on a 
gradient descent scheme applied to a class of decentralized 
utility functions that encode optimal coverage and sensing 
policies. These utility functions are studied in geographi- 
cal optimization problems and they arise naturally In vector 
quantization and in sensor allocation tasks. The approach 
exploits the computational geometry of spatial structures 
such as Voronoi diagrams. 

I. INTRODUCTION 

Technological advances in wireless networking and in 
miniaturization of electro-mechanical systems are leading 
to the design and deployment of swarms of interconnected 
robotic systems. Communicating through ad-hoc net- 
works, large numbers of coordinated autonomous vehicles 
will perform a variety of challenging tasks in aerial, under- 
water, space, or land environments. In scientific and com- 
mercial domains, coordinated vehicles will perform search 
and recovery operations, manipulation in hazardous en- 
vironments, exploration, surveillance and reconnaissance, 
distributed data collection and fusion, and environmental 
monitoring for pollution detection and estimation. 

Our central motivation is provided by distributed sensing 
networks in scientific exploration or surveillance missions. 
The motion coordination problem is to maximize the in- 
formation provided by a swarm of vehicles taking measure- 
ments of some process. A similar problem arises when the 
sensors are either mobile or recodigurable, e.g., range and 
focus or pan and tilt of an active camera system. 

Working prototypes of such sensing networks have al- 
ready been developed; see [l], [2], [3], [4]. In (41, launch- 
able miniature mobile robots communicate through a wire- 
less network. The vehicles are equipped with various micro 
electro-mechanical devices including sensors for vibrations, 
acoustic, magnetic, and IR signals as well as an active video 
module (i.e., the camera or micro-radar is controlled via a 
pan-tilt unit). A related system is suggested in [5] under 
the name of Autonomous Oceanographic Sampling Net- 
work; see also [6], [7], [8]. In this case, underwater vehicles 
are envisioned measuring temperature, currents, and other 
distributed oceanographic quantities. The vehicles commu- 
nicate via an acoustic local area network and coordinate 
their motion in response to local sensing information and 
to evolving global data. This distributed sensing network 
would provide the novel ability to sample the environment 
adaptively in space and time. By identifying evolving tem- 
perature and current gradients with higher accuracy and 
resolution than current static sensors, this technology could 
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lead to the development and validation of improved oceano- 
graphic models. 

Literature Review 

Recent years have witnessed a large research effort fo- 
cused on motion planning and motion control problems for 
multi-vehicle systems. Issues include formation control [9], 
[lo], [HI, [12], cooperative motion planning [13], [14], co- 
operative manipulation [15], conflict avoidance [16], [17], 
and architectures for distributed control [18]. Motivated 
by applications in the context of distributed sensing net- 
works, we identify a novel “coverage” control problem for 
multi-vehicle systems and we strive to design decentralized 
control laws that optimize the vehicles’ locations for sens- 
ing purposes. Our starting point is the survey [19] on cen- 
troidal Voronoi tessellations and the treatment of locational 
optimization problems in the textbook [20]. Furthermore, 
our approach is related to a number of methods in (i) vec- 
tor quantization for image processing, (ii) design optimal 
quadrature rules, (iii) clustering analysis and the k-means 
problem, (iv) optimal resource placement, and (v) mesh 
optimization methods. For example, we refer the reader 
interested in algorithms for mesh optimization to the sur- 
veys [21], [22]. 

Statement of Contributions 

Our technical approach is based on decentralized gradi- 
ent methods for geographic cost functions called locational 
optimization problems; see [20]. Decentralized control laws 
in robotics have traditionally been the subject of behavior- 
based robotics [9], [18], [23] and have been designed mainly 
on the basis of heuristics. In this paper, we propose a for- 
mal definition of decentralized utility function. We notice 
how a class of geographic optimization problems called lo- 
cational optimization precisely enjoys the required proper- 
ties. We present our treatment for general manifold spaces, 
we provide a coordinate-free version of the differential of 
the locational optimization formula (and of its proof), and 
we collect a number of elementary facts about area, cen- 
troid, and polar moment of inertia for planar Voronoi re- 
gions. Finally, we present some ideas on how to include 
formation constraints in the coverage problem. 

The paper is organized as follows. Section I1 presents 
some basic ideas and tools. Section 11-B contains the def- 
inition of decentralized utility function and the locational 
optimization problem is discussed in Section 111. A variety 
of simplifications take place when dealing with Euclidean 
spaces and metrics, as shown in Section IV. 
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11. PRELIMINARIES 
A. Setting up the coverage control 

In this section we investigate decentralized control laws 
that achieve “uniform coverage” of a certain space. The 
problem is loosely stated as follows: given an area A and 
n vehicles, design a decentralized control law such that the 
overall vehicles’ distribution over A is uniform. For i E 
(1,. . . , n}, let pi(t) E R2 denote the position of the ith 
vehicle at time t, and let 

h(t)  = ui (1) 
where the control ui can depend only on local information, 
i.e., the location of pi and of its neighbors. Since the con- 
trol law depends only on neighbors, we refer to it as an 
interaction law between vehicles. 

B. Decentralized utility functions 
Consider a multi-vehicle system where each agent evolves 

on three dimensional Euclidean space or on more general 
spaces such as matrix Lie groups and symmetric spaces. 
Let the configuration space of each vehicle be the manifold 
with boundaries Q. A Riemannian metric ((. , .)) on Q de- 
fines a metric tensor G, a distance notion between points 
and boundaries on Q, nearest neighbor Ni to the point pi, 
and gradient vector fields of scalar functions. Let En be 
the discrete group of permutations with the natural action 
on Q” and let &“/E, be the shape space of Q”. We call 
U : &“/En I+ W+ a decentralized utility function if the 
gradient control law 

~ i b l , . .  . ,Pn) = - gradi u(Pi,. . ,Pn), (2) 
depends only on the location pi and its nearest neighbor Ni. 
The notation gradi U refers to the gradient of the function 
U with respect to the argument pi. We shall also consider 
control laws that depend on a finite number of neighbors 
of the point p i .  

C. Abstract Voronoi diagrams 
An overview of Voronoi diagrams is presented in [24], 

[25], concepts and applications are discussed in [26] and 
abstract Voronoi diagrams are discussed in [27]. Centroidal 
Voronoi tessellations are discussed in [19]. 

Let {pi,. . . ,pn}  be a collection of points in a metric 
space Q. Let the Voronoi region = V(pi) be the set 
of all points q E Q such that, dist(q,pi) 5 d(q,pj) for all 
j # i. If Q is a finite dimensional Euclidean space, the 
boundary of each K is a convex polygon. The set of regions 
{Vl,. . . , Vn} is called the Voronoi diagram for the genera- 
tors {PI,. . . ,pn}. When the two Voronoi regions V, and V, 
are adjacent, pi is called a (Voronoi) neighbor of p j  (and 
vice-versa). We also define the (i,j)-edge as Aij = KnQ. 

Voronoi diagrams can be defined with respect to various 
distance functions, for example with respect to the 1-, 2- 
, s-, and m-norm over Q = Rm. Voronoi diagrams can 
be defined over Riemannian manifolds such as spheres and 
matrix Lie groups; see [28]. When Q = B2 and the distance 
function is Euclidean distance, it is known [20] that (i) 
the nearest vehicle p j  to pi is a neighbor, (ii) the average 
number of neighbors is six. 

111. LOCATIONAL OPTIMIZATION 

We present a utility function that measures the ability 
of a collection of vehicles to provide accurate distributed 
sensing. We rely on a class of “geographic optimization 
problems” known within the context of geographical infor- 
mation science; see [20], [26], [29]. 

Let $ : Q H E%+ be a distribution density function, 
that is a scalar function 011 Q. The measure 4 plays 
the role of an “information density” or of a probability 
density function. In a uniform environment, one might 
set $(q)  = Volume(Q)-l, whereas a non-uniform 4 would 
be appropriate to monitor targets that navigate over pre- 
identified areas with high likelihood. 

Assume each vehicle has a sensor that provides accurate 
local measurements and whose performance degrades with 
distance. Formally, let f (dEst(q,pi)) describe the perfor- 
mance degradation, e.g., noise, loss of resolution, etc, of 
the measurement at the point q E Q taken from the ith 
sensor at position pi. The function f : W+ H W+ is mono- 
tone increasing, one example being a Gaussian-shaped de- 
pendency f(z) = l - exp(-:c). 

The overall “sensing performance” or coverage measure 
is an integral over Q. To avoid all sensors monitoring the 
same area, we weigh the rela.tive contributions of each sen- 
sor through a max operation, i.e., we define: 

The locational optimization problem is to minimize U; in 
network optimization, vector quantization, and the equiv- 
alent discrete problem is known as the n-means clustering 
problem. Using the notion of Voronoi diagram and denot- 
ing the measure element as a!4(q) = $(q)dq, one can rewrite 
the locational optimization function as: 

Remark III.1: The integral defining the locational opti- 
mization function is well defined over manifolds whenever 
a volume element is available. This is the case when the 
metric space Q is an oriented Riemannian manifold with a 
volume n-form. Examples include R”, sphere, and any Lie’ 
group. 

A. Examples 
We illustrate the locationd optimization function via two 

examples. 
First, let x be a random variable over Q with probability 

density function $. Given sensors at n locations p l ,  . . . ,p , ,  
minimize the expected value of the distance of x from the 
closest sensor, i.e., the expected value of the function 

min dist(x,pi). 
ic{l, ..., n}  

This cost objective is equa.1 to the cost function in equa- 
tion (3) with f(z) = z since 
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Second, consider the problem of estimating an unknown 
parameter determining the evolution of a distributed quan- 
tity; see [30], [31], [32], [33], [34]. Specifically, let 6 be a 
parameter to be identified, and assume a sensor at posi- 
tion q E Q acquires a measurement y = y(8,q). Define 
a normalized version of the Fisher information value as 
M(q,  0 )  = and recall from Cramer-Rao theorem 
that the covariance of any estimation algorithm based on 
the measurement y is lower-bounded by 1/M. In other 
words, the location q is a good position to observe the 
parameter e if the sensitivity (ay/ae) is “large.” The 
approach in [31], [33] can be described in our setting by 
the selection of density functions 41(q) = E [M (4, e)], or 
&(q)  = M ( q ,  $), where 8 is the current estimate of 8. 

B. The differential of the locational optimization function 
We start with a preliminary result that is related to the 

integral form of the conservation of mass lemma in flu- 
ids [35] and to classic divergence theorems; see [36, Chapter 

Lemma III.2: Let R = R(x)  c Q be a region that d e  
pends smoothly on a real parameter x E R and that has a 
well-defined boundary aR(x) for all 2. Let q5 be a density 
function over Q. Then 

11 * 

where n is the unit outward normal to dR(x), and where 
dq/dx denotes the derivative of the boundary points with 
respect to x. 
The differential of the locational optimization function 

is presented in the following lemma. The proof is an exten- 
sion to Riemannian manifolds of the procedure in [19]. An 
alternative proof for the Euclidean case is described in [37]. 

Lemma 111.3: The partial derivative of the locational op- 
timization function is: 

Proof: The Voronoi regions V = {&} generated by 
P = {PI,. . . ,pn} provide a tessellation of the manifold Q. 
We let P V ( P )  denote the mapping that associates a 
Voronoi tessellation to a collection of generators P. In 
what follows, we let W = {Wi} be a generic tessellation of 
the manifold Q, and we define 

Since U(P1,.  . . , p a )  = Z(P ,  V (P) ) ,  we have 

au ax m ax av 
api  api  api  aw w=vdpi7 
- = -(P,V(P)) = - + -1 

and since 

it suffices to show that (6%/aW)(aU/l3p,) vanishes at W = 
V .  We therefore focus on computing 

where we regard the functions &(q) = f(dist(q,pk))q5(q) 
independent of p i .  Since the motion of p ,  affects the 
Voronoi region & and its neighboring regions Vj for j E 
{a,. . . , j k i } ,  we have 

Now, Lemma 111.2 provides the means to analyze the vari- 
ation of an integral function due to a domain change. Since 
the boundary of & satisfies 8% = uj Asj, where A, = Aji 
is the edge between & and 5, we have 

where we define nij as the unit normal along Aij outward 
of &, and where therefore we have nj, = -nij. Collecting 
these results we write 

When W = U = V(P) ,  we have that f(dist(q,pi)) = 
f(dist(q,pj)) and therefore 4i(q) - $ j ( q )  = 0 for any q 
belonging to the edge Aij. This concludes the proof. 

We summarize the discussion above as follows. 
Proposition III.1: The control law in equation (2) b e  

comes 

and makes the vehicles converge to an extremum point of 
the locational optimization function. 

C. Formation constraints 
Formation and distance constraints might arise for a va- 

riety of reasons including communication constraints in en- 
vironment with obstacles. The following treatment is in- 
spired by the presentation in [12]. 

A formation constraint function is a differentiable, pos- 
itive definite, strictly convex function F : Q x . . . x Q --t 
R+. The shape and orientation of the robot formation is 
uniquely determined by ( p l ,  . . . ,pn) = F-l(O). A semidef- 
inite function F allows for a free orientation and location 
of the formation. Consider for example 

F@I,. . . , ~ n >  = x~ij (dist(pi,pj) - d i j )2  

i#j 
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where rij = rji 2 0. Only relative distances appear, there- 
fore the formation is maintained under rigid displacements. 

To maximize coverage while maintaining formation, the 
vehicles need to solve the constrained nonlinear minimiza- 
tion problem 

subject to ~ i j  (dist(pi,pj) - dij)' = 0 
i# j  

Algorithms for this optimization problem can be de- 
signed in various manners. If the formation is to be main- 
tained accurately as the agents move, one could employ 
Lagrange multipliers. If instead the formation constraint is 
to be regarded as a performance measure to be optimized 
together with the coverage measure, one could employ a 
penalty function method. In other words, a penalty func- 
tion methods corresponds to a gradient descent control for 
the function V(p1,. . . ,pn)+XF(pl, .  . . ,pn), for some scalar 
A > 0. 

1V. EUCLIDEAN SETTING 

In this section we start by reviewing definitions and ex- 
pressions for the center of mass and the polar moment of 
inertia of planar regions and in particular of convex poly- 
gons. We later show the connection of these concepts with 
the treatment in the previous section. 

Let V be a connected subset of the plane Wm with density 
function p(q). The mass MV E W+, the centroid CV = 
(CV,,, CV,,) E R", and the polar moment of inertia J v , ~  E 
I[$+ about the point p of the region V are defined as 

M v  = s, 4 

Additionally, by the parallel axis theorem, one can write, 

where Jv,cV E I+ is defined as the polar moment of inertia 
of the region V about its centroid. 

Next, we show how, under certain hypothesis, the inte- 
gration step necessary to compute the control law (5) can 
be avoided by taking into account the problem geometry. 
Indeed, we obtain an algebraic expression of the gradient 
control law in terms of the vertices of the Voronoi regions. 

A .  Voronoi Regions an W m  

We make the following four assumptions in the loca- 
tional optimization problem. Assume the n sensors live on 
a compact polyhedra in Wm, and the distance function is 
dist(q,pi) = (Iq-pill.  Furthermore, assume that f(z) = 2' 
and dJ(q) = p(q). Then the locational optimization function 

in equation (4) becomes 

n -  

ll 

= JVi,Pi 
i=l 
n n 

= JVi,CVi + MVi IIPi - cvi I ?  
i=l i=l 

where J V , , ~ ~  is the polar moment of inertia of the Voronoi 
region about the point p i ,  and Mv, is the mass of the 
Voronoi region Vi. 

Additionally, the control law in equation (5) becomes 

(7) 

It is worth noting that the control law pi = -aU/api  = 
2Mx (Cvi -p i )  has the geometric interpretation that each 
vertex goes toward the centroid of its Voronoi region. In 
other words, the equilibrium state is reached when all ver- 
tices are in the centroid of their respective Voronoi poly- 
gons. Furthermore, the function U and its partial deriva- 
tive depend uniquely on the Voronoi polygon vl, and the po- 
sition p i ,  which makes the control law decentralized. Sim- 
ilar arguments are at the basis of the Lloyd algorithm for 
vector quantization described in [19]. 

B. Voronoi Regions in W2 with Unaform Density 

In this section, we assume the Voronoi region Vi is 
a convex polygon on a plane with Ni vertices labeled 
{(zo, yo), . . . , (ZN,-~,  yj~,-l)} such as in Figure 1. It is 
convenient to define (ZN, , ylv,) = (20, yo). Furthermore, 
we assume that the density function is unity, i.e. dJ(q) = 
p ( q )  = 1. By evaluating the integrals over the polygon, one 

Fig. 1. Notation conventions for a convex polygon. 
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can obtain the following closed form expressions 

N,-1 

M V ;  = - ( z k Y k + l  - z k + l Y k )  

Cost Function k=O 
Ni-1  

c K , z  = - (zk + z k + l ) ( z k Y k + l  - z k + l Y k )  
6 M V ;  k=O 

1 N i - l  

6 M V i  k=O 
c K , v  = - (Yk + Y k + l ) ( s k Y k + l  - x k + l Y k ) .  

To present a simple formula for the polar moment of inertia, 

l}. Then one can show that polar moment of inertia of a 
polygon about its centroid, JK,C becomes 

kt %k = x k - C V , , r  and g k  = y k - C V , , y ,  for k E (0,. . . , Ni- 

1 Ni- l  
JV;,Cv; = - (%kgk+l  - Z k + l g k )  * 

l2 k=O 

(3: + % k z k + l +  z:+, + a: + g k g k + l +  $+I). 

To compute the polar moment of inertia J K , ~ ;  of the 
Voronoi polygon about 8n arbitrary point pi, one can use 
equation (6 )  as, 

Fig. 2. Uniform distribution of sensors obtained by 16 vehicles in 
a polygonal environment. The vehicles' initial positions are in a 
tight group in the lower left corner and their final positions are 
optimally distributed. J K , p ;  = Jv;,cv4 + MVi llPi - cvi 1 1 2 .  

The proof of some of these formulas can be found in [38]; 
they are all based on decomposing the polygon Vi into the 
union of disjoint triangles. 

C. Simulations 
In this section we provide a simulation for the control 

laws described in Section IV for the planar Euclidean set- 
ting with uniform density. The results are shown in the 
four illustrations in Figure 2. The vehicles' initial locations 
are in a tight group in the lower left corner of the admis- 
sible region; see the bottom-left figure. The vehicles' final 
locations are illustrated in the bottom-right figure. The 
bottom left and right figure also illustrate the initial and 
final Voronoi diagrams. The reduction in the cost func- 
tion shown in the top-right figure provides a measure of 
the uniform coverage the vehicles provide. The paths of 
the vehicles are also included in the top-left figure: the ini- 
tial locations are shown as small diameter black circles and 
final locations are shown as larger diameter red circles. 

--..___ 
i , 7-----.-.., 

/ 
/ /" j 

We have presented some new control laws for networks ,I' /":. <,% /" / 
/ 
/ 

i /' 
V. CONCLUSIONS 

of mobile agents performing a spatially distributed sensing 
task. The technical approach relies on ideas from loca- 
tional optimization and centroidal Voronoi diagrams. The 
approach in this note leads to a variety of interesting av- 
enues of research that seem amenable to technical progress. 

Future research directions include extending the control 

['-. ..\ /r 
1.- ---:if$--....--- / --.._._ 

------..7 /,/ 
/' ; 
~,_________I...._; 

- 
laws to the setting of time-varying environments (e.g., con- 
sider a time-varying distribution density function), non- 
isotropic sensors (e.g., such as cameras and directional an- 

Fig. 3. Non-uniform setting. The distribution density function has 
inverse exponential about the location shown by the large 

circle in the bottom left and right figures. - -  
tenn&), and noninear dynamics (e.g., nonholonomic vehi- 
cles). Additionally, we plan to implement our algorithms 
on a group of all-terrain vehicles. 
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