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On the Shape o f a  Set o f Points in the Plane 
HERBERT EDELSBRUNNER, DAVID G . KIRKPATRICK, AND RAIMUND SEIDEL 

Abstract-A generalization of the convex hull of a finite set of points in Akl and  Toussaint [ 11, for instance, discuss the relevance 
the plane is introduced and analyzed. This generalization leads to a family 
of straight-line graphs, “o-shapes,” which seem to capture the intuitive 

of the convex hull problem to pattern recognition. By 
notions of “fine shape” and “crude shape” of point sets. It is shown that identifying and  ordering the extreme points of a  point set, 
a-shapes are subgraphs of the closest point or furthest point Delaunay the convex hull serves to characterize, at least in a  rough 
triangulation. Relying on this result an optimal O( n log n) algorithm that way, the “shape” of such a  set. Jarvis [9] presents several 
constructs o-shapes is developed. algorithms based on  the so-called nearest neighbor logic 

that compute what he  calls the “shape” of a  finite set of 
I. INTR~DUOTION points. The  “shape,” in Jarvis’ terminology, is a  notion 

T HE efficient construction of convex hulls for finite 
sets of points in the plane is one  of the most exhaus- 

tively examined problems in the rather young field often 
referred to as “computational geometry.” Part of the 
motivation is theoretical in nature. It seems to stem from 
the fact that the convex hull problem, like sorting, is easy 
to formulate and  visualize. Furthermore, the convex hull 
problem, again like sorting, plays an  important role as a  
component  of a  large number  of more complex problems. 
Nevertheless, much of the work on  convex hulls is moti- 
vated by direct applications in some of the more practical 
branches of computer science. 
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made  concrete by the algorithms that he  proposes for its 
construction. Besides this lack of any analytic definition, 
the inefficiency of Jarvis’ algorithms to construct the 
“shape” is a  striking drawback. More recently, Fairfield [6] 
introduced a  notion of the shape of a  finite point set based 
on  the closest point Voronoi d iagram of the set. He inform- 
ally links his notion of shape with human perception but 
presents no  concrete properties of his shapes, in particular, 
no  algorithmic results. (See also Toussiant [20] for another 
definition of the shape of a  set based on  the Voronoi 
diagram.) 

In this article, we introduce the notion of the “a-shape” 
of, a  finite set of points, for arbitrary real (Y. This notion is 
derived from a  straightforward generalization of one  com- 
mon  definition of the convex hull. Optimal algorithms for 
the construction of a-shapes and  certain related structures 
are described. Consideration is given to the efficient con- 
struction of the a-shapes of a  point set for several (Y’s. The  
efficiency of our algorithms, in addition to other nice 
properties of a-shapes, leads us to believe that the family of 
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all a-shapes, which we formalize as the shape spectrum, 
will find applications in a number of fields, including 
pattern recognition and cluster analysis. 

In the next section, the notions of a-hull and a-shape are 
introduced along with a few of their basic properties. 
Section III describes the close connection between a-shapes 
and Delaunay triangulations. This serves as a basis for 
efficient algorithms to construct a-shapes and the shape 
spectrum presented in Section IV. In Section V we briefly 
discuss the problem of constructing an a-hull. The final 
section presents some concluding remarks and open ques- 
tions. 

II. BASIC NOTIONS 

Given a set S of n points in the plane (n being a positive 
integer), the conzlex hull of S may be defined as the 
intersection of all closed halfplanes that contain all points 
of S. We consider the following generalization of this 
concept. 

Definition 1: Let (Y be a sufficiently small but otherwise 
arbitrary positive real. The a-hull of S is the intersection of 
all closed discs with radius l/a that contain all the points 
of s. 

In order to achieve an intersection of discs, it has to be 
guaranteed that there exists at least one disc of the chosen 
size that contains all points. This implies that the smallest 
possible value for l/a is equal to the radius of the smallest 
enclosing circle. In fact, Jung [lo] showed in 1901 that l/a 
no less than 3-l/* times the diameter of S suffices, no 
matter how the points are distributed. 

In Fig. 1 the a-hull for a particular sufficiently small 

Fig. 1. Positive a-hull. 

Fig. 2. Negative a-hull. 

positive (Y is depicted. Intuitively, large (but still suffi- 
ciently small) (Y give rise to hulls that have only in some 
sense “essential” extreme points on their boundary. As (Y 
approaches zero, the a-hull approximates the common 
convex hull. 

Definition 2: For arbitrary negative reals (Y, the a-hull is 
defined as the intersection of all closed complements of 
discs (where these discs have radii - l/cw) that contain all 
the points of S. 

Fig. 2 displays such a hull for the same point set as used 
in Fig. 1. For convenience, let us define the O-hull as being 
the usual convex hull of the points and let us agree that the 
intersection of no discs (which may occur for large positive 
a) is equal to the entire plane. 

If we define a generalized disc of radius l/a as a disc of 
radius l/a if (Y > 0, the complement of a disc of radius 
- l/a if (Y < 0, and a halfplane if ~1 = 0, then the preced- 
ing definitions could be combined as follows: for an arbi- 
trary real (r and a set S of points in the plane, the a-hull of 
S is the intersection of all closed generalized discs of radius 
l/a that contain all the points of S. 

Thus we have a family of a-hulls for (Y ranging from 
- cc to cc. Sample members of this family are the entire 
plane (for (Y sufficiently large), the smallest enclosing circle 
of S (when l/a equals its radius), the convex hull of S (for 
(Y = 0), and S itself (for (Y sufficiently small). All the 

members of this family satisfy the following simple rela- 
tionship. 

Observation I: The a,-hull of a set of points is contained 
in the a,-hull if (Y, 6 C-X*. (For example, the a-hull of Fig. 2 
is contained in that of Fig. 1.) 

The focus of this paper, however, will not be the con- 
tinuous family of a-hulls, but rather the discrete family of 
what we call “ar-shapes.” 

Before defining a-shapes we need some additional no- 
tions. 

Definition 3: A point p in a set S is termed a-extreme in 
S if there exists a closed generalized disc of radius l/cy, 
such that p lies on its boundary and it contains all the 
points of S. If for two a-extreme pointsp and 4 there exists 
a closed generalized disc of radius l/a with both points on 
its boundary and which contains all other points, then p 
and q are said to be a-neighbors. 

For convenience we assume that no four points in S are 
cocircular and no three points colinear. The minor difficul- 
ties that arise in such cases can be treated by more elaborate 
definitions and considerations, which would only tend to 
detract from our presentation. 

Definition 4: Given a set S of points in the plane and an 
arbitrary real cr, the a-shape of S is the straight line graph 
whose vertices are the a-extreme points and whose edges 
connect the respective a-neighbors. 



EDELSBRUNNER et ai.: SHAPE OF POINTS IN THE PLANE 

(4 

@ I 04  
Fig. 3. Positive and negative a-shape. Fig. 4. Interior faces of a-shapes. 

In F ig. 3  the a-shapes of the same set of points and  the 
same reals a  as used in F ig. 1  and  F ig. 2  are displayed. 

The  following observation corresponds directly with Ob- 
servation 1. 

Observation 2: The  set of cu,-extreme points in S is a  
subset of the a,-extreme points if (Y, 2  (Y*. For example, 
the vertices of the a-shape in F ig. 3(a) are a  subset of those 
in F ig. 3(b). 

The  a-shape was defined to be  a  straight line graph. In 
certain applications, however, the intuitive notion of the 
“shape” of a  set of points in the plane is not as well 
expressed by a  set of straight line segments and  points as 
by an  area of “foreground” juxtaposed against a  comple- 
mentary “background.” These two-dimensional notions can 
be  captured with the a-shape by classifying some of its 
faces-it is a  planar graph after al-as either “interior” 
(foreground) or “exterior” (background) faces. 

Definition 5: Let S be  a  set of points in the plane and  
(Y f 0. Let F be a  face of the a-shape of S and  let e  be  a  
boundary edge  of F. For Q I > 0, e  is called a  positive edge of 
F  if the closed disc of radius l/q with the endpoints of e  
on  its boundary and  its center strictly on  the same side of e  
as F, contains all the points of S. O therwise e  is called a  
negative edge of F. For a < 0, e  is called a  positive edge of 
F  if the open  disc of radius l/a, with the endpoints of e  on  
its boundary and  its center strictly on  the same side of e  as 

F, contains at least one  point of S. O therwise e  is called a  
negative edge of F. 

Definition 6: For (Y * 0, a  face F of the a-shape of a  
planar point set S is called interior if one  of its boundary 
edges is a  positive edge  of F, and F is called exterior if one  
of its boundary edges is a  negative edge  of F. For (Y = 0, 
the bounded face of the O-shape (i.e., the convex hull) of S 
is the (only) interior face and  the unbounded face is the 
(only) exterior face. 

F ig. 4  shows the a-shapes displayed in F ig. 3  with their 
interior faces shaded. Note the similarity between the 
interior faces of the a-shapes in F ig. 4  and  the a-hulls in 
F igs. 1  and  2. In some sense the interior faces of an  
a-shape can be  viewed as an  o-hull with straight line 
segments as boundar ies instead of circular arcs. 

Intuitively, “relatively large” (Y tend to produce a  rather 
crude shape of the points (the extreme being a  chord or an  
inscribed triangle of the smallest enclosing circle), whereas 
smaller (Y reveal more and  more details, until, as (Y ap- 
proaches - cc, all points are isolated extreme points of the 
shape. Thus cw-neighborl iness is not monotonic with de- 
creasing (Y like a-extremeness. As we shall see in the next 
section, two points can be  cu-neighbors only for some finite 
interval of ~1 values. This, a long with a  characterization of 
exactly which pairs can be  a-neighbors, is what makes 
possible the efficient construction of a-shapes. 
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III. WSHAPESAND DELAUNAYTRIANGULATIONS 

In this section we make precise the rather close relation- 
ship that exists between a-shapes and Delaunay triangula- 
tions. Specifically we show that any a-shape of a set S of 
points is a subgraph of either the closest point or the 
furthest point Delaunay triangulation (whose definitions 
and properties are presented below). Other subgraphs of 
the closest point Delaunay triangulation have been studied, 
including the minimum spanning tree [ 171, the Gabriel 
graph [12], and the relative neighborhood graph [19], [18]. 
In the general case, however, none of these graphs is a 
member of the family of a-shapes of S. 

First we present a few facts about Voronoi diagrams and 
Delaunay triangulations. Given a set S of 12 points in the 
plane, the closest point Voronoi diagram of S VDJS) is a 
covering of the plane by n regions VP, p E S, where 

Vp = {xld( p, x) < d(q, x), P * q E S>. 

Similarly the furthest point Voronoi diagram of S VDt(S) is 
defined by the regions 

Wp = Wb, x) a d(q, xhp = q E 9, p E s. 

We will need the following properties of these diagrams. 

Fact I: 
The regions Vr and Wp are closed, convex, and 
bounded by straight line segments, called 
Voronoi edges, for all p E S. 

Fact 2: 
Each region VP of VD,(S) contains p. Provided 
n > 1, each region Wp of VD,( S) does not con- 
tain p. 

Fact 3: 
The regions I$ and Wp are unbounded if and 
only if p is a point on the convex hull of S. 
Otherwise 5 is a nonempty convex polygon and 
Wr is empty. 

For proofs leading to Facts 1 to 5 and other properties of 
these constructions consult [17]. An algorithm which uni- 
fies the closest and furthest point case is given by Brown 
PI. 

In the following we assume that our point set S is fixed. 
The relationship between the Delaunay triangulations and 
a-shapes is given by the following lemma. 

Lemma I: The a-shape of S is a subgraph of DTf(S) if 
(Y > 0 and a subgraph of DT,(S) if a < 0. 

Proof: Trivially each vertex of an a-shape is also a 
vertex of the respective Delaunay triangulation. Next, we 
need to show that, if p and q are a-neighbors, then they are 
adjacent in the respective Delaunay triangulation. We con- 
sider three cases: 

a) (Y = 0: The convex hull is a subgraph of both DT,(S) 
and DT,(S) by Fact 4. 

b) (Y > 0: Let p and q be a-neighbors and let c be the 
center of the disc of radius l/cw that touches p and q 
and contains all other points r E S. Clearly d(c, p) 
> d(c, r) and d(c, q) > d(c, r) for all r E S. Thus c 
is contained in both Wr and We and hence p and q 
must be furthest point Voronoi neighbors. Therefore 
p and q are adjacent in DTf(S). 

c) (Y < 0: The proof is essentially the same as in b) 
replacing W by V, furthest by closest, contains all by 
contains no, 2 by 6, and DTf(S) by DT,(S). 

Q.E.D. 

The following two lemmas are important for the con- 
struction of an a-shape. They tell for which (Y E R a vertex 
or an edge of a Delaunay triangulation is also a vertex or 
edge of the a-shape. 

Lemma 2: For each point p E S there exists a real 
number (Y,,(P) such that p is a-extreme in S if and only if 
ff Q %,(P)* 

Two points p and q of S are said to be closest (respectively Proof: For the proof of the lemma we have two cases 
furthest) point Voronoi neighbors if V, and V, (resp. W, and to consider: 
W,) share a common point. 

Fact 4: 
Two points p and q of S are closest and furthest 
point Voronoi neighbors if and only if (p, q) is 
a convex hull edge of S. 

The closest (resp. furthest) point Delaunay triangulation of 
S, DT,(S) (rev. DT,(S)), is defined as the straight line 
dual of VD,(S) (resp. VD,(S)); i.e., there is a straight line 
edge between p and q if and only if they are closest (resp. 
furthest) point Voronoi neighbors. 

Fact 5: 
Both the closest and furthest point Voronoi dia- 
gram (as well as the respective Delaunay triangu- 
lations) of n points can be constructed in O(n 
log n) time and O(n) space. Furthermore the 
closest or furthest point Voronoi diagram can be 
constructed from the respective Delaunay tri- 
angulation in O(n) time, and vice versa. 

a) p lies on the convex hull of S: recall the definition of 
a-extremeness for positive cy: p must lie on the 
boundary of a disc of radius l/a containing all 
remaining points of S. The center of such a disc has 
to lie in the furthest point Voronoi region Wr of p. It 
is not difficult to see that Wp actually comprises 
exactly all possible centers of discs touching p and 
containing S. Wr is an unbounded convex region 
which does not containp (if one disregards the trivial 
case of IS] = 1). Therefore there are discs of radius r 
touching p and containing S exactly for all r > 
d(p, W,) = min {d( p, x)1x E W,}. Thus p is CX- 
extreme for 0 < (Y < l/d( p, W,). A convex hull point 
is trivially a-extreme for nonpositive CX, hence p is 
a-extreme for all (Y 6 l/d( p, W,) = a,,(p). 

b) p is not a convex hull point of S: it is easy to see that p 
cannot be a-extreme for (Y > 0. For p to be a-extreme 
for negative (Y, p has to lie on the boundary of a disc 
of radius - l/a containing none of the remaining 



EDELSBRUNNER et al. : SHAPE OF POINTS IN THE PLANE 

points of S. The  set of centers of such discs is exactly 
the closest point Voronoi region Vr of p. By Facts 2  
and  3, VP is a  convex polygon containingp. Therefore 
there are discs of radius r touchingp and  not contain- 
ing S exactly for all r < dt, = max{d( p, x)1x E V,}. 
This implies that p is a-extreme for all a  < - l/d, = 
%I,( P). Q.E.D. 

Note that for a  point p E S the vertices of the polygons VP 
(resp. W ,) are the centers of the circumscribed circles of 
the triangles in DT,(S) (resp. DTt(S)) which involve p. 
Clearly for p E S the vertices of I$ or the vertices and  
edges of Wr are sufficient to deterrmne (Y,,(P). Thus it is 
not difficult to see how the set {cu,,(p)lp E S} can be  
computed in linear time  given DT,(S) and DTf(S). 

Lemma 3: For every edge  e  belonging to either DT,(S) 
or DT,(S) there are real numbers am in( e) and  amax( 
with am in < amax( such that e  is an  edge  of the 
a-shape of S if and  only if a&(e) < (Y < a,,(e). 

Proofi F irst we state without proof the following two 
facts. 

Fact 6: 

Fact 7: 

Given a  point p and a  semi-infinite line segment 
s there exists a  positive real number  a = a( p, s) 
such that (d(p, x)1x E s} = [a, 00). 

Given a  point p and a  closed line segment s there 
exist positive real numbers a = a(p, s) and  b = 
b(p, s) such that (d(p, x)1x E s} = [a, b]. 

Now, let p and q be the two endpoints of an  edge  e. We  
have to consider three cases. 

a) e  is an edge of DT,(S) but is not a  convex hull edge: 
the center of a  disc touching p and q and not contain- 
ing other points of S must lie on  the bisector between 
p and q, and must be  closer to p and q than to any 
other point of S. The  locus of points having exactly 
this property is the straight line segment, which we 
call v, bounding both of the Voronoi regions VP and 
V4 (i.e., v is the Voronoi edge  dual to e). Thus by Fact 
7  there are discs of radius r touchingp and  q and not 
containing other points of S for exactly those r satis- 
fying, a(p, v) < r < b(p, v). It is easy to see that as 
a  consequence of Fact 4  there are no  discs touchingp 
and  q and containing the remaining points of S. Thus 
e  is an  edge  of the a-shape for exactly those a  
satisfying, - l/a(p, v) = ati < (Y < a,,(e) = 
- l/b(p, 0). 

b) e is an edge of DTf(S) but is not a  convex hull edge: 
the proof is essentially the same as in a) replacing 
“furthest” by “closest,” “ contains all” by “contains 
no,” etc. 

c) e  is a  convex hull edge: first note that p and q are 
trivially a-neighbors for (Y = 0. The  locus of all centers 
of discs touching p and q and containing all other 
points of S is exactly the closed semi-infinite line 
segment w bounding both of the furthest point 
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Voronoi regions Wp and W4. Thus by Fact 6  there are 
discs of radius r touching p and q and containing all 
other points of S for exactly those r satisfying r > 
4pt w>. 

By the same argument there are discs of radius r 
touching p and q and containing none  of the other 
points of S for exactly those r satisfying r > a(p, v), 
where v is the semi-infinite line segment bounding VP 
and Vy. Thus p and q are a-neighbors, i.e., e  is and  
edge  of the a-shape, for all a  satisfying - l/a( p, v) 
= a&(e) 6 a < a,,(e) = l/a(p, w). Q.E.D. 

Note that the line segment which borders both V, and  I$ 
(resp. Wr and W ,) of two Voronoi neighbors p and q IS 
contained in the perpendicular bisector between p and q 
and that its endpoint(s) is (are) the center(s) of the cir- 
cumscribed circle(s) of the (at most two) triangle(s) of 
DT,(S) (resp. DTf(S)) which involve both p and q. Thus 
given DTJS) and D?(S), amin and  am,(e) can clearly 
be  computed in constant time  for each edge  e. 

IV. CONSTRUCTIONOFWSHAPESANDTHE SHAPE 
SPECTRUM 

A. a-Shapes 

Together, Lemmas 1, 2, and  3  give rise to the following 
algorithm for determining the a-shape of a  set S. 

Algorithm 1 (Construction of the a-shape of S). 

1) Construct DT: 
if (Y 2  0, construct DTt(S), 
if a  < 0, construct DT,(S). 

2) Determine the a-extreme points of S. 
The  information provided by DT suffices for this 

task; see also Lemma 1  and  2. 
3) Determine the a-neighbors of S. 

Again, DT contains all the information necessary 
to perform this task; see also Lemma 1  and  3. 

4) Output the a-shape. 
Output the graph on  the a-extreme points with all 

a-neighbor connections. 

The  correctness of Algorithm 1  follows immediately 
from Lemmas 1, 2, and  3. A straightforward analysis of 
Algorithm 1  gives rise to the following. 

Theorem I: The  a-shape of n points in the plane can be  
determined for an  arbitrary real (Y in time  0( n log n) and 
space O(n). 

Proof: It suffices to show that the stated bounds hold 
for Algorithm 1. Step 1) can be  done  in O(n log n) time  
and  O(n) space by Fact 5. Once the appropriate Delaunay 
triangulation has been  constructed Steps 2) 3) and  4) can 
be  done  (see the notes following Lemmas 2  and  3) in O(n) 
time  and  O(n) space. Whenever  in Step 2) or 3) the actual 
value of (Y,,(P), or am in( e), or a,,(e) cannot be  com- 
puted (because p is a  convex hull point, or e  is a  convex 
hull edge)  the value 0  can be  used as an  appropriate 
substitute. Q .E.D. 
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B. Interior and Exterior Faces 

It should be clear that Algorithm 1 can be generalized 
quite easily to yield, in addition to the a-shape, its interior 
and exterior faces. However, a few remarks about the 
properties of interior and exterior faces seem to be ap- 
propriate at this point. Their rather straightforward but 
lengthy proofs are omitted. 

1) A face F of an a-shape of a point set S is either an 
interior face, that is all its bounding edges are positive 
edges of F, or it is an exterior face, that is all its bounding 
edges are negative edges of F. The only minor exception 
(i.e., faces that are both interior and exterior) are faces 
which are triangles with circumscribed circle of radius 
exactly l/la] and with center outside the triangle. This 
situation reflects a noncontinuous change in the a-hull for 
varying (Y at such values. 

2) Interior faces do not properly contain a-extreme 
points. 

3) For negative a, any closed disc of radius - l/cr with 
center in an interior face of an a-shape of a set S contains 
a point of S. This means that interior faces represent 
clusters of S. 

4) For (Y >, 0 (resp. a 6 0) the interior faces of the 
a-shape of S are exactly the union of the triangles in 
DT,(S) (resp. DT,(S)) whose circumscribed circles have 
radius not greater than l/la]. Thus the interior faces of an 
a-shape can be trivially computed from the appropriate 
Delaunay triangulation in linear time without constructing 
the a-shape itself. 

C. The Shape Spectrum 

It is easy to envision applications in which the a-shape 
of a point set is desired for a number of different (Y’s. As 
the analysis of Algorithm 1 makes clear, it is possible to 
construct a-shapes, following an initial expenditure of 
0( n log n) to construct both Delaunay triangulations, at a 
cost of O(n) per shape. In fact, as we shall see, a slightly 
tighter bound is possible by a careful choice of data 
structures. As an intermediate step in this construction, 
and because it is an interesting entity in its own right, we 
consider first what we call the shape spectrum of a point 
set S. 

Definition 7: The shape spectrum SP(S) of a point set 
S is defined to be the set of intervals int (p) = 
(- 00, ~,,(p)l and int(e) = [q&e>, a,,,,(e)l, P E S, 
and e an edge of DT,(S) or DT,(S) of S. 

The shape spectrum of a point set can be seen as an 
encoding of all possible a-shapes of that set. As the follow- 
ing lemma shows it also has the nice property that it is no 
more difficult to construct than the a-shape for a single 
fixed a. 

Lemma 4: The shape spectrum SP(S) of a set S of n 
points can be constructed in time O(n log n) and space 
O(n). 

Proof: Immediate generalization of Algorithm 1. 
Q.E.D. 

Given the spectrum SP(S) of a set S, a number of 
problems concerning a-shapes of S can be solved with 
surprising efficiency. 

1) The most prominent, of course, is, given SP(S) and 
some (Ye, find the a,-shape of S. This can be done trivially 
in linear time by determining all points p and edges e such 
that aa E int (p) and (Y,, E int (e). However, by using a 
more advanced data structure to store the intervals of 
SP(S), such as Edelsbrunner’s rectangle tree [5], called a 
tile tree in the independent paper of McCreight [ 131, the 
a,-shape of S can actually be constructed in time O(log n 
+ t), where t is the number of points and edges in the 
or,-shape. 

2) It may be useful in certain applications to find an 
a-shape satisfying certain properties. For example, suppose 
one wants to find an ac, such that the a,-shape of S 
contains exactly k points. If the endpoints of the intervals 
int (p), p E S, are stored in a sorted array, ac, can clearly 
be found in constant time. 

3) A similar problem addresses the fine tuning of (Y- 
shapes: given the a,-shape of S for some a,,, find the 
largest a, < a0 (or the smallest a, > (Ye),’ such that the 
a,-shape is different from the a,-shape of S. By maintain- 
ing a pointer into the sorted list of the endpoints of the 
intervals in SP(S), this question can be answered in con- 
stant time. 

4) An inverse problem to the construction of a-shapes 
asks for a given graph G on a subset of S, whether G is an 
a-shape of S for some (Y. The answer to this question can 
be found in linear time by the following procedure which 
uses a sorted list L of the endpoints of the intervals in 
SP(S). First confirm that each edge e of G is a Delaunay 
edge, that is, int (e) is defined. Initialize three counters i, j, 
and k to zero and scan L in decreasing order. If at any 
point during this scan i equals the number of vertices in G, 
j equals the number of edges of G, and k equals zero, then 
G is an a-shape of S. If an element of L being scanned is 
the right endpoint of an interval int (x) E SP( S), incre- 
ment i if x is a vertex of G, increment j if x is an edge in G, 
and increment k otherwise. If an element of L being 
scanned is the left endpoint of an interval int (x) E SP( S), 
decrement k if x is an edge not in G, and stop otherwise, 
because in this case G cannot be an a-shape of S. 

V. CONSTRUCTINGTHE(U-HULL 

In the preceding section we presented an O(n log n) 
algorithm for the construction of an a-shape of a set S of n 
points in the plane. We went on to define the spectrum 
SP( S). As SP( S) contains only linearly many elements we 
can argue that for a given set S there are at most linearly 
many distinct a-shapes. If we turn our attention to a-hulls 
the situation becomes quite different. The number of dis- 
tinct a-hulls is uncountable because for every two distinct 
a,, a2 E (- l/a, l/b], where a is the radius of the smallest 
circle defined by three points in S, and b is the radius of 
the smallest enclosing circle of S, the a,-hull is different 
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from the a,-hull of S. So it is quite surprising that a-hulls 
can be  constructed efficiently for any real CX. Specifically 
we shall show that for any real (Y the a-hull of S has a  
linear description and  can be  constructed in O(nlog n) 
time. As these facts seem to be  quite obvious for (Y > 0, we 
will concern ourselves only with the case of negative (Y. 

At first let us recall the definition of the a-hull of S for 
negative (Y: it is defined as the intersection of all comple- 
ments of open  discs of radius - l/a which contain no  
point of S. By DeMorgan’s law an  equivalent definition is 
that the a-hull is the complement of the union of all open  
discs of radius - l/a which contain no  point of S. Because 
of the fact that a  disc of radius R can be  represented as the 
union of open  discs of radius r Q R, there is another 
equivalent definition for the a-hull which we find more Fig. 5. Nested empty discs D, D’, D,. 
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convenient to work with. 

The  a-hull (a < 0) of S is the complement of the union 
of all open  discs of radius not less than - l/(~ which 
contain no  point of S. 

Our ma in problem now is to determine the union of all 
these discs. The  set of all open  discs of radius not less than 
- l/a is still rather unwieldy, but fortunately, as the next 
lemma shows, we can restrict our attention to a  much 
smaller set of open  discs. 

In the following let B(x, r) denote the open  disc of 
radius r centered at x. 

Lemma 5: Let D be an  open  disc which does not con- 
tain any points of S. Either D lies entirely outside the 
convex hull of S or there is an  open  disc D, which contains 
D but no  points of S and  which has its center on  an  edge  
of I/D,(S). Fig. 6. Centers on a bounded line segment. 

Proof: Let D = B(c, r) be a  disc which does not 
contain any points of S. Let p E S be  the point, such that 
d(c, p) = m in {d(c, x)1x E S}. Clearly the disc D’ = 
B( c, d( c, p)) touches p but does not contain any point of 
S. Furthermore D c D’. Let h be the straight line through 
c andp  and  let t be the intersection of h with the bounding 
edge  of VP such that c lies on  the closed line segment 
between p and t. (If such a  t does not exist, D’ and D lie 
entirely outside the convex hull of S.) Clearly the open  disc 
D, = B(t, d(t, p)) has the desired properties; i.e., D, con- 
tains no  point of S and  has its center on  an  edge  of 
VDJS), and D c D’ c D, (Fig. 5). Q .E.D. 

As a  consequence of Lemma 5  the a-hull (a < 0) of S 
can be  expressed as the complement of the union of open  
discs of radius not less than - l/(~ which do  not contain 
any points of S and  which have their centers on  the edges 
of VD,(S). Next we state without proof two basic geomet-  
ric facts which will allow us to consider an  even smaller set 
of discs. 

points a and b (Fig. 6). Then  

u (B(x, d(x, P))Ix E L) 
= B(a, d(a, P)) U B(b, d(b, P)). 

Fact 9: 
Let p and q be two distinct points in the plane 
and  let L be a  semi-infinite closed line segment 
on  the bisector betweenp and  q which is bounded  
by point a. Then  

u @ (x, db, P))Ix E L) 
= B(a, d(a, P)) U H(P, 41, 

where H( p, q) denotes the open  halfplane de- 
fined by the straight line throughp and  q which 
contains the infinite portion of L (Fig. 7). 

Lemma 6: For negative ~1 the a-hull of a  set S of n 
points can be  expressed as the complement of the union of 
O(n) open discs and  halfplanes. 

Fact 8: Proof: As we remarked after Lemma 5  we only have 
Let p and q be two distinct points in the plane to consider appropriate discs centered on  edges of VDJS). 
and let L be a  closed line segment on  the bisec- Let p, q E S be  two Voronoi neighbors and  let r be the 
tor between p and q which is bounded  by the edge  bounding both VP and V4. Clearly for every x E r, 
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Fig. 7. Centers on a semi-infinite line segment 

B(x, d(x, p)) contains no points of S. Now observe that 
the set {x E rld(x, p) > - l/cy} is either empty or forms 
one or two closed line segments. (If p and q are convex hull 
points, then one line segment is semi-infinite.) Thus by 
Facts 8 and 9 the union of open discs centered on r and of 
radius not less than - l/a and which contain no points of 
S can be expressed as the union of at most four open discs 
or halfplanes. As the number of edges in VD,(S) is linear 
in n, one can conclude that for negative a the complement 
of the a-hull of S can be expressed as the union of O(n) 
open discs and halfplanes. Q.E.D. 

With this result we can easily prove the following theo- 
rem. 

Theorem 2: The a-hull of a set S of n points can be 
computed in time 0( n log n) using O(n) space. 

Proof: We consider two cases: 

4 

b) 

(Y < 0: By Lemma 6 it suffices to find the union of 
O(n) discs and halfplanes which can be determined 
from VDJS) in O(n) time. It is not difficult to see 
that the union of the halfplanes in question is the 
complement of the convex hull of S which can be 
determined from VDc(S) in linear time. The union of 
the O(n) discs can be constructed O(n log n) time 
using a method developed by Brown [3]. Special care 
must be taken to identify isolated points of the a-hull. 
This can be done in a way similar to Step 2) of 
Algorithm 1. 
cx Z= 0: For nonnegative cx the a-hull can be derived 
directly and in linear time from the a-shape. In 
certain applications straightforward generalizations 
of common convex hull algorithms, as for instance 
Jarvis’ [9], may be preferred. The details are left to 
the reader. Q.E.D. 

CONCLUSION 

In this paper we have developed the notion of the a-hull 
and a-shape of a set of points in the plane. We presented 
efficient algorithms for constructing a-shapes and a-hulls 
which are based on the intimate relation of these constructs 
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with Delaunay triangulations. We introduced the notion of 
the shape spectrum and briefly discussed some of its appli- 
cations. Because a-shapes have nice theoretical properties 
and can be constructed efficiently, and because of the fact 
that they seem to capture the intuitive notion of “finer” or 
“cruder shape” of a planar pointset, we believe that CY- 
shapes will be very useful in practical applications. 

In conclusion we want to discuss a few related problems 
and point out some generalizations. 

At first we briefly address the question of dynamization: 
given the a-shape of a set ’ S for some (Y, how does the 
insertion of a point into S or the deletion of a point from S 
affect the a-shape? As Voronoi diagrams can be updated in 
linear time [7], [14], and a-shapes can be constructed from 
the Voronoi diagrams in linear time, the update time for 
a-shapes is O(n). This is even true for the shape spectrum, 
as long as it is just treated as a set of intervals. But we have 
not been able to design a linear time update algorithm 
which also maintains any of the additional data structures 
on SP(S) (such as the rectangle tree or the sorted lists) 
which were mentioned in Section IV. 

Finally, we want to point out that the notion of a-shapes 
generalizes nicely to point sets in 3 or k dimensions. One 
can define a-extreme points, a-neighbors and a-triples, and 
so on, in a manner similar to the definitions of Section II, 
by using balls of radius l/a instead of discs. The 3-dimen- 
sional a-shape is related to 3-dimensional Voronoi dia- 
grams in a way similar to the relationship between planar 
a-shapes and planar Voronoi diagrams. Lemmas 1 to 3 and 
Algorithm 1 carry over to 3 dimensions without much 
modification. Applying the results of Seidel [ 161 for finding 
the 3-dimensional Voronoi diagram, the 3-dimensional CX- 
shape can be constructed on O(n*) time. As the Voronoi 
diagram and therefore the a-shape in 3 dimensions has 
quadratic space-complexity in the worst case this is also 
optimal. 
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SECT-A Coding Techn ique for 
Black/W h ite  Graphics 

HIROYOSHI MORITA AND SUGURU ARIMOTO, FELLOW, IEEE 

Abstract-A new coding technique called SECT for digitized two-tone or 
black/white pictures which is particularly applicable to polygonal objects 
composed of horizontal, vertical, and diagonal lines such as logical circuit 
patterns, characteristic font patterns, and mechanical drawings is described. 
While many previously proposed coding techniques attempt to encode the 
positions of transitive elements in a picture by using codes such as 
Huffman codes or Wyle codes which are constructed on the basis of picture 
statistics, selective element coding technique (SECT) focuses its attention 
on reducing the number of transitive elements in each picture indepen- 
dently of the statistics of the picture ensemble. The relation of the number 
of selective elements and objects in the picture is discussed. Furthermore 
the decoding algorithm to reproduce a picture from selective elements and 
its decodability are described. 

I. INTRODUCTION 

A NUMBER of coding techniques for digitized 
black/white pictures have been  proposed, and  their 

data compression performance has been  studied by com- 
puter simulations for pictures such as graphics, documents, 
weather maps, and  Chinese character patterns [l], [2], [3]. 
In this paper  we consider a  two-dimensional coding tech- 
nique for black/white graphics which is particularly appli- 
cable for polygonal objects composed of horizontal, 
vertical, and  diagonal lines, e.g., logical circuit patterns 
generated by CAD systems, characteristic font patterns, 
and  mechanical drawings. 

Manuscript received August 10, 198 1; revised December 10, 1982. 
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Before describing our proposed coding technique, it is 
worthwhile to review previous coding techniques. Consid- 
erable work has been  done  in digital black/white picture 
coding for facsimile transmission. Run-length coding [4], 
prediction coding [5], [6], [7], and  READ coding [8] are 
well-known, and  these have been  realized as codes in actual 
facsimile equipment. In these coding schemes, the encoding 
process performs by scanning a  picture sequentially line by 
line from top to bottom. The  strategy of run-length coding 
is to encode the length of each black or white run by means  
of Huffman codes [9] or Wyle codes [lo]. The  idea of 
prediction coding such as the well-known TUH code [7] is 
to predict each picture element by using some function of 
neighboring elements and  to encode the resulting error 
sequence by run-length coding. READ coding, as well as 
RAC [ 1  l] and  EDIC [ 121, encodes the distance between the 
start position of a  run and  that of a  certain previously 
scanned run which satisfies some prescribed conditions. 

These coding schemes contain two common operations. 
The  first operation is to select out the start position of each 
run from a  given picture, where the start position of a  run 
is often called a  horizontal transitive element or simply a  
transitive element. A transitive element is formally defined 
as one  whose value is different from the previous one  in a  
horizontal direction. The  second operation is to memorize 
the positions of transitive elements in some way, e.g., the 
distance between two consecutive transitive elements, or 
equivalently, the length of a  run. Data compression is 
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