
1066-033X/07/$25.00©2007IEEE AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 43

© DIGITALVISION

Programmable
Self-Assembly

S
elf-assembly is the phenomenon in which a col-
lection of particles spontaneously arrange them-
selves into a coherent structure. Self-assembly is
ubiquitous in nature. For example, virus capsids,
cell membranes, and tissues are self-assembled

from smaller components in a decentralized fashion. Self-
assembly is beginning to find its way into engineering,
through various technologies ranging from molecular [1],
[2] to robotic [3], [4].

Self-assembly comes in two modes, passive and active. In
passive self-assembly, particles interact according to their
geometry or surface chemistry and tend toward a thermody-
namic equilibrium in which the particles are assembled. For
example, phospholipids stick to each other along hydrophobic
regions to form membranes. In active self-assembly, each par-
ticle may expend energy to accept some interactions with
other particles while rejecting others, according to a program.
Examples range from proteins in cells, whose conformational
switching patterns may determine the order in which they
interact with other molecules, to multirobot systems, where
small groups of robots determine the outcome of encounters
according to their internal programming.

In this article we consider the task of programming
active self-assembling and self-organizing systems at the
level of interactions among particles in the system. To
demonstrate the approach, we use it to control an exper-
imental system called the programmable parts testbed
(PPT), shown in figures 1, 2, and 3. We also consider
several illustrative examples, including polymerization,
a model of a molecular ratchet, and a cooperative con-
trol scenario. In all of these systems, we provide each

particle or robot with a local interaction rule book called
a graph grammar.

A graph grammar can be used to model the physics of
the particles by describing the outcomes of interactions
among them, and it can be used to program the desirable
outcomes of interactions among particles. In the latter set-
ting, a grammar is a description of a communication proto-
col and is thus intended to be coupled with a physical
model of the environment that mediates the interactions.
In particular, a suitably designed grammar can precisely
describe and direct the changing network topology of a
self-organizing system.

The main questions in the area of programmed self-
organization concern the ability to engineer the global
behavior of a system by means of local rules. In a wide
variety of settings, we can design local rules that yield a
specified behavior, and we can reason about the correct-
ness of the result. In some circumstances, we can provide
algorithms that automatically generate such a set of rules.

Recent results in diverse areas [1], [5], [6] indicate that the
emergent behavior of a self-organizing system can be pre-
cisely predicted and controlled, although there is much work
to be done to understand the physics, dynamics, and imple-
mentation of self-organization. Progress in this area promis-
es to usher in a new era of bottom-up engineering of systems
ranging from programmable nanoscale molecular machines
to controlled swarms of interacting autonomous robots.

THE PROGRAMMABLE PARTS
In robotics, self-organization is explored with increas-
ing success using modular robots [7], which are small

ERIC KLAVINS

CONTROL OF CONCURRENT
SYSTEMS FROM THE BOTTOM UP

44 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

electromechanical devices that can latch on to each
other, rotate or translate with respect to each other,
and communicate with each other by means of peer-to-
peer communication devices. Through local interac-

tions, a group of modular robots can reconfigure into a
variety of shapes, repair itself [8], and even self-repli-
cate [9], [10].

PPT [4] is well suited to implementing the ideas
described in this article. PPT consists of about 20 small
robots, called programmable parts. The parts float passively
on an air table and are randomly stirred by air jets. The
idea is to emulate a well-mixed chemical reaction wherein
each programmable part is programmed to behave like a
specific kind of molecule.

Each programmable part consists of an equilateral-
triangle-shaped chassis that supports three controllable
latching mechanisms, three infrared transceivers, a micro-
controller, and control circuitry. Each edge of the chassis
supports a latching mechanism and a transceiver. Each
latching mechanism consists of two permanent magnets,
one fixed and the other mounted on the end of a small
geared dc motor. The north pole of the fixed magnet and
the south pole of the movable magnet point outward in the
default configuration. Thus, when two programmable
parts collide edge to edge, the latching mechanisms bind
them together. At that point, the two programmable parts
exchange information with each other by means of the
infrared transceivers on their bound edges. If the two pro-
grammable parts mutually decide to detach from each
other, each programmable part temporarily rotates its
movable magnet 180◦ , forcing the programmable parts
apart. The movable magnets then return to their default
positions. Both programmable parts must coordinate to
break the bond. Figure 4 summarizes the manner in which
programmable parts interact.

FIGURE 1 The programmable parts testbed (PPT). (a) A diagram of a programmable part showing the latching mechanism. Parts occasional-
ly bind upon chance collisions. If the parts later jointly decide to detach, motors rotate permanent magnets to repel the parts. The latch
requires power only when switching. (b) A schematic of the laboratory setup. The parts float on an air table and are randomly stirred by air
jets to induce collisions. An overhead video camera (not shown) is used to collect data.

Motor

Motor Mount

Circuit Board

Chassis

IR Transmitter

IR Receiver Fixed Magnet

(a)

Movable Magnets
and Holder

(b)

FIGURE 2 A photo of six programmable parts. Each part is 12.5 cm
on a side. The robots are programmed with a set of local interaction
rules called a graph grammar. Unlike nanoscale systems, the
behavior of the programmable parts can be observed directly. PPT
provides a rich, reconfigurable, and complex system for investigat-
ing and demonstrating ideas in engineered self-assembly.

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 45

When two programmable parts bind and communicate
their internal states as described above, they may update
the internal states stored in the memories of their microcon-
trollers, and they may choose to stay bound or detach. The
resulting global behavior depends on their programming.
As shown in Figure 3, one program might result in assem-
blies of a certain shape, while another program might result
in assemblies of a different shape. Furthermore, high-ener-
gy collisions between robots may cause an assembly to
break apart. The engineering goal is to program the parti-
cles so that a desired structure emerges with high probabili-
ty, despite the stochastic nature of the system. To address
this goal, we use graph grammars to both model and pro-
gram the ways in which programmable parts interact.

GRAMMARS MODEL DYNAMICAL SYSTEMS
We explain graph grammars [11] informally by showing
how to build a graph grammar that models polymeriza-
tion, the process by which particles form into chains. In
particular, suppose we wish to model a collection of inter-
acting particles, wherein each particle can be bound to
zero, one, or two other particles. To keep track of the con-
figuration of a particle, let a denote the state
of a particle having no bonds, let b denote the
state of a particle having one bond, and let c
denote the state of a particle having two
bonds. The dynamics of the system are as fol-
lows. If two particles in state a interact, they
bind to each other and both of their states
change to b. If one particle in state a and
another in state b interact, they bind to each
other and their states change to b and c,
respectively. Finally, if two particles in state b
interact, they bind to each other and both of
their states change to c. No other interactions
lead to a new bond. As in [12], we use the
term label for the symbols a, b, and c, saying,
for example, that particle i is labeled by a.

We represent the interaction rules describ-
ing the polymerization example with the
graph grammar

� =

a a ⇀ b − b (r1),

a b ⇀ b − c (r2),

b b ⇀ c − c (r3).

(1)

Rule r1, for example, states that two particles
labeled a and that are not attached to each
other can attach to each other, in which case
they change their labels to b.

For now, we suppose that each particle is
initially labeled a, that time proceeds in dis-
crete steps, and that bonds form instanta-
neously. Finally, the choice of which two
particles interact at any step is nondeterminis-

tic, resulting in a set of allowable trajectories, as opposed to
a single trajectory or distribution over trajectories. Later we
describe a stochastic interpretation of local rules that refines
the notion of a trajectory. The first several steps of one pos-
sible trajectory in the polymerization example, starting with
a collection of nine particles, is shown in Figure 5.

The graph grammar formalism is treated formally in [5]
and [13]. However, with the above example in mind, we
describe the main definitions. The state of the system is
described by an assignment of labels to particles and by a
set of connections between particles. This description cor-
responds to a mathematical object called a labeled graph
[12], [14]. Specifically, a labeled graph has the form

G = (V, E, l) ,

where the vertex set V is a finite or countably infinite set of
positive integers used to index the nodes (representing
robots or particles, for example) of the system, the edge set
E is a set of unordered pairs from V , and the labeling func-
tion l : V → � is a function associating with each particle
i ∈V a label l(i) ∈ � , where � = {a, b, c, . . . } is the set of

FIGURE 3 The reconfigurability of the programmable parts testbed. The programma-
ble parts can be programmed to self-assemble into a specified structure by means
of a graph grammar. (a) Initially, the programmable parts are not assembled and
have identical internal states. (b) With no programming, the parts aggregate into a
crystalline structure whose overall shape cannot be precisely predicted. (c), (d) Dif-
ferent graph grammars result in the predictable emergence of structures.

(a) (b)

(c) (d)

46 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

labels. The vertices, edges, and labels of a labeled graph G
are sometimes denoted VG, VE, and Vl when more than one
graph is under consideration. We draw labeled graphs
using only labels and edges, as in the boxes in Figure 5.
Since rules do not identify the indices on which they oper-
ate, we consider labeled graphs with the same label and

edge structure as equivalent. In graph theory, such graphs
are said to be isomorphic.

Formally, a rule L ⇀ R such as r1 in (1) is a pair L and
R of labeled graphs having the same vertex set. For exam-
ple, the rules r1, r2, and r3 in the polymerization example
(1) are described using graphs with two vertices. Rules
need not involve exactly two vertices, however, and the
examples in the next section use rules involving several
vertices. However, rules involving a small number of par-
ticles provide better models of local interactions, since, in
many of the systems we consider (such as PPT), it is
unlikely that a large number of particles could be consid-
ered to be local to each other.

Rule application leads to dynamic behavior. A rule r of
the form L ⇀ R is applicable to a graph Gk representing
the state of the system at step k if there is a copy of L pre-
sent somewhere in Gk . The injective edge- and label-
preserving map h : VL →VGk taking L to a copy of L in Gk
is used to define where in Gk the rule r is applied. The pair
(r, h) is a rule application. We write

Gk
r,h−→ Gk+1

to indicate that Gk+1 is obtained from Gk by replacing the
copy of L in Gk identified by h with a copy of R.

A completely connected subgraph of a graph representing
the state of the system describes an assembly of particles. In
the polymerization example (1), assemblies of various
types are self-assembled by the rules in �. For example, in
the last box of Figure 5, a cycle of six particles and a chain
of three particles are formed. An assembly is reachable if
there is a trajectory

G0
ri1 ,h1−→ G1

ri2 ,h2−→ · · · rik ,hk−→ Gk (2)

such that the assembly occurs as a completely connected
subgraph of Gk. Furthermore, an assembly is stable if no
rules in � can alter it. An inductive argument shows that,
starting with an infinite number of particles labeled a in
the polymerization example (1), every chain is a reachable
assembly and every cycle of three or more particles is a sta-
ble assembly.

SELF-ASSEMBLED GRAPHS
A key question is whether or not it is possible to define a
grammar such that the only stable assemblies produced
are isomorphic to a prespecified graph, supposing that the
initial state of the system is an infinite graph with no edges
and all of whose particles are labeled a. This problem is the
self-assembly problem. It is shown in [5] that for all graphs
there exists a grammar such that the only stable, reachable
assembly of the grammar is the given graph. Specifically,
for an acyclic graph T, there exists a grammar �T each of

FIGURE 4 How local rules are interpreted by the programmable
parts. When two randomly stirred programmable parts collide, they
may bind to each other. Once bound, the parts communicate their
current label, stored internally in the memory of their microcon-
trollers. For each rule in the graph grammar, each part then checks
whether the rule applies to the shared labels. If a rule does apply,
the programmable parts change their labels according to the rule.
Otherwise, the programmable parts detach from each other by tem-
porarily rotating their permanent magnets.

Parts Collide

Parts Bind?
No

Yes

No

Yes

Applicable
Rule?

Parts Apply Rule

Parts Communicate

Parts Drift Apart

Parts Actuate Latches
and Detach

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 47

whose rules involves at most two vertices (binary rules),
such that T is the only stable, reachable assembly. Further-
more, for an arbitrary graph C, possibly having cycles,
there exists a grammar �C each of whose rules involves at
most three vertices (binary or ternary rules), such that C is
the only stable assembly arising in trajectories of �C.

An algorithm for generating these grammars is
described in [5]. Unfortunately, rules involving three parti-
cles cannot be implemented in PPT, since three-way com-
munication is not possible. However, the need for ternary
rules is a fundamental limitation of local-rule-based sys-
tems, as shown next.

LIMITATIONS OF LOCAL RULES
A binary rule, which involves two particles, is a basic
building block in a system described by local rules. In a
peer-to-peer communication protocol, rules involving
more than two particles must be implemented by means of
a sequence of binary communications.

In fact, there exist assembly tasks that are impossible to
perform using binary rules. In [15] it is shown that there
exist classes of graphs, such as the
planar graphs, that cannot be recog-
nized by the nodes in the graph no
matter what set of local rules is used.
That is, if a set of particles, all with
the same initial label, are connected
together into a particular graph,
there does not exist a set of local
rules that the particles can use to
determine whether nor not the graph
they inhabit is, for example, planar.

To get a flavor for why determin-
ing global topology is difficult, con-
sider the problem of making a
length-three cycle the only stable
assembly of a grammar. Suppose
that the binary rule

w x ⇀ y − z (3)

is used by a grammar to close a reachable length-three
path into a length-three cycle. Suppose that particles i and
j are labeled w and x, respectively, before the rule is used.
These particles need not be in the same assembly but may
each be a part of a different copy of the length-three path.
Thus, rule (3) could be used twice to combine two length-
three paths into a length-six cycle, which is not the desired
assembly; see Figure 6. This phenomenon is related to
impossibility results in distributed systems [16, ch. 3].

As shown in [5] this phenomenon is general and applies
essentially to any rule set whose rules do not contain cycles
in their right-hand sides. This fact might seem a bit strange.
For example, servers on the Internet can determine their
interconnection topology, However, servers have unique
identifiers given by IP addresses, which they use to distin-
guish each other. In our examples we assume that the parti-
cles involved should be numerous and simple, so the
luxury of IP addresses is not available. Often this problem
can be resolved with the particle geometry, which is not

FIGURE 6 A limitation of local rules. The rule w x ⇀ y − z can be used to close a path into a
cycle, or to attach two paths into a longer cycle. No binary rule set can distinguish between
these situations unless the parts have unique identifiers.

c

c

x

w
x

w c

c

z

w
x

y c

c

z

y
z

y

c

c

z

y
x

w c

c

z

y
z

y

FIGURE 5 A trajectory of the polymerization system. The states of the system are labeled, undirected graphs. A transition can occur if the left-
hand side of a rule matches a subgraph, in which case the subgraph is replaced by the right-hand side of the rule.

a
a

a

a

a
a

a

a a

b
b

b

a

b
a

a

a a

b
b

a

a

a
a

a

a a

b
b

c

a

b
a

b

a a

b
b

c

a

b
c

c

a b

b
b

c

a

b
b

b

a b

b
c

c

b

b
c

c

a b

b
c

c
b

c
c

c

c c

b
c

c
b

b
c

c

b c

r1 r1 r2 r1

r2 r2 r2 r3

48 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

modeled by a graph grammar, to resolve ambiguities. For
example, in PPT, the programmable parts cannot form
cycles of any length because the parts are triangular.

MODELING CONCURRENCY
A concurrent system is one in which, at any given time, there
are multiple subsystems simultaneously operating inde-
pendently of each other. As time progresses, subsystems
might join or split, changing the coupling relationship.
Concurrency is a crucial part of modeling large systems.

In graph grammars, concurrency is modeled by the
commutativity of rule applications. For example, consider
the first two steps in the trajectory shown in Figure 5. The
particles involved in the first rule application are distinct
from the particles involved in the second rule application.
Thus, it does not matter which rule application occurs first,
since all rules effectively occur concurrently.

Concurrency leads to a notion of time different than
that encountered in standard dynamical systems. When a
set of rule applications is pairwise commutative, the rule
applications in the set might occur concurrently. When a
set of rule applications is not commutative, however, the
rule applications must occur serially. As an example, con-
sider the number of concurrent steps required to construct
a chain of length n using binary rules. In the first step, we
could concurrently add edges between particles 2i + 1 and
2i + 2, for each i from 1 to n/2. In the second step, we
could concurrently add the remaining edges. The process
takes two steps; see Figure 7(a). On the other hand, con-
sider the number of concurrent steps, using binary rules,
required to construct the star graph with n edges shown in
Figure 7(b). Any binary-rule grammar that accomplishes
this task must take at least n steps, since the center particle

must be involved in each rule; see Figure 7(b). Thus, while
the notion of trajectory shown in (2) describes the assem-
bly process, it does not capture the degree to which the
assembly process can be parallelized. In [5] we describe a
formulation of concurrency that distinguishes between
concurrent and serial executions.

The minimum number of concurrent steps required
to assemble a graph, which is a property inherent to
the graph, is the worst case assembly complexity. Related
complexity measures can be defined, such as the mini-
mum number of rules needed, or the minimum num-
ber of labels.

USING GRAMMARS TO REPRESENT
DISTRIBUTED ALGORITHMS
A grammar can also be thought of as a distributed algo-
rithm. In this interpretation, we suppose that a physical
process initiates the interaction between particles and that
the local rules used by the particles determine what the
outcome of each interaction should be. In this section, we
describe several such examples.

Programming the Programmable Parts
We associate a vertex with each latch on each program-
mable part and permanently connect vertices with edges
to indicate that latches are physically attached to each
other by the chassis of the robot. The state stored by the
microcontroller on a programmable part is a triple of
labels (a, b, c), one for each latch. We do not distinguish
between latches, so that two states are equivalent if they
vary by rotation only. For example, (a, b, c) = (b, c, a). By
convention, we require that the embedding of the cycle
representing a programmable part into R2 be counter-

FIGURE 7 Concurrent rule application. (a) Every chain can be self-assembled with binary rules in two concurrent steps, as illustrated with a
six-particle chain in this example. (b) Assembling a star graph with binary rules is necessarily a serial process. In this example, a star graph
with five particles requires four steps.

a a a a a a

b b b b b b

b c c c c b

(a)

a

a

aa a

a

a

ab c

a

a

bb d

b

b

bb f

a

b

bb e

(b)

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 49

clockwise. Since each programmable part is confined to
motion in the plane, this orientation does not change as
the parts assemble and disassemble.

When two programmable parts initially bond, they
compare their triples against the stored grammar to
determine the result of the interaction; see Figure 4. As
an example, consider the system defined by the rule

(4)

Suppose that a set of programma-
ble parts is initialized so that each
part has state (a, a, a) and that
their interactions are governed by
rule (4) only. When two parts
labeled (a, a, a) collide, their states
match the left-hand side of the
rule, so they remain attached,
changing their states to (a, b, c) to
associate the latch involved in the
connection with the label a and
the remaining latches with the
labels b and c, located counter-
clockwise from the active latch.
The result is a dimer assembly
consisting of two programmable
parts as in Figure 8(a). When this
rule is the only programming
used, dimers are the only stable,
reachable assembly type. The
notion of a stable , reachable
assembly refers only to assem-
blies reachable by means of pro-
grammed rules. In the discussion
below, we include rules that
model decay events as well, but
these rules are not considered to
be part of the program.

As a more substantial example,
consider the problem of building
hexagons by programming rules
that form dimers, rules that direct
dimers to form a tetramer , and
rules that direct a tetramer and a
dimer to form a hexagon. Figure 8
summarizes the main events in the
assembly of a hexagon in this
manner. Note that, at each step,
only two programmable parts
need to communicate.

Subtleties in designing rule sets
for the programmable parts arise.
First, we use rules of the form

(5)

to direct a programmable part to send information to its
neighbors when it attaches to a new assembly. These rules
do not add new edges to the underlying graph but rather
change labels. For example, in the construction of a hexa-
gon, there are three possible types of tetramers that can
form; see Figure 9. One tetramer is useful, while the other
two are not. By checking the embedding of the labels

FIGURE 8 The steps in the self-assembly of a hexagon using the dimers-first rules. (a) One rule
is used to update the labels of two parts when they form a dimer. (b) Three rules are used to
update the labels when two dimers form a tetramer. (c) When a dimer and a tetramer com-
bine, several rules are used to check whether or not a hexagon has been formed. If a hexagon
has not formed, the new bond is rejected. (d) Two rules are used to update labels when a
dimer and a tetramer combine to form a hexagon.

a
a

a
a

a

a
a

a
a

aaa
b

b

b

b

b

b

b
c

c

c
c

c

c

c

dd

e e

e

ee

e

e e

r5,r6

a
a

a
a

a

a
a a

b

b

c

c

r5

a
a

a
a

a
a

a
a

a
a

a
a

b

b

b

b
b

b

b

b

b c

c

c

c

c

c

c

c

c dd

e eee
r1 r3,r4

(a)

(b)

(c)

a
a a

a a
a

a
a

a
a

a
a

a
a

a
a a

aa
a a a

aa

b

b b

b
b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

c

c

c

c

c

c

c

c
c

c
c

c

c
c

c

c

d d

e e ee

e

ee

e e

ee

r2

r7

r9

(d)

(e)

e c
a − a

c e
⇀

e d
a − a

c b

a a
a a

a a
⇀

b c
a − a

c b

.

locally using a rule such as (5), the programmable parts
can detect this situation. Second, in our system, it is possi-
ble that an assembly breaks apart due to, for example, a
high-energy collision with another assembly. We can
model this aspect of the environment with a rule that
deletes an edge. When an edge is spontaneously deleted in
this fashion, however, the labels on the programmable
parts may reflect an incorrect assembly state. Therefore,
we include rules that direct the robots to recover from
breaks by changing their labels to reflect their new situa-
tion. For example, if a dimer breaks, the programmable
parts involved reset their labels to (a, a, a). The details of
the hexagon grammar are described in [17].

Cooperative Control
In [18] and [19] the notion of a graph grammar is extended
to include a time-varying embedding of the graph into a
real-valued state space wherein the individual particles
can control their own motion, instead of floating randomly
as in PPT. The result is a hybrid model of distributed coop-
erative control, called an embedded graph grammar. We
describe this approach by means of an example.

Consider a system consisting of three types of
autonomous agents, namely, scouts, intruders, and bases.
The setting is a large playing field. Each scout explores the
field in a distributed fashion, looking for intruders using a
motion controller to direct its motion, instead of floating

randomly as with PPT. When a scout
finds an intruder, it chases the
intruder and attempts to recruit
additional scouts to help. When three
scouts are chasing an intruder, it is
considered captured. The scouts then
transport the intruder to a base and
resume their exploration. Figure 10
shows several snapshots of how the
system might evolve.

The graph grammar rules shown
in Figure 11(a) describe how the
scouts explore, chase, capture, and
deliver an intruder. The left-hand side
of each rule specifies what structure
the labels and interconnections of a
group of agents must have for the
rule to be applied. The right-hand
side specifies the result of the rule in
terms of new labels and interconnec-
tions. In this example, an edge means

FIGURE 9 The indexing scheme used to identify assemblies of programmable parts. Assem-
blies are listed by size, then shape. Assembly 19, for example, is the hexagon C19, the con-
struction of which is addressed in this article.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

...

50 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

FIGURE 10 Snapshots of the scouts-intruders scenario. (a) Initially, all scouts are searching (label s) for intruders (label i). (b) Scouts begin
chasing (label c) intruders, labeling them as partially detained (label dk). (c) When an intruder is surrounded by three scouts, the intruder
becomes a prisoner (label p), the scouts elect a leader (label l), and the remaining robots become followers (label f). (d) The leader escorts
the group to a base (label b) to deposit the prisoner and allow the scouts to continue searching.

s s

s

s

s

i

i

b

s

s

b

d2

d1

c
c

c

b

d2

p

c
c

l

f

f

s

s

s

b p'

d2

c
c

(a) (b) (c) (d)

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 51

that the motion of the connected
robots is coupled. See [18] for a
description of the motion controllers
used by the agents.

The rules in Figure 10(a) are suffi-
cient to control the system in some, but
not all, situations. Deadlock can occur
when there are enough intruders to
attract all of the scouts without having
more than two scouts per intruder.
Inclusion of the rules listed in Figure
10(b) results in a system wherein all
intruders are eventually captured. This
result is proved using an integer-val-
ued Lyapunov function whose value is
the number of intruders. Under the
assumption that the search algorithm
used by the scouts results in their even-
tually finding an intruder if one exists, it can be shown that
the value of the Lyapunov function is decreasing or zero.

Associated with each agent is a mapping from its label
and local topology to a continuous motion controller. These
controllers specify, for example, a leader-follower law for the
situation in which an agent is chasing an intruder. To inte-
grate the graph grammar formalism with the motion con-
trollers, we augment [18] the notion of a rule with guards,
which are local, geometric conditions that specify when the
rule can be applied. Reasoning about such systems uses con-
trol-theoretic tools based on continuous Lyapunov functions
as well as progress and safety arguments, such as found in
the concurrency literature [20].

A Model of a Molecular Motor
A molecular motor, such as myosin [21], moves in a ratchet-
like fashion along a molecular substrate by means of chemi-
cal bonds that connect and disconnect from the substrate
according to the motor's changing conformation. We model
such a system using a graph grammar. The main point of
this example is to show that a graph grammar can describe
cyclic behaviors. A simplified model of a molecular motor
is given by the rules

A trajectory of �3 is shown in Figure 12. The sequence
starts with a cycle of particles labeled a, b, and c attached to
a chain of particles labeled g, which form the substrate. The
rule set directs the particle to move along the substrate,
without allowing it to move backwards. The ternary rule is
used to prevent the “loose” stage of the ratchet in the sec-
ond graph in the trajectory from attaching to the wrong
substrate vertex. In particular, this rule forces the vertex
labeled e to attach to the next g in the sequence. When the
substrate of vertices labeled g is infinite or circular, there
are no stable assemblies. All of the reachable assemblies are
isomorphic to those shown in Figure 12.

THE STOCHASTIC INTERPRETATION
OF GRAPH GRAMMARS
When reasoning about the behavior of a graph grammar,
we consider all possible trajectories. For example, by
showing that, along every trajectory, no star with six parti-
cles can form, we obtain a result about every possible
behavior, called a safety assertion. Safety assertions can be
proved by induction on the number of rule applications.

In contrast, a progress assertion, which states that a given
assembly forms in every trajectory, is more difficult. Often it
is the case that desired progress assertions are not true. For
example, although we may want a cycle of exactly length
five to eventually form in every trajectory of the polymer-
ization example (1), length-five cycles form in some trajecto-
ries but not in others. Furthermore, in many of the
applications we consider, rules are applied with probabili-
ties that arise from the physical properties of the system. In

FIGURE 11 Rules for the scouts-intruders scenario. (a) The first set of rules defines the local
interactions that specify how scouts chase and capture intruders. (b) The addition of the sec-
ond set of rules allows scouts to switch from chasing one intruder to chasing another, which
prevents deadlock.

i s d1 c

d2 s d2 c

d3 s d3 c
b

d3

c

cc

p

l

ff

p

l

ff

b
p'

s

ss

(a) (b)

d1

d1

d1 d2

c c

i

d1 d2 d3

c c

i

d2 d2 d3

c c

The main questions in the area of programmed self-organization concern

the ability to engineer the global behavior of a system by means of local rules.

�3

a − c ⇀ d e

b ⇀e g c h

b − h ⇀ f − b

d − f ⇀ g − a

=

,

,

,

,b

(r4)

(r5)

(r6)

(r7)

52 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

this context, we want to determine the expected number of a
desired assembly present when the system is equilibrated.

PPT can be modeled as a reaction-diffusion system [4].
We use a simulator, called the microstate simulator, which
simulates PPT using mass, velocity, friction, collisions, mix-
ing forces, contact forces between programmable parts, and
binding forces. Using the microstate simulator, the rates at
which various assemblies form and break naturally due to
the “thermal” agitation of the air table as well as random col-
lisions can be estimated. Figure 13 lists several reaction rates.

The reaction rates capture the essence of the dynamics.
Consider the task of building a chain of four programma-
ble parts, specifically, assembly C4 or C6 in the indexing
scheme of Figure 9. In particular, consider the following
grammars for this task:

1) �1: build chains one by one
2) �2: build dimers and then chains of length four from

dimers

3) �3 : allow all interactions, even those that build
assemblies containing a hexagon. When a superstruc-
ture containing C4 or C6 occurs, detach superfluous
subassemblies.

Figure 14(a) shows the results of using the microstate
simulator with each grammar. We use ten programmable
parts, an average kinetic energy of 5 × 10−4 J, and a density
of 5 parts/m2. Each curve represents the number of assem-
blies of type C6 averaged over 15 trajectories. Figure 14
shows that �3 substantially outperforms the remaining
grammars in terms of the average number of product
assemblies at the end of the simulation and in terms of the
initial rate at which product assemblies are formed.

The data indicate that the grammar used to construct a
given assembly has dramatic effects on how quickly the
assembly forms. We next describe an approach to
improving the performance of a reaction-diffusion system
governed by graph grammar.

OPTIMIZATION OF LOCAL RULES
The relationship between a graph
grammar and the measured reaction
rates of PPT is that new assemblies
form and decay at rates determined
by the physics of the system, where
the interaction rules allow the robots
to keep, reject, or recover from reac-
tions. If two assemblies react to form
a larger assembly, the programmable
parts within the new assembly use a
graph grammar to determine what
the new assembly is and whether to
keep the new bond or dissolve it. If
the robots choose to dissolve the
bond, they might have several choic-
es of how to do so. If an assembly
breaks due to a high-energy collision,
the parts can use a graph grammar to
determine the new situation and
change their labels accordingly.

The main question, then, is what
to do with a new assembly when it
forms. When the goal is to build
assembly type C5, a few choices are
obvious. For example, when a C2 and
C3 react to form an assembly C10, the
programmable parts comprising the
C5 assembly must discard a single
part in order to leave C5; see Figure
15. Assuming that the reaction
C2 C3 ⇀ C10 occurs at the rate k and
that the communication rate kcomm

between the parts is much greater
than k, the programmed reaction can
be modeled by

FIGURE 12 Illustrative trajectory of the ratchet system. A grammar need not describe a self-
assembling system. In this example, the grammar instead determines how a particle moves
along a substrate in a repeating sequence of four basic steps.

g

a

eb

g

g

g

g

...

...

g

d

c

b

h

g

g

g

...

...

g

d

c

f

b

g

g

g

...

...

g

g

c

a

b

g

g

g

...

...

...

a
c

b

g

g

g

g

...

...

r4 r4r5 r6 r7

g

FIGURE 13 Kinetic rate constants. These constants are measured in reactions per 100 s mea-
sured from simulations of the programmable parts system with 12 parts at a density of 5
parts/m2 and average kinetic energy 5 × 10−4 J per programmable part. These rates along
with approximately 200 more are used to find an optimal scheme for assembling a hexagon.

+
11.2 ± 0.6

0.13 ± 0.01

+

6.8 ± 0.3

0.4 ± 0.02

+ +

3.0 ± 0.03

1.1 ± 0.2

1.0 ± 0.2

2.6 ± 0.3

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 53

C2 C3 ⇀ C5 C1 (6)

with the same rate k. Note that reactions such as (6) are
interpreted as graph grammar rules. For consistency with
graph grammar notation, we omit the “+” in (6), which
appears in chemical reactions.

It might be useful to disassemble the result of a reaction
whether it contains the desired assembly or
not. Figure 15 shows all of the choices for dis-
assembling C10. The parts involved in a reac-
tion of this type could choose to disassemble
the resulting assembly according to these
choices, flipping a many-sided coin to decide.
The probabilities uj weight each option,
where 0 ≤ ∑k

j=1 uj ≤ 1.
Thus, with each reaction i, we associate a

set of probabilities ui, j. By tuning the proba-
bilities, we can construct a system whose
global performance can be tuned or opti-
mized for a specific task.

It is straightforward to frame this problem
in the language of chemical kinetics. First,
index the set of all assembly types Ci by
C = {1, . . . , M}. Next define a macrostate to be
an assignment v : C → N describing how
many of each assembly type are present. A
forward reaction is a vector that describes an
assembly event as in, for example,

a = (−1 − 1 1 0 · · ·)T ,

which describes the reaction C1 C2 ⇀ C3 .
The result of a reaction a in the
macrostate v is

v′ = v + a

as long as all of the components of
the vector v′ are nonnegative. In this
case, a is said to be applicable to v.
Reverse reactions are given by −a for
each forward reaction a.

A programmed forward reaction
has the form

ãi = ai,0 +
∑

j

ui, jai, j ,

where j ranges over the partitions of
the original reaction product Ci. Here
ai,0 has one or two negative entries,
corresponding to the reactants con-
sumed, and each ai, j has positive
entries corresponding to the indices
of possible outcome assemblies.

We interpret the system of reactions as a Markov process.
The states of the process are the N possible macrostates,
which we enumerate by recursively applying all possible
actions to the initial state. Define S = (v0 . . . vN) to be the
C × N matrix of reachable macrostates, and let xi(t) be the
probability that the system is in macrostate vi at time t. The
ensemble behavior of the system is given by

FIGURE 14 A comparison of the systems induced by �1, �2, and �3. These plots
are based on the average of 15 simulations. The first grammar directs the assem-
bly in a part-by-part fashion. The second grammar directs the assembly by first
allowing dimers to form, and then chains. The last grammar first accepts all possi-
ble reactions if they contain a chain of length four and then breaks off nonessential
subassemblies.

FIGURE 15 A programmed reaction. The parts flip a many-sided coin to determine which
option to use when the environment introduces a reaction. The result is a new reaction net-
work, programmed by the graph grammar rules that implement the choice and update rules.

+

u1kcomm

u2kcomm

u3kcomm

u4kcomm

u5kcomm

u6kcomm

+

+ 3

+ 2

5

+2

k2,3,10

0 200 400 600 800 1,000 1,200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time [s]

N
um

be
r

of
 A

ss
em

bl
ie

s
[#

]

Φ2

Φ1

Φ3

ẋ = Q(u)Tx, (7)

where x = (x0, . . . , xN)T . Equation (7) is Kolmogorov’s for-
ward equation [22, pp. 85–86]. The steady-state distribu-
tion x∞ of the system is obtained by solving QT(u)x∞ = 0.
Because each reaction is reversible, x∞ is unique in these
problems [22, pp. 46–50].

To determine the probabilities u in (7) that maximize
the number of the desired assembly at equilibrium, we
solve the following optimization problem: Maximize

Jassem(x, u) = cTSx

subject to

QTx = 0

and the constraints

∑
j

ui, j = 1 for all i,

where x is a probability distribution. This problem is bilin-
ear in x and u. The software PENPOT [23] can be used to
find a local maximizer of Jassem(x, u) in polynomial time
depending on the number of probabilities in u and the

dimension N + 1 of x. However, N depends exponentially
on the number M of assembly types. Nevertheless, small
examples or fragments of larger ones can be addressed.
Furthermore, approximate algorithms for the optimization
problem can be used to tackle larger problems.

To illustrate the optimization method with the program-
mable parts, we consider the problem of assembling the hexa-
gon C19 in Figure 9. The goal is to use the measured rate data
to determine the best hexagon-forming program possible.

A hexagon is grown from subassemblies C1, C2, C3, C5,
and C10 . Scaffold assemblies such as C8 can also be
allowed, keeping in mind that they may later react with,
for example, a C3 to form an assembly that contains a
hexagon. Hundreds of assembly types can result from
interactions among this small set, and the set of rates for
these interactions result in a large matrix Q. Furthermore,
for each assembly type that does not contain a hexagon as
a subassembly there is a choice of how to break it down
according to the vector u.

The assembly C10 rarely reacts with C1 to form a hexa-
gon. For example, note the relatively long period of time
between the fourth and sixth frame in Figure 16. Thus, we
consider only how to break C10 according to the options
illustrated in Figure 15, to which we associate the probabil-
ities u10,i, i ∈ {1, . . . , 6}. Starting with nine parts, there turn
out to be 34 states, resulting in a 34 × 34 matrix Q(u).

FIGURE 16 A series of frames from video data showing a collection of programmable parts forming into a hexagon using a grammar that
accepts all reactions that form a subassembly of a hexagon. At (a) 0 s, all parts are isolated. By (b) 10 s into the experiment, several dimers
have formed. By (c) 23 s, a tetramer has formed. By (d) 43 s, a single part has combined with the tetramer to form a pentamer. After (e) 230
s, the pentamer is still present. Finally, after (f) 382 s, the hexagon is formed.

(a) (b) (c)

(d) (e) (f)

54 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

AUGUST 2007 « IEEE CONTROL SYSTEMS MAGAZINE 55

Running PENOPT on this example, the optimization
problem corresponding to breaking C10 results in

u10,2 = 0.5, u10,3 = 0.5 ,

while the remaining probabilities are equal to zero. This
choice is not obvious, although in hindsight, using option 3
in Figure 15 half of the time increases the population of C2
assemblies, which can then react with C5 assemblies. The
optimal choice depends on the initial number of program-
mable parts, although empirically there seems to be no sub-
stantial difference between the resulting performance.

The assumption underlying this example is that disas-
sembling C10 correctly in this restricted setting is also the
right thing to do using a more complete set of rules. To test
this assumption and the validity of the approach, we
encode a complete set of hexagon rules for the programma-
ble parts and average the results of several simulations for
two different choices for u. The first choice is the “greedy”
choice for handling C10, in which assemblies of type C10 are
not disassembled. The second is the optimal choice com-
puted above. The results of these simulations are shown in
Figure 17, where the difference in performance is evident.

To implement programmed assembly actions with pro-
grammable parts, a graph grammar updates each robot
about the assembly type it is a part of and the role it takes
in that assembly. When a new topology is determined, one
of the programmable parts flips a coin according to the
probabilities obtained in the offline optimization step and
then starts a cascade of the appropriate rule applications to
signal to superfluous robots in the assembly that they must
disconnect from the assembly.

This example shows that a graph grammar can be used
to define the underlying procedure by which an object is
self-assembled. Consequently, the implementation of the
graph grammar can be tuned to optimize the performance
of the assembly process. This distinction between structure
and tuning is analogous to the distinction between a con-
trol algorithm, such as full state feedback, and the choice
of the gain matrix used in the algorithm.

CONCLUSIONS
In this article we describe several problems in self-
organization. We show that aspects of these problems
are captured by the formalism of graph grammars,
while others, such as the association of a position or

FIGURE 17 Comparison of the optimal choice and greedy choice for how to dismantle C10 when assembling C19. (a) Mass-action kinetics
with an initial concentration of 9 parts/m2. (b) The average of 256 trajectories from a high-fidelity mechanics-based simulation of the robots
starting with nine parts. (c) Data averaged over 15 runs with nine programmable parts and the universal grammar. The data are collected
using an overhead camera and subsequent software analysis of the video data. The various time scales are likely due to different communi-
cation rates, specifically, immediate in (a), fast in (b), and somewhat slow in (c), the actual experiment.

100 200 300 400

0.2

0.4

0.6

0.8

t

v19 (Greedy)
v19 (Optimal)

v19

(c)

200 400 600 800
(a)

1,000 1,200 1,400 t

0.2

0.4

0.6

0.8

1

v19 (Greedy)
v19 (Optimal)

v19

(b)
500 1,000 1,500 2,000

0.2

0.4

0.6

0.8

1

t

v19 (Greedy)
v19 (Optimal)

v19

56 IEEE CONTROL SYSTEMS MAGAZINE » AUGUST 2007

velocity with the particles in the system or the associa-
tion of reaction rates to rule applications, require exten-
sions to the theory.

The formulation of the problem of controlling a system
to self-assemble has two parts. First, we define a graph
grammar that determines the outcomes of interactions
between particles or robots. The grammar can also model
aspects of the environment. The result is a transition sys-
tem on graphs. Second, we define a stochastic process over
this transition system and pose an optimization problem
that maximizes the yield of a desired assembly type. This
distinction between the system defined by a program and
the tuning of parameters within a system appears to be a
fundamental design principle, which in current work we
continue to refine and expand.

The examples we describe in this article are small in
scale, especially compared to the vastly more complex self-
organizing systems found in nature, from ecologies to cells.
Although these examples serve as tantalizing evidence that
the phenomenon of self-organization can be harnessed and
controlled, engineering large self-organizing systems
remains enormously challenging. Addressing these chal-
lenges promises new directions and paradigms for control
systems research.

ACKNOWLEDGMENTS
The results reported in this article are due in large part to
the work of my students Samuel S. Burden, Nils Napp,
John-Michael McNew, Joshua Bishop, and Fayette Shaw.
In particular, Nils Napp led the effort to design, build, and
program the programmable parts, and Samuel S. Burden
created the PPT simulator. The work described here is
partially supported by NSF Grant 0347955: CAREER: Pro-
grammed Robotic Self-Assembly. Robert Ghrist of the Uni-
versity of Illinois in Urbana-Champaign, Mehran Mesbahi
of the University of Washington, and Erik Winfree and
Niles Pierce of the California Institute of Technology con-
tributed many ideas and helpful criticisms.

REFERENCES
[1] E. Winfree, “Algorithmic self-assembly of DNA: Theoretical motivations
and 2-D assembly experiments,” J. Biomolecular Structure Dynamics, vol. 11,
no. 2, pp. 263–270, May 2000.
[2] R.C. Mucic, J.J. Storhoff, C.A. Mirkin, and R.L. Letsinger, “DNA-directed
synthesis of binary nanoparticle network materials,” J. Amer. Chem. Soc., vol.
120, no. 148, pp. 12674–12675, 1998.
[3] P. White, V. Zykov, J. Bongard, and H. Lipson, “Three dimensional
stochastic reconfiguration of modular robots,” in Robotics: Science and Systems
I, S. Thrun, G. Sukhatme, S. Schaal, and O. Brock, Eds. Cambridge, MA: MIT
Press, pp. 161–168, June 2005.
[4] E. Klavins, S. Burden, and N. Napp, “Optimal rules for programmed
stochastic self-assembly,” in Robotics: Science and Systems II, G.S.
Sukhatme, S. Schaal, W. Burgard, and D. Fox, Eds. Cambridge, MA: MIT
Press, 2007, pp. 9–16.
[5] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-
organizing robotic systems,” IEEE Trans. Automat. Contr., vol. 51, no. 6, pp.
949–962, June 2006.

[6] H.G. Tanner and A. Kumar, “Formation stabilization of multiple agents
using decentralized navigation functions,” in Robotics: Science and Systems I,
S. Thrun, G. Sukhatme, S. Schaal, and O. Brock, Eds. Cambridge, MA: MIT
Press, pp. 49–56, 2005.
[7] M. Yim, Y. Zhang, and D. Duff, “Modular robots,” IEEE Spectr., vol. 39,
no. 2, pp. 30–34, Feb. 2002.
[8] S. Murata, E. Yoshida, H. Kurokawa, K. Tomita, and S. Kokaji, “Self-repair-
ing mechanical system,” Autonomous Robots, vol. 10, no. 1, pp. 7–21, 2001.
[9] J. Suthakorn, A.B. Cushing, and G.S. Chirikjian, “An autonomous self-
replicating robotic system,” in Proc. 2003 IEEE/ASME Int. Conf. Advanced
Intelligent Mechatronics, 2003, pp. 137–142.
[10] S. Griffith, D. Goldwater, and J.M. Jacobson, “Self-replication from ran-
dom parts,” Nature, vol. 437, no. 9, pp. 636–636, Sept. 2006.
[11] B. Courcelle, “On graph rewriting: An algebraic and logic approach,” in
Handbook of Theoretical Computer Science, Volume B: Formal Models and
Sematics, J. van Leeuwen, Ed. Cambridge, MA: MIT Press, 1990, pp. 193–242.
[12] B. Courcelle and Y. Métivier, “Coverings and minors: Application to
local computations in graphs,” Eur. J. Combinatorics, vol. 15, no. 1, pp.
127–138, 1994.
[13] H. Ehrig, “Introduction to the algebraic theory of graph grammars,”
in Graph-Grammars and Their Application to Computer Science and Biology,
V. Claus, H. Ehrig, and G. Rozenberg, Eds. London: Springer-Verlag,
1979, pp. 1–69.
[14] B. Bollobás, Modern Graph Theory. New York: Springer-Verlag, 1991.
[15] I. Litovsky, Y. Métivier, and W. Zielonka, “The power and limitations of
local computations on graphs and networks,” in Graph Theoretic Concepts in
Computer Science (WG'92). New York: Springer-Verlag, 1993, pp. 333–345.
[16] N. Lynch, Distributed Algorithms. San Mateo, CA: Morgan Kaufmann,
1996.
[17] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and
T. Nguyen, “Self-organizing programmable parts,” in Proc. Int. Conf. Intelli-
gent Robots Systems, 2005, pp. 3684–3691.
[18] J.M. McNew, E. Klavins, and M. Egerstedt, “Solving coverage problems
with embedded graph grammars,” in Hybrid Systems: Computation and Con-
trol, A. Bemporad, A. Bicchi, and G. Buttazzo, Eds. London: Springer-Ver-
lag, 2007, pp. 413–427.
[19] J.M. McNew and E. Klavins, “A grammatical approach to cooperative
control: The wanderers and scouts example,” in Cooperative Control, D. Grun-
del, R. Murphey, P. Pardalos, and P. Prokopyev, Eds. New York: Springer-
Verlag, 2005, pp. 117–139.
[20] L. Lamport, “The temporal logic of actions,” ACM Trans. Program. Lang.
Syst., vol. 16, no. 3, pp. 872–923, May 1994.
[21] T.C. Daniel, A.C. Trimble, and P.B. Chase, “Compliant realignment of
binding sites in muscle: Transient behavior and mechanical tuning,” Biophys.
J., vol. 74, pp. 1611–1621, Apr.1998.
[22] D.W. Strook, An Introduction to Markov Processes. New York: Springer-
Verlag, 2005.
[23] PENOPT home page [Online]. Available: http://www.penopt.com/

AUTHOR INFORMATION
Eric Klavins (klavins@u.washington.edu) is an assistant
professor of electrical engineering at the University of
Washington in Seattle. He received a B.S. in computer sci-
ence in 1996 from San Francisco State University and the
M.S. and Ph.D. degrees in computer science and engineer-
ing in 1999 and 2001, respectively, from the University of
Michigan, Ann Arbor. From 2001 to 2003 he was a post-
doctoral scholar in the Control and Dynamical Systems
Department at the California Institute of Technology. In
2001, he received an NSF CAREER award. His research
interests include cooperative control, embedded systems,
robotics, concurrency, and nanotechnology. He can be con-
tacted at the University of Washington, Department of
Electrical Engineering, Seattle, WA 98195 USA.

