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ABSTRACT 

In this paper we study the capacity of packet radio networks 
in which the nodes are randomly focated and which use slotted 
ALOHA as the access scheme, transporting messages through the 
network in a store and forward fashion. This random location of 
nodes can be thought of as representing either an arbitrary network 
or a snapshot of a mobile one. 

We find that one of the major factors affecting the capacity 
is the transmission radius that the nodes use. Although using a 
very large transmission radius gives a high degree of connectivity, 
there will be much interference and a corresponding loss of channel 
throughput. In the extreme case where we have a completely 
connected network we know that the (ALOHA) capacity for the 
entire network is only l/e. We can limit this interference and 
increase the capacity by reducing the transmission radius, but doing 
this implies a corresponding increase in the number of hops a 
message must take in order to arrive at its destination. This 
increased number of hops creates more internal traffic which tends 
to reduce the effective capacity of the network. 

We analyze this tradeoff and find that there is a 
transmission radius which optimizes the capacity and that this 
radius allows us to achieve a throughput proportional to the square 
root of the number of nodes in the network. 

1. Introduction 

One of the major problems in effective utilization of 
computer resources is the distribution of those resources to the 
user. This problem has been greatly alleviated by the advent of 
communication networks but local distribution still remains a 
problem. The concept of broadcast packet radio for local access was 
first utilized in the ALOHA system [ABRA 701 and more recently, 
the Advanced Research Projects Agency of the Department of 
Defense has undertaken a project to investigate the use of more 
general broadcast packet radio systems [KAHN 751. A packet radio 
network consists of many packet radio units sharing a common 
radio channel such that when one unit transmits, many other units 
will hear the packet, even though it is addressed to only one of 
them. This feature, inherent in broadcast systems, in conjunction 
with the fact that we have no control over access to the channel, 
results in destructive interference when several packets are received 
simultaneously. 

Many studies have been made on the capacity of single hop 
communication networks using broadcast radio as the 
communication medium. In [LAM 741 we find an extensive 
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analysis for the one hop slotted ALOHA access scheme and in 
[TOBA 74, IUEI 75bl we find similar results for the Carrier Sense 
Multiple Access (CSMA) scheme. When we start to consider 
larger networks which require repeaters to forward messages (as we 
only have line of sight communication) we find many much more 
serious problems. These problems are accentuated if the network 
has mobile components, which was one of the major motivations 
for using broadcast technology. Little work exists, however, on the 
performance of networks requiring repeaters and store and forward 
packet switching. In this paper we study the capacity of such 
multi-hop networks and find that one of the most important factors 
affecting this capacity is the transmission radius used by the nodes 
(this corresponds to transmitter power). In a real system the power 
is limited and we are not in general able to reach our destination 
(for a large network) in one hop. In this paper, we show that this 
power limitation is, in fact, a desirable feature and that we may 
even want to reduce the transmission power to a level lower than 
the maximum determined by the transmitter characteristics. 

Kleinrock [KLEI 75a1 also found that a critical radius exists 
when trying to minimize delay in an arbitrary point to point 
network and Akavia [AKAV 781 finds similar results in trying to 
minimize the cost of the network for a certain delay requirement. 
Both of these authors assume a continuum of sources (repeaters) 
throughout the network, the consequence being that a transmission 
will always progress toward the destination by a distance equal to 
the transmission radius. For small transmission radii (or sparse 
networks) this assumption is invalid and we must take the topology 
into consideration. We are unable to progress to the edge of our 
transmission radius for two reasons: firstly, the probability 8f 
finding a point close to the edge of our transmission radius 
decreases as the expected number of points within range is reduced; 
and secondly, the probability of finding someone in the direction in 
which we wish to travel is also diminished. 

Rather than restrict ourselves to certain specific topologies 
(regular networks, for example), we will consider networks, 
consisting-of a set of nodes rundom& located in the plane. We 
consider these to be nodes in a distributed 6.e. not centralized) 
communication network. Such a network can be thought of as 
either repesenting a snapshot of a mobile network or as a 
representative sample of the set of all networks. 

We presume the existence of a routing algorithm which 
allows packets to be forwarded from sour& to destination through 
the network. Each packet radio unit is assumed to use a 
predetermined fixed radius for transmission (which determines the 
network structure). The performance of the network will then be 
studied as the transmission radius is varied. Clearly if the 
transmission radius is too small some of the nodes will become 
isolated. In this paper we restrict ourselves to consider only 
connected networks, however (we look at disconnected 
communication to some degree in an another paper [SILV 791). BY 
requiring that the transmission radius be large, we can make the 



probability of the network not being connected small. 

As we increase the transmission radius we find that the 
degree of connectivity increases, each node b e i i  able to 
communicate with more nodes in one hop. In addition to varing 
the transmission radius we have an additional degree of freedom, 
namely the transmission probability. It will be necessary to reduce 
the transmission probability as the Connectivity increases so that the 
environment around any node is not overloaded with traffic. In the 
following analysis we will optimize this transmission probability to 
give the best throughput. Varying the transmission radius has two 
effects on the throughput of the network. 

Firstly, as each’node hears more other nodes, we might 
assume that there would be a corresponding increase in the amount 
of traffic received at each node. This is not true, however, since a 
well designed system will adjust itself (by means of the 
transmission probability) so that there is no traffic overload. It is 
true, though, that a greater proportion of the traffic heard by a node 
will not be addressed to him and, more importantly, he will not be 
allowed to transmit as frequently, thus reducing the amount of 
tr&c which he can offer to the network. 

Secondly, as if to counteract this degradation in 
performance, as the transmission radius increases the source- 
destination path lengths will be reduced as each hop will take you 
closer to your destination. Thus each message will require less 
transmissions to reach its destination and cause less load on the 
network, which allows a correspondingly higher traffic level to be 
supported. 

There is clearly a tradeoff between these two and it is not at 
all apparent which effect will dominate. In fact we find that there is 
an optimum transmission radius which maximize the obtainable 
throughput. 

2. General Model 

The nodes of the network are considered to be uniformly 
distributed in (two-dimensional) space with density X (that is, there 
will be an average of A points per unit area). The access mode that 
will be used is slotted ALOHA with each node having a 
transmission probability p in a slot. The slots correspond to the 
transmission time of the longest packet used in the system and the 
maximum throughput in any local environment is therefore one 
packet per slot (although, of course, we cannot attain a throughput 
of one for an ALOHA system due to interference). Each node will 
transmit with the same radius r, which will determine the 
connectivity (topology) of the network. Any nodes falling within 
the circle of radius r about a node will be able to hear that node and 
also be able to transmit to it. We only consider the heavy traffic 
case, in which every node is always busy and will transmit 
whenever permitted (the restraint being the transmission 
probability). 

The traffic matrix we will study is uniform, each node 
wishing to communicate with all others on an equal basis. We will 
therefore consider each node to be equivalent, having the same 
transmission radius, transmission probability and traffic load. (We 
are assuming here that the edge effects and imbalance of traffic due 
to routing are of minor importance.) 

We will find the capacity of the network, which is the 
maximum achievable throughput measured in terms of source 
destination messages. We start by studying the number of 
transmissions per unit time that can be handled by the network. 

3. Per-Hop Tmffic 

Consider the number of successful transmissions per slot. 
This is a measure of the throughput if nodes are only talking to 
their neighbors. If, however, some traffic requires more than one 
hop, we will be counting each transmission along the path as a 
contribution to the throughput. 

Consider an arbitrary node in the network. We define hi to 
be the probability of hitting i other nodes by a transmission and H, 
to be the probability of being in range of i other nodes. As the 
nodes are randomly distributed, the number of nodes that will be in 
a circle of radius r is Poisson distributed, i.e., 

(i=O, 1,2, ...I (1) 
(AA ) ie-AA 

i! hi = 

where A-Amr’ is the area (volume) covered by the transmission. 

We will find that the term AA continually crops up in our 
equations. This corresponds to the expected number of nodes in a 
transmission radius about any point. For convenience, therefore, 
let us define N to be this average degree. 

N - AA (2) 

- A?rr2 

We can therefore rewrite (1) in these terms. 

(i=O, 1,2, ... 1 (3) N e - N  
i! 

h, - 
In the case where all nodes are using the same transmission radius, 
it is clear that you will hear precisely those nodes that hear you 
and, thus, Hwill have the same distribution as h, that is, 

N i e - N  
H, - - (i-0, 1,2, ... ) (4) i !  

We are interested in counting the number of successful 
transmissions in any slot. Let us, therefore, define q to be the 
probability of a node successfully receiving a packet in a slot, and q, 
to be the same conditioned on the fact that this node hears I 

people. This is the probability that exactly one of the units that 
you hear transmits to you and you are silent. In slotted ALOHA 
these events are independent as there is no control and all nodes 
are considered constantly busy for the heavy traffic case. For 
simplicity let us assume that every node in the network uses the 
same transmission probability p .  Let us define the event A ,  fo 
represent a node hearing i other nodes. 
We then have: 

- 

q, - Pr ( a  nerghbor transmits to you and you do not transmit I A , ]  

- Pr {exact& one of the I units transrnrts I A , )  
*Pr (oddressed to you 1 A , )  ‘Pr (you do not transmrt 1 A , )  

= p(1-p)’ (5) 

If we now uncondition on the number heard we can obtain the 
probability, s, of successfully receiving a packet in any particular 
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slot. 

Summing and rewriting we obtain, 

s= pe-NP - pe-N ( 7 )  
The e-N in the second term corresponds to the probability of there 
being nobody in range. As we are only considering connected 
networks we will need an average degree large enough to ensure 
against this. Erdos and Renyi [ERDO 591 have considered the 
issue of connectivity for large random graphs 6.e. graphs not 
defined by a geometrical relationship) and found that if the average 
degree is log(n)+c then the probability of the graph being 
connected is e-'-'. The graphs that we are interested in, however, 
are Euclidean graphs where the existence of edges is not an 
independent process. The analysis of connectivity is much more 
complex and no simple results like those for random graphs are 
known. Dewitt [DEWI 771 finds a lower bound on the probability 
of connectedness. If the average degree is 
4log(n) + 4loglog(n) + 4c then Prkonnected) 2 e-'-'. He also 
suggests that log(n)+O (loglog(n)) should be sufficient for 
connectivity. These results are asymptotically true for large graphs 
and may or may not be exact for smaller graphs. In Table 1 we 
give the average degree necessary (based on these formulae) for 
the probability of connectedness to be 0.95. (We have found in 
our simulations that using an average degree of 5 we have always 
been able to generate a connected network in one or two tries for 
networks with less than 100 nodes.) 

#nodes Av.  Deg. (Erdos) Av .  Deg. (DeWitt) 

10 5.2 
20 6.0 
40 6.6 
80 7.3 

1 50 8.0 

24 
28 
32 
35 
38 

Table 1 Number of edges required for connectivity (prob=.95) 

We see, therefore, that we will need a degree of at least 
four to have a connected network. From stability arguments (so 
that we do not overload the local channel) [LAM 741 we know that 
p must decrease as N increases and in fact, should be proportional 
to 1/N. The second term in Eq. 7 then becomes negligible 
compared to the first. 

Rewriting, we obtain: 

s = pe-NP (8) 

Optimizing for p we find: 

- e-NP(l  - Np)  - 0  

Thus: 

1 
Pop1 - 7 

(9)  

(10) 

be justified. 

Which gives the local throughput s, (i.e. throughput per node): 

1 
Ne s = -  ( 1 1 )  

The fact that the optimum value of p is found to be 1/N is 
no surprise as it corresponds to setting the average traflic load G to 
be equal to one packet per slot in any local environment [ABRA 
70,  LAM 741. 

4. Network Utilization 

From s we can determine the expected number of 
successful transmissions per slot for the whole network, s,,, by 
multiplying by the total number of nodes n: 

n 
Ne SneI = - (12) 

If we set N to be equal to n, which is equivalent to allowing all 
nodes to hear each other (i.e. very large transmission radius), the 
throughput reduces to l / e  which is Abramson's result for such nets 
[ABRA 701 (the path lengths are 1 in this case). 

5. Network Throughput 

The quantity obtained above is a measure of the number of 
successful transmissions per slot. In the transit of an arbitrary 
message from source to destination, it will in general be transmitted 
several times as it threads its way along the path defined by the 
routing matrix. The above computations will count each of these 
transmissions as a contribution to the throughput. We need 
therefore to divide the above figure by the average path length of 
the network. We will then have a measure of the true network 
throughput in terms of messages delivered. 

Clearly this average path length is traffic matrix dependent. 
In fact, if we consider a traffic matrix which only specifies nearest 
neighbor communication, we have that the number of successful 
transmissions is indeed equivalent to the network throughput. This 
is not the interesting case, however. We will consider the more 
general case in which we assume that each node wishes to 
communicate with every other node in the network on an equal 
basis. That is to say, for each message generated at a node, we will 
randomly select the destination from the set of other nodes in the 
network. This is a uniform traffic matrix. 

- 

We need therefore to find the traffic-weighted path length, 
which, for the uniform traffic matrix, is the Same as the usual 
concept of path length in a graph. The determination of average 
path length in a random graph is hard, and so we proceed by 
calculating the expected progress per hop. If the points were 
infinitely dense (compared to the transmission radius) we would 
expect to always be able to reach the edge of our transmission 
range in any direction in which we wished to travel. As the radius 
decreases however we will find that the point which will allow US to 
make the most progress towards our destination will be further and 
further away from the circumference. Eventually, in fact, we will 
not be able to make any progress at all in the direction we wish 
(the graph is likely to be disconnected by this time). 

Dividing the expected distance between a random pair Of 
points in the graph by the expected progress in one hop, we find 
the expected number of hops to reach an arbitrary destination. 
This is equivalent to the average path length. 

Substituting this value back into Eq. 7 we see that for a connected 
net ( N > 4 )  our assumption to neglect the second term appears to 
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6. Expected Progress 

Let us consider the expected progress in one hop, z. In 
Figure 1, P is the source having a message destined to Q (in fact P 
can also be one of the intermediate points along the path defined by 
the routing matrix). Any point on the arc centered at Q is 
equivalent in terms of progress. the distance z is then measured 
from P to this arc. 

Q 

Figure 1. Progress in One Hop 

where A is the shaded area. 

A is composed of two spherical caps A ,  and A2:  

where the angles are given by: 

(13) 

If P is sufficiently distant from Q we may neglect A2 and 
for convenience, in the following we only consider A 1. We in fact 
did study the effect of including the correction term of A2 and 
found that it made no significant difference to the average path 
length computation. 

We can thus find F (the expected progress) to be 

The last term in this expression corresponds to the probability of 
nobody being in range, and the second integral corresponds to the 
case where no progress can be made (i.e. we must move away from 
our destination). It could be argued that this term should not be 
included (depending on the routing strategy used), but we include 
it for completeness in the geometrical argument. It will have a 
negligible contribution to the cornputation for the range of degrees 
that we shall consider (i.e. those that will guarantee connectivity). 
Making the substitution t=cos(B1) we have: 

(14) 

If we consider the progress factor (normalized with respect to the 
radius) f = z / r ,  we find that it is a function depending only on N 
rather than explicitly on the radius. Figure 2 shows the expected 
progress factor as a function of the expected degree N. Although 
we show the curve for small values of N, the curve probably does 
not represent the true progress that would be made in a real 
network, due to connectivity limitations and that the routing 
procedure may not allow to move away from our destination. 

7. Expected Path Length 

In order to determine the average path length we need to 
find the average distance between any two points in the network. 
This is equivalent to finding the distance between two points 
randomly located inside the area in which the network is enclosed. 
If we assume that the network is situated inside a disc of radius R, 
then the expected distance, d, between any two points randomly 
located within this disc is given by [KEND 631. 

(15) 

We need to express R in terms of the density and total number of 
nodes. 

128 d = -  
45?r 

XwR2 = n 

'h 

=> R - [$] (16) 

We can, thus, find the average number of hops h to be: 

8. Network Throughput 

We can now determine the true network throughput, 7 ,  by 
dividing the number of successful transmissions (Eq. 12) by the 
number of times a packet is repeated (the average path length given 
in Eq. 17). 

This equation is the main result of this -paper, showing the 
network throughput as a function of the average degree. It 
expresses the tradeoff between small transmission radii (many 
hops) and large transmission radii (too much interference). If the 
average degree is a constant we see that the througphut is 
proportional to the square root of the number of nodes in the 
network. If the degree is an increasing function of the number of 
nodes however, the capacity will grow at a rate slower than &. 
We show in Fig. 3 the normalized network throughput 
value of N which maximizes the throughput is 5.89, at which point 

*. The 
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the optimal network througphut y'is given by: 
y ' - .0976 & (19) 

which should be compared to the ALOHA (fUlly-c.xMected) 
througphut of l / e  independent of the network sue. We also notice 
that the throughput is extremely sensitive to reduction in degree 
from this optimum, whereas the capacity is relatively insensitive to 
the use of larger degrees. 

Fig, 4 shows the network throughput given by Eq. 18 as a 
function of the number of nodes, for various average degrees. For 
comparison purposes we show the curve for a completely connected 
ALOHA network which is asymptotic to I/e for large nets (slightly 
exceeding this for small nets [ABRA 701). The curves for y' are 
only valid for average degrees greater than the network size, as the 
performance reduces to that of the completely connected net for 
degrees close to the number of nodes. The reason that Eq. 18 is 
not valid for average degrees comparable to the network size is that 
we must use a more sophisticated computation for path length to 
incorporate edge effects and the area A2 mentioned in section 6: 

9. Conclusions 

We have shown that for a constant average degree in a 
random network we can obatih a throughput proportional to the 
square root of the number of nodes on the network. We have also 
shown that the optimal average degree is approximately 6. Using a 
degree less than 6 causes drastic reduction in capacity of the 
network (the network also becoming disconnected), whereas 
exceeding 6 causes ody  gradual degradation (provided we do not 
have a degree which is an increasing function of the number of 
nodes). When an average degree of 6 is used the network 
throughput is .0976 &, as opposed to I/e for a fully connected 
network. 
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