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SYNCHRONIZATION OF PULSE-COUPLED BIOLOGICAL OSCILLATORS* 

RENATO E. MIROLLOt AND STEVEN H. STROGATZ!: 

Abstract. A simple model for synchronous firing of biological oscillators based on Peskin's model of 
the cardiac pacemaker [Mathematical aspects of  heartphysiology, Courant Institute of Mathematical Sciences, 
New York University, New York, 1975, pp. 268-2781 is studied. The model consists of a population of 
identical integrate-and-fire oscillators. The coupling between oscillators is pulsatile: when a given oscillator 
fires, it pulls the others up by a fixed amount, or brings them to the firing threshold, whichever is less. 

The main result is that for almost all initial conditions, the population evolves to a state in which all 
the oscillators are firing synchronously. The relationship between the model and real communities of 
biological oscillators is discussed; examples include populations of synchronously flashing fireflies, crickets 
that chirp in unison, electrically synchronous pacemaker cells, and groups of women whose menstrual cycles 
become mutually synchronized. 

Key words. synchronization, biological oscillators, pacemaker, integrate-and-fire 

AMS(M0S) subject classifications. 92A09, 34C15, 58F40 

1. Introduction. Fireflies provide one of the most spectacular examples of syn- 
chronization in nature [5], [6], [15], [20], [40], [48]. At night in certain parts of 
southeast Asia, thousands of male fireflies congregate in trees and flash in synchrony. 
Recalling displays he had seen in Thailand, Smith [40] wrote: "Imagine a tree thirty-five 
to forty feet high. . . ,apparently with a firefly on every leaf and all the fireflies flashing 
in perfect unison at the rate of about three times in two seconds, the tree being in 
complete darkness between flashes.. . . Imagine a tenth of a mile of river front with 
an unbroken line of [mangrove] trees with fireflies on every leaf flashing in synchronism, 
the insects on the trees at the ends of the line acting in perfect unison with those 
between. Then, if one's imagination is sufficiently vivid, he may form some conception 
of this amazing spectacle." 

Mutual synchronization occurs in many other populations of biological oscillators. 
Examples include the pacemaker cells of the heart [23], [31], [34], [44]; networks of 
neurons in the circadian pacemaker [9], [33], [47]-[49] and hippocampus [45]; the 
insulin-secreting cells of the pancreas [38], [39]; crickets that chirp in unison [46]; 
and groups of women whose menstrual periods become mutually synchronized [3], 
[30], 1351. For further information and examples, see [47]-[49]. 

The mathematical analysis of mutual synchronization is a challenging problem. 
It is difficult enough to analyze the dynamics of a single nonlinear oscillator, let alone 
a whole population of them. The seminal work in this area is due to Winfree [47]. He 
simplified the problem by assuming that the oscillators are strongly attracted to their 
limit cycles, so that amplitude variations can be neglected and only phase variations 
need to be considered. Winfree discovered that mutual synchronization is a cooperative 
phenomenon, a temporal analogue of the phase transitions encountered in statistical 
physics. This discovery has led to a great deal of research on mutual synchronization, 
especially by physicists interested in the nonlinear dynamics of many-body systems 
(see [8], [lo], [29], [36], [37], [41]-[43] and references therein). 
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In most of the previous theoretical work on mutual synchronization, it has been 
assumed that the interactions between oscillators are smooth. Much less work has been 
done for the case where the interactions are episodic and pulselike. This case is of 
special importance for biological oscillators, which often communicate by firing sudden 
impulses (see [13], [19], [33], [48, pp. 118-1201). For example, in the case of fireflies, 
the only interaction occurs when one firefly sees the flash of another, and responds by 
shifting its rhythm accordingly [5], [20]. 

This paper concerns the emergence of synchrony in a population of pulse-coupled 
oscillators. Our work was inspired by Peskin's model for self-synchronization of the 
cardiac pacemaker [34]. He modeled the pacemaker as a network of N "integrate-and-
fire" oscillators [2], [4], [17], [18], [24], [25], each characterized by a voltagelike state 
variable xi, subject to the dynamics 

When xi = 1, the ith oscillator "fires" and xi jumps back to zero. The oscillators are 
assumed to interact by a simple form of pulse coupling: when a given oscillator fires, 
it pulls all the other oscillators up by an amount E, or pulls them up to firing, whichever 
is less. That is, 

(1.2) xi(t)= l=+xj(t+)=min (1, xj(t) + E )  V j # Z. 

Peskin [34] conjectured that "(1) For arbitrary initial conditions, the system 
approaches a state in which all the oscillators are firing synchronously. (2) This remains 
true even when the oscillators are not quite identical." He proved conjecture (1) for 
the special case of N =2 oscillators, under the further assumptions of small coupling 
strength E and small dissipation y. 

In this paper we study a more general version of Peskin's model and analyze it 
for all N. Instead of the differential equation (1.1), we assume only that the oscillators 
rise toward threshold with a time-course which is monotonic and concave down. We 
do, however, retain two of Peskin's most important assumptions: the oscillators have 
identical dynamics, and each is coupled to all the others. Our main result is that, for 
all N and for almost all initial conditions, the system eventually becomes synchronized. 
A corollary is that Peskin's conjecture (1) is true for all N and for all E, y >  0. Our 
methods are elementary and involve little more than considerations of monotonicity, 
concavity, etc. 

In § 2 we describe our model and analyze it for the case of two oscillators. Section 
3 extends the analysis to an arbitrary number of oscillators. In § 4 we relate our work 
to previous research and discuss some possible applications and open problems. 

2. Two oscillators. 
2.1. Model. First we generalize the integrate-and-fire dynamics (1.1). As before, 

each oscillator is characterized by a state variable x which is assumed to increase 
monotonically toward a threshold at x = 1. When x reaches the threshold, the oscillator 
fires and x jumps back instantly to zero, after which the cycle repeats. 

The new feature is that, instead of (1.1), we assume only that x evolves according 
to x =f ( 4 ) ,  where f :  [0,1] + [0,1] is smooth, monotonic increasing, and concave down, 
i.e., f '>0 and f "<0. Here 4 E [0, 11 is a phase variable such that (i) d4/dt  = 1/ T, 
where T is the cycle period, (ii) 4 =0 when the oscillator is at its lowest state x =0, 
and (iii) 4 = 1 at the end of the cycle when the oscillator reaches the threshold x = 1. 
Therefore f satisfies f(0) =0, f (1) = 1. Figure 1 shows the graph of a typical J: 
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FIG. 1. Graph of the function J The timecourse of the integrate-and-fire oscillation is given by x =f ( 4 ) ,  
where x is the state and @ is a phase variable proportional to time. 

Let g denote the inverse function f-' (which exists since f is monotonic). Note 
that g maps states to their corresponding phases: g(x) = 4. Because of the hypotheses 
on J; the function g is increasing and concave up: g '> 0 and g"> 0. The endpoint 
conditions on g are g(0) =0, g(1) = 1. 

Example. For Peskin's model (1.1), we find 

where C = 1- e-". The intrinsic period T = y-' In [S,,/(S, - y)]. 
Now consider two oscillators governed by J; and assume that they interact by the 

pulse-coupling rule (1.2). As shown in Fig. 2(a), the system can be visualized as two 
points moving to the right along the fixed curve x =f (4) .  Figure 2(b) shows the system 
just before a firing occurs; Fig. 2(c) shows the system immediately afterward. Because 
the shifted oscillator is confined to the curve x =f ( 4 ) ,  the effect of the pulse is 
tantamount to a phase shift. This is the only way that the phase difference between 
the oscillators can change-between firings, both points move with the same constant 
horizontal velocity d 4 l d t  = 1/ T. 

2.2. Strategy. To prove that the two oscillators always become synchronized, we 
first calculate the return map and then show that the oscillators are driven closer 

FIG.  2. A system of two oscillators governed by x =f ( @ ) ,  and interacting by the pulse-coupling rule (1.2). 
( a )  The state of the system immediately after oscillator A has jired. ( b )  The state of the system just before 
oscillator B reaches the firing threshold. The phase diflerence between the oscillators is the same as in (a ) .  ( c )  
The state of the system just after B has jired. B has jumped back to zero, and the state of A is now 
min (1,  E +  f ( 1 - 4 ) ) .  
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together each time the map is iterated. Perfect synchrony is locked in when the oscillators 
have gotten so close together that the firing of one brings the other to threshold. They 
remain synchronized thereafter because their dynamics are identical. 

2.3. Return map and firing map. The return map is defined as follows. Call the 
two oscillators A and B, and let us strobe the system at the instant after A has fired 
(Fig. 2(a)). Because A has just fired, its phase is zero. Let 4 denote the phase of B. 
The return map R ( 4 )  is defined to be the phase of B immediately after the next firing 
of A. 

To calculate the return map, observe that after a time 1 - 4, oscillator B reaches 
threshold (Fig. 2(b)). During this time, A moves from zero to an x-value given by 
x, =f(1- 4 ) .  An instant later, B fires and xA jumps to E +f(1- 4 )  or 1, whichever is 
less (Fig. 2(c)). If x, = 1, we are done-the oscillators have synchronized. Hence 
assume that xA = E +f(1- +f(1-  4 ) ) ,  4 )  <1. The corresponding phase of A is g ( ~  
where g =f -'as above. 

We define the $ring map h by 

Thus, after one firing, the system has moved from an initial state (4,, 4,) = (0, 4 )  to 
a current state (4A,  4,) = (h(4) ,  0). In other words, the system is in essentially the 
same state as when we started-but with 4 replaced by h (4 )  and the oscillators 
interchanged. Therefore to obtain the return map R ( 4 ) ,  we follow the system ahead 
for one more iteration of h: 

A caveat about the domains of h and R:  In the calculation leading to (2.1), we 
assumed that F +f(1-  4 )  < 1. (Otherwise synchronization occurs after the next firing.) 
This assumption is satisfied for E E [O, 1) and 4 E (6, I),  where 6 is defined by 

Thus the domain of the map h, strictly speaking, is the subinterval (6, 1). Similarly, 
the domain of R is the subinterval (6, h-'(6)). This interval is nonempty because 
6 < h-'(6) for E < 1, as is easily checked. 

2.4. Dynamics. We will now show that there is a unique fixed point for R, and 
that this fixed point is a repeller. 

LEMMA2.1. h ' (4)  < -1 and R ' (4)  > 1, for all 4.  
ProoJ: It suffices to show that h r (4 )  < -1, for all 4,  since R ' (4)  = hr(h(4))h ' (4) .  

From (2.1), we obtain h t (4 )  = - g ' ( ~+f(1-  4))f '(1 - 4 ) .  Since f and g are inverses, 
the chain rule implies f '(1- 4 )  = [gr( f(1- 4))]-'. Hence 

Let u =f(1- 4 ) .  Then (2.3) is of the form 

By hypothesis, g"> 0 and E >0, so gr(& + u) > gr(u),  for all u. This is where the concavity 
hypothesis on g is used. Finally, the hypothesis that gr(u) >0 for all u implies that 
h' <-1, as claimed. 0 
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PROPOSITION2.2. There exists a uniquejxed point for R in (6, h-'(a)), and it is 
a repeller. 

ProoJ: To prove existence, it suffices to find a fixed point for h, because (2.2) 
implies that any fixed point for h is a fixed point for R. The fixed point equation for 
h is 

It is easy to check that 

and from Lemma 2.1 we have F r ( 4 )  = 1-h t ( 4 )>2 >  0. Hence h has a unique fixed 
point 4". 

Since R(4")  = 4" and R t ( 4 )  > 1 by Lemma 2.1, we have 

Hence the fixed point for R is unique, and is a repeller. O 
The result (2.7) shows that R has simple dynamics-from any initial phase (other 

than the fixed point), the system is driven monotonically toward 4 =0 or 4 = 1. In 
other words, the system is always driven to synchrony. 

2.5. Solvable example. By making a convenient choice for the function f ( 4 ) ,  we 
can gain further insight into the dynamics of synchronization. The special case con- 
sidered here illustrates a number of qualitative phenomena that occur more generally. 

Our criterion for choosing f is that the firing map h and the return map R should 
be as simple as possible. From Lemma 2.1, we know that h r (4 )  < -1. Suppose we 
insist that 

where A > 1 is independent of 4. Then h and R would reduce to affine maps: 

Now we seek the function f such that (2.8) is satisfied. Equation (2.4) dictates 
the appropriate choice of f-its inverse function g must satisfy the functional equation 

Equation (2.1 1) has solutions of the form 

where a and b are parameters and 

(Note that (2.11) has more general solutions than (2.12), e.g., gr(u)  =P(u )  ebu, where 
P(u)  is any periodic function with period E.  However (2.12) is sufficient for our 
purposes.) 
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After integrating (2.12) and imposing the endpoint conditions g(0 )  =0 and g(1 )  = 

1, we find 

The function f = g p l  is given by 

Thus we have a one-parameter family of functions J; parametrized by b. By our 
earlier assumption, f is concave down; hence b >0. Figure 3 shows the graph off  for 
different values of b. As b approaches zero, f approaches the identity map, indicated 
by the dashed diagonal in Fig. 3; for large b, f rises very rapidly and then levels off. 
Thus b measures the extent to which f is concave down. In more physical terms, b is 
analogous to the conductance y in the "leaky capacitor" model (1.1); both are measures 
of the leakiness or dissipation in the dynamics. 

The results above have some interesting implications. 
(1)  Rate of synchronization. Synchrony emerges more rapidly when the dissipation 

b or the pulse strength E is large. We can estimate the time it takes for the system to 
synchronize, starting from an initial phase 40.Let 4, denote the kth iterate ~ , ( 4 , ) ,  
and let A, =14,- 4*I denote the distance from the repelling fixed point 4*.From 
(2.10) we see that A, grows exponentially fast in k :  

A, = aohZk 
= A, e 2 E b k .  

Synchrony occurs when 4, has been driven to zero or one, and A, -O ( 1 ) ; the number 
of iterations required is 

Thus the time taken to synchronize is inversely proportional to the product ~ b .  

0.0 0.2 0.4 0.6 0.8 1.O 

0 
F I G .  3.  Graphs of the function f dejned by (2.15), for three values of the dissipation parameter b. The 

dashed diagonal line corresponds to the identity map, for which b =0. 



1651 SYNCHRONIZATION OF BIOLOGICAL OSCILLATORS 

A similar result was found by Peskin [34]. He used Taylor series expansions to 
approximate the return map for the model (1.1) in the limit of small s and y. He 
showed that the rate of convergence to synchrony depends on the product s y  (to 
lowest order in E and y), and concluded that synchrony is a "cooperative effect between 
the coupling and the dissipation; convergence disappears when either the coupling or 
the dissipation is removed." Our result shows that this product dependence holds even 
if s and b are not small. 

(2) Location of thejixedpoint. For the special family of functions (2.15), we can 
find the repelling fixed point 4" explicitly, and thereby see how it depends on b and 
s. Rewriting the fixed point equation (2.5) as s =f (4" )  -f (1-  4")  and substituting 
(2.15) for J; we obtain 

Figure 4 shows the graph of 4" versus s for three values of b. As s tends to zero, 
the fixed point always approaches 4" =$.This result holds for general J; as can be 
seen from (2.5). Thus, in the limit of small coupling, the repelling fixed point always 
occurs with the oscillators at antiphase. 

0.00 0.25 0.50 0.75 1.OO 

E 
F I G .  4 .  Dependence of t h e j x e d  point +* on the pulse strength E and the dissipation b, a s  given by (2 .17) .  

(3) Stability type of thejixedpoint. The eigenvalue A = ebEdetermines the stability 
type of the fixed point 4".  We have assumed throughout that s>0 and b >0; in this 
case A > 1 and 4" is a repeller. It is worth noting, however, that 4" would be stabilized 
if either s or b were negative. This would occur for a system which accelerates up to 
threshold (b  <0), or for one with inhibitory coupling ( s  <0). If both s, b <0, then the 
fixed point is again a repeller. 

3. Population of oscillators. We turn now to the general case of N oscillators. 
Before beginning the analysis, we give an intuitive account of the way that synchrony 
develops. 

As the system evolves, oscillators begin to clump together in "groups" that fire 
at the same time. This gives rise to a positive feedback process, as first described for 
a different system by Winfree [47]-as a group gets bigger, it produces a larger collective 
pulse when it fires, and thereby tends to bring other oscillators to threshold along with 
it. In this sense a large group tends to grow by "absorbing" other oscillators. Absorptions 
reduce the number of groups until ultimately only one group remains-at that point 
the population is synchronized. This scenario is illustrated by computer simulation in 
§ 3.4 below. 
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Our proof of synchrony has two parts. The first part (Theorem 3.1) shows that 
for almost all initial conditions, an absorption occurs in finite time. The hypotheses 
of Theorem 3.1 are general in the sense that they allow the groups to fire with different 
strengths, corresponding to the different numbers in each group. After an absorption 
occurs, there are N - 1 groups (or perhaps a smaller number if several oscillators were 
absorbed at the same time). 

The second part of the proof (Theorem 3.2) rules out the possibility that there 
might exist sets of initial conditions of positive measure which, after a certain number 
of absorptions, live forever without experiencing the final absorptions to synchrony. 
Taken together, Theorems 3.1 and 3.2 show that almost all initial conditions lead to 
eventual synchrony. 

In § 3.1, we define the state space. The dynamics are discussed in § 3.2, using the 
analogue of the firing map h discussed above. After defining the notion of "absorptions" 
more precisely in § 3.3, we present simulations in § 3.4 which illustrate the way that 
synchrony evolves. We state and prove the two parts of our main theorem in § 3.5. 
The argument appears somewhat technical, but is based on simple ideas involving the 
volume-expansion properties of the return map. An exactly solvable example is presen- 
ted in § 3.6. 

3.1. State space. As before, we study the dynamics of the system by "strobing" 
it right after one of the oscillators has fired and returned to zero. The state of the 
system is characterized by the phases 4 , ,  . . . ,4, of the remaining n = N - 1 oscillators. 
Thus the possible states are given by the set 

where we have indexed the oscillators in ascending order. The oscillators are currently 
labeled 0, 1,2, . . ,n, with the convention that 4, =0. 

Because the oscillators are assumed to have identical dynamics and the coupling 
is all to all, the flow has a special property-it preserves the cyclic ordering of the 
oscillators. The order cannot change between firings, because the oscillators have 
identical frequencies, and the monotonicity of the function f ensures that the order is 
maintained after each firing. Hence the oscillators fire in reverse order to their current 
index: the oscillator currently labeled n is the next to fire, then n - 1, and so on. After 
oscillator n fires, we relabel it to zero, and relabel oscillator j to j +  1, for all j <n. 

This simple indexing scheme would fail if the oscillators had different frequencies; 
then one oscillator could "pass" another, and the dynamics would be more difficult 
to analyze. The case of nonidentical frequencies is relevant to real biological oscillators 
and is discussed briefly in § 4. 

3.2. Firing map. Let 4 = ( 4 , ,  . . ,4,) be the vector of phases immediately after 
a firing. As in § 2, we would like to find the firing map h, i.e., the map that transforms 

to the vector of phases right after the next firing. 
To calculate h, note that the next firing occurs after a time 1 - 4,. During this 

time, oscillator i has drifted to a phase 4i+ 1-4,, where i =0, 1,2, . . . ,n - 1. Thus 
the phases right before firing are given by the affine map a:Rn+Rn, defined by 

After the firing occurs, the new phases are given by the map T :Rn+R", where 
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Together the map 

(3.4) h ( 4 )  = ~ ( 4 4 ) )  

describes the new phases of the oscillators after one firing. 
Note that we have implicitly relabeled the oscillators, so the image vector h ( 4 )  

represents the phases of the oscillators formerly labeled O,1,2, . . ,n - 1. That is, the 
original oscillator 0 has become 1, oscillator 2 has become 3, . . ,and oscillator n has 
become oscillator 0. 

3.3. Absorptions. The set S is invariant under the affine map u, but not under the 
map T, because f ( a n )  + E 2 1 is possible. When this happens, it means that the firing 
of oscillator n has also brought oscillator n - 1 to threshold along with it. Thereafter 
the two oscillators act as one, because their dynamics are identical and they are coupled 
in the same way to all the.other oscillators. We call such an event an absorption. 

Absorptions complicate matters in two ways: 
(1) Because of absorptions, the domain of h is not all of S. The domain is actually 

the set 

or, equivalently, 

If 4 E S-S,, an absorption will occur after one firing of strength E. 

(2) Absorptions create groups of oscillators that fire in unison with a combined 
pulse strength proportional to the number in the group. Equivalently, we can think of 
a group as a single oscillator with an enhanced pulse strength. Thus we now must 
allow for the possibility of different pulse strengths in the population. However this 
turns out to be easily handled-as will be seen in § 3.5, the proof of synchrony does 
not require identical pulse strengths; it requires only that the pulse strengths be 
nonnegative and not all zero. 

3.4. Numerical results. To illustrate the emergence of synchronization, we now 
present the results of a computer simulation of N = 100 oscillators. The system was 
started from a random initial condition: the states xi, i = 1, . . . ,N, were chosen 
independently from a uniform distribution on [0, 11, and then reindexed so that the 
xi were in ascending order. (This reindexing involves no loss of generality since each 
oscillator is coupled to all the others.) The subsequent evolution of the xi was governed 
by (1.1) and (1.2), with S0=2,  y = 1, and E =0.3. 

Figure 5 plots the number of oscillators firing as a function of time. At first there 
is little coherence among the oscillators, and the system organizes itself rather slowly. 
Then synchrony builds up in an accelerating fashion, as expected by the positive 
feedback argument given earlier. By t =9T the system is perfectly synchronized. 

The slow initial buildup of synchrony is reminiscent of the observation [6] that 
among southeast Asian fireflies, synchronous flashing "builds up relatively slowly at 
dusk in the display trees, where each male is being stimulated by the light from many 
sources." In the present system as well, each oscillator receives many conflicting pulses 
during the incoherent initial stage. 

Figure 6 shows the evolution of the system in state space. The system was strobed 
immediately after each firing of oscillator i = 1. After the first firing, some shallow 
parts appear in the curve of xi versus i, corresponding to oscillators in nearly the same 
state. By the seventh firing, these parts have become completely flat-this means that 
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80 -

number of 

oscillators 60 -

firing 


40 -

time 

FIG. 5. Number of oscillatorsfiring as a function of time, for the system (1.1) and (1.2), with N = 100, 
So=2, y = 1, E =0.3, and random initial condition. Time is plotted in multiples of the natural period T of the 
oscillators. Each period is divided into 10 equal intervals, and the number of oscillators Jiring during each 
interval is plotted vertically. 

4-- 10th iterate 

X 

0 20 40 60 80 100 

oscillator index 
FIG.  6 .  The state of the system after the Jirst, seventh, and tenth iterations of the return map. Same 

simulation as in Fig. 5. The flat sections of the graphs correspond to groups of oscillators that fire in unison. 

the corresponding oscillators are firing in unison. A dominant group has emerged by 
the tenth firing; it also appears in Fig. 5 as the large, growing spike. 

In the simulation described above, we used the following conventions: 
(1) If the firing of one oscillator brought another to threshold, the latter oscillator 

was not allowed to fire until the next time it reached threshold. Another convention, 
perhaps more natural biologically, would be to let the latter oscillator fire immediately 
and possibly ignite a "chain reaction" of additional firing, until no other oscillators 
were brought to threshold. This alternative convention would speed up the inevitable 
synchronization of the system. Our main theorem stated below is true in either case, 
but the notation becomes more complicated if chain reactions are allowed. 

(2) The pulse strength of a synchronous group was assumed to be the sum of the 
individual pulse strengths. As will be seen below, this assumption of additivity is also 
unnecessary for the proof of our main theorem. It is sufficient that the pulse strength 
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of each group be nonnegative, with at least one group having a pulse strength greater 
than zero. 

For the biological applications we have in mind, it is important that the theorem 
hold even if pulse strengths are not additive. For example, it seems improbable that 
10 fireflies flashing simultaneously would have 10 times the effect that one would have. 
In the models proposed by Buck and Buck [5], [6], the response is proposed to be all 
or none; the firefly's pacemaker is assumed to be reset completely by any flash above 
a certain strength. 

3.5. Main theorem. Suppose our N oscillators fire with strengths E, ,  ,E, 2 0, 
and assume not all si=0. Let T,, . . . ,T, be defined as in (3.3), corresponding to the 
pulse strengths E, ,  . ,EN. We reduce all indices modulo N, i.e., let = 7;. for j = 
i mod N,15j 5 N. Then let hi = .ri o a .  Let 

So Ai is the set of initial conditions that will have at least i firings before an absorption 
occurs. Let 

Then A is the set of initial conditions that live forever without any absorptions. 
We now state and prove the first part of our main result. 
THEOREM3.1. The set A has Lebesgue measure zero. 
ProoJ: A is measurable since it is a countable intersection of open sets. (In fact, 

it is not hard to see that A is closed.) 
Consider the return map 

A is invariant under the map R, i.e., 

R is also one to one on its domain AN. Hence to show that A has measure zero, it 
suffices to show that the Jacobian determinant of R has absolute value greater than one. 

From (3.8) and the definition of hi, 

N 

det (DR)  = det (Dhi) 
i = l  

(3.9) 	 N 

= n det ( D T ~ )  det (Da ) .  
i = l  

The map a is affine and satisfies u N  =I, SO det ( D a )  = +1. (To see that u N  =I, note 
that aNis the return map in the trivial case when all si=0; for this noninteracting 
system the return map is the identity.) From (3.3) we find that D.ri is a diagonal matrix, 
and 

Since f and g are inverses, the chain rule implies f '(uk)= rgl(f (ak))]-', so 

det ( D T ~ ) ~ ,  n gl(f(ak)+ &i)
= 

k = l  gf(f(uk))  
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By hypothesis, g"> 0 and g'>  0 so the right-hand side of (3.10) is greater than or equal 
to one, with equality if and only if ci = 0. Hence det (Dri)  > 1, unless si=0. But by 
assumption E~ Z 0 for at least one i. Hence ldet (DR)I > 1. 0 

We turn now to the second half of the proof of synchrony. The argument concerns 
the set of initial conditions which, after a certain number of absorptions, live forever 
without reaching ultimate synchrony. We will show that this set has measure zero. 

Before defining this set more precisely, we first discuss the absorption process. 
For now, fix the pulse strength E to ease the notation. Suppose 4 = (4 , ,  . . ,4,) E S,, 
where S, denotes the state space (3.1), previously called S. (The dependence on n now 
becomes significant.) Let a ( 4 )  = ( a , ,  . . . ,a,). As above, let h denote the firing map 
corresponding to pulse strength E:  

Absorption occurs if at least one of the coordinates aj satisfies f (uj)+ E 2 1, or 
equivalently, aj2 g(1- E) .  Since the aj increase with j, there will be an index k such 
that aj2 g(1-  E )  if and only if j> k. Of course, k = n means no absorption occurs, 
and k =0 means perfect synchrony is achieved. When k < n, we say "4 gets absorbed 
by h to Sk." In this case we define the image of 4 to be the point 

Note that according to this definition the oscillators that get absorbed do not fire. 
This convention agrees with that used in the simulation shown in Figs. 5 and 6. 

As above, we need to allow for the possibility of different pulse strengths. Assume 
that the ith oscillator (or synchronous group of oscillators) fires with strength ci and 
let hi denote the corresponding firing map (3.11) with E replaced by E ~ .  

Now we discuss the dynamics under iteration of the firing maps. Assume that a 
point 4 E S, gets absorbed by h, to Sk. This means that the oscillators corresponding 
to E ~ ,  . . . ,E , - ~ + ,E ~ ,  have been absorbed by the oscillator corresponding to E , .  These 
oscillators now form a synchronous group whose combined pulse strength is E, + . . . + 
E, -~+ , .  After this absorption event, the iteration proceeds on Sk, with E sequence 

Now we have a similar process on Skto iterate. We continue until we reach synchrony 
(k  =0) or get stuck forever at some stage with k >0. 

DEFINITION. Let B be the set of initial conditions in S, which, upon iteration of 
the maps hi with E sequence E, ,E ~ ,. . . ,E,+,, never achieve synchrony. 

THEOREM3.2. The set B has Lebesgue measure zero. 
ProoJ: By induction on n. The case n = 1 follows from the results of § 2. Assume 

the theorem is true for all E sequences E , ,  . . ,ck on Sk, where k <n. Let B,, denote 
the set of 4 E B such that 4 survives the applications of h,, . . . ,h,-, ,and then gets 
absorbed by h, to Sk.Hence 

Let p denote Lebesgue measure. We already know that p (A)  =0 from Theorem 
3.1. Hence it suffices to show that ,u(B,,~) =0 for each (r, k). 

First we consider the case where r = 1. Then Bl,k consists of points which get 
absorbed by h, to Sk. Furthermore, these points must be absorbed into a set C in Sk 
of measure zero since, by induction, for any problem on Sk, the set of points which do 
not achieve synchrony has measure zero. 
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Let 4 E Bl,k and let C be any set of measure zero in Sk.Write 4 = ( 4 , ,  . . . , 4 , )  
and a ( 4 )  = ( a , ,  . . . ,a,). Then 4 is absorbed to 

(g(f(c+l)SE1),' ' ' E C.,g ( f ( ( + k ) + ~ l ) )  

Hence ( a , ,  . ,a,) E T;'C, where we use the notation T, for the map on Sknow. Since 
T, is a diffeomorphism, ,u(T;'c) =0. This means that the projection of the set CTB,,~ 
to Sk has This is possible only if p ( ~ B , , ~ ) = 0 .  a is also ameasure zero. Since 
diffeomorphism, p (B1,k)=0. 

Now suppose r >  1. Consider any Br,k. We have 

hr-lhr-2 ' ' ' hlBr,k Bl,k. 

Each hi is a diffeomorphism on its domain. Hence P(B, ,~)  =0,  for all k, r >  1. O 

3.6. Solvable example. As in § 2, we can obtain further insight (and sharper results) 
if we assume that f belongs to the one-parameter family of functions (2.15). Then the 
return map R becomes very simple-it is given by an affine map whose linear part is 
a multiple of the identity, as we will now show. 

In general, R is given by 

where .ri :R" +Rn is defined by (3.3) with E replaced by E ~ :  

Now suppose that g and f are given by (2.14) and (2.15). Then 

g(  f ( a k )  + si)= ebElak+constant, 

and so 

.ri=A i l  +constant, 

where 

(3.12) 

Hence R reduces to 

(3.13) R = (A, . . . AN)I+constant, 

because a commutes with I, and aN= I. 
Remarks. (1) For this example, R is an expansion map: 

As before, we are assuming that b >0, E~2 0, for all i, and E~ f 0 for some i. 
An open question is whether R is always an expansion map, given the original, 

more general hypotheses on the function J: 
Furthermore, Theorem 3.1 can be strengthened: the set A is (at  most) a single 

repellingjxed point. This follows from the observations that A is an invariant set and 
R is an expansion. 

(2) To gain some intuition about the repelling fixed point, suppose that all the 
pulse strengths .si are very small, so that T~ is close to the identity map. Then the 
repelling fixed point 4" is close to the fixed point of a ,  namely, 
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In other words, the oscillators are evenly spaced in phase. This generalizes the earlier 
result that for N =2 and small E, the repelling fixed point occurs with the oscillators 
at antiphase. 

4. Discussion. We have studied the emergence of synchrony in a system of 
integrate-and-fire oscillators with pulse coupling. The system generalizes Peskin's model 
[34] of the cardiac pacemaker by allowing more general dynamics than (1.1); we 
assume only that each oscillator rises toward threshold with a time-course which is 
monotonic and concave down. Our main result is that for all N and for almost all 
initial conditions, the system eventually becomes synchronized. 

The analysis reveals the importance of the concavity assumption (related to the 
"leaky" dynamics of the oscillators) and the sign of the pulse coupling (the interactions 
are "excitatory"). Like Peskin 1341 we have found that synchrony is a cooperative 
effect between dissipation and coupling-it does not occur unless both are present. 

In retrospect it may seem obvious that synchrony would always emerge in our 
model. We have made some strong assumptions-the oscillators are identical and they 
are coupled "all to all." On the other hand, we might well have imagined that the 
system could remain in a state of perpetual disorganization, or perhaps split into two 
subpopulations which fire alternately. Perpetual disorganization would actually occur 
if the oscillators were to follow a linear time-course, rather than one which is concave 
down-then the return map would be the identity and the system would never syn- 
chronize. 

In any case, the behavior of oscillator populations can be counterintuitive. Winfree 
[48] has described some surprising phenomena in a "firefly machine" made of 71 
electrically-coupled neon oscillators with a narrow distribution of natural frequencies. 
Such oscillators are akin to those considered here, being based on a voltage which 
accumulates to a threshold and then discharges abruptly. Winfree found that when 
the oscillators were coupled equally to one another through a common resistor, the 
system never synchronized, no matter how strong the coupling! 

4.1. Relation to previous work. 
4.1.1. Oscillator populations. To put our work in context with previous research 

on oscillator populations, it is helpful to distinguish among three different levels of 
synchronization: synchrony, phase locking, and frequency locking. In this paper we 
use the term "synchrony" in the strongest possible sense: "synchrony" means "firing 
in unison." Synchrony is possible in our model because the oscillators are identical. 
True synchrony never occurs in real populations because there is always some distribu- 
tion of natural frequencies, which is then reflected in the distribution of firing times- 
typically the faster oscillators fire earlier. Nevertheless, some experimental examples 
provide a good approximation to synchrony, in the sense that the spread in firing times 
is small compared to the period of the oscillation. For example, this is the case for 
the firing of heart pacemaker cells [23], [31], [34], synchronous flashing of fireflies 
[5], [6], [20], chorusing of crickets [46], and menstrual synchrony among women [30]. 

"Phase locking" is a weaker form of synchronization in which the oscillators do 
not necessarily fire at the same time. The phase difference between any two oscillators 
is constant, but generally nonzero. Phase locking arises in studies of oscillator popula- 
tions with randomly distributed natural frequencies [8], [lo], [ l l ] ,  [29], [36], [37], 
[42], [43], [47], as well as in wave propagation in the Belousov-Zhabotinsky reagent 
[16], [28], [48], [50], [51] and in central pattern generators [7], [26], [27]. 

"Frequency locking" means that the oscillators run at the same average frequency, 
but not necessarily with a fixed phase relationship. If the coupling is too weak to 
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enforce phase locking, a system which is spatially extended may break up into distinct 
plateaus [12], [16], [48] or clusters [36], [37], [42], [43] of frequency-locked oscillators. 

4.1.2. Integrate-and-fire models. The oscillators in our model obey "integrate-and- 
fire" dynamics. This is a reasonable assumption for biological oscillators, which often 
exhibit relaxation oscillations based on the buildup and sudden discharge of a mem- 
brane voltage or other activity variable [17], [18]. Most previous studies of integrate- 
and-fire oscillators have emphasized the dynamics of a single oscillator in response to 
periodic forcing, with special attention to bifurcations, mode locking, and chaos [2], 
[4], [24], [17]. Our concern is with interacting populations of integrate-and-fire oscil- 
lators, for which much work remains to be done. 

4.1.3. Pulse coupling. The pulse coupling (1.2) is a simplification of biological 
reality. It produces only phase advances; a resetting pulse always causes an oscillator 
to fire earlier than normal. The experimentally measured phase-response curves for 
the flashing of fireflies, the firing of cardiac pacemaker cells, and the chirping of crickets 
all have more structure than (1.2) suggests (see [48, p. 1191). Other authors have studied 
models which incorporate more of the biological details of pulse coupling (see, for 
example, the heart models of Honerkamp [21] and Ikeda, Yoshizawa, and Sato [22] 
which include absolute and relative refractory periods, or the firefly models of Buck 
and Buck [5], [6] which include time delay between stimulus and response). 

A surprising feature of pulse coupling has recently been discovered by Ermentrout 
and Kopell [13]. They found that in many different models of neural oscillators, 
excessively strong pulse coupling can cause cessation of rhythmicity-"oscillator 
deathH-and they also discuss the averaging strategies that real neural oscillators 
apparently use to avoid such a fate. Note however that there is no oscillator death in 
the simple model studied here, thanks to (unrealistic) discontinuities in the dynamics. 

4.1.4. Synchronous fireflies. The model considered here is similar to a model of 
firefly synchronization proposed by Buck [5]. In the common American firefly Photinus 
pyralis, it appears that resetting occurs exclusively through phase advances. Buck 
postulates that when a firefly of this species receives a light pulse near the end of its 
cycle, its flash-control pacemaker is immediately reset to threshold, as in our model. 
However, in contrast to our model, pulses received during the earlier part of the cycle 
are assumed to have little or no effect. 

Buck [5] also assumes a linear increase of excitation toward threshold, in contrast 
to the concave-down timecourse in the present model. He points out that Photinus 
pyralis is "not usually observed to synchronizeu-this is exactly what our model would 
predict if the rise to threshold were actually linear! (Synchrony would also fail if the 
timecourse were concave-up.) 

A more likely explanation for the lack of synchrony in this species is that the 
coupling strength is too small to overcome the variability in flashing rate. This explana- 
tion is supported by the observation [5] that Photinus pyralis has a comparatively 
irregular flashing rhythm; for an individual male, the cycle-to-cycle variability (standard 
deviationlmean period) is =1/20, compared to =1/200 for males of the Thai species 
Pteroptyx malaccae. 

Finally, the simple model discussed here does not account for those species of 
fireflies which exhibit phase delays in response to a light flash [5], [20]. 

4.2. Directions for future research. 
4.2.1. Spatial structure. In its present form the model has no spatial structure; 

each oscillator is a neighbor of all the others. How would the dynamics be affected if 
one replaced the all-to-all coupling with more local interactions, e.g., between nearest 
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neighbors on a ring, chain, d-dimensional lattice, or more general graph [I], [19], 
[32]? Would the system still always end up firing in unison, or would more complex 
modes of organization become possible? 

By analogy with other large systems of oscillators, we expect that systems with 
reduced connectivity should have less tendency to become synchronized [a], [36], [42], 
[43]. (A similar rule of thumb is well known in equilibrium statistical mechanics: a 
ring of Ising spins cannot exhibit long-range order, but higher-dimensional lattices 
can.) Thus a ring of oscillators is a leading candidate for a system which might yield 
other behavior besides global synchrony. But we have not observed any such behavior 
in preliminary numerical studies-even a ring always synchronizes. 

We therefore suspect that our system would end up firing in unison for almost 
all initial conditions, no matter how the oscillators were interconnected (as long as the 
interconnections form a connected graph). If correct, this would distinguish our 
pulse-coupled system from diffusively coupled systems of identical oscillators, which 
often support locally stable rotating waves [ I l l ,  [14], [48]. 

In any case, it will be more difficult to analyze our system if the coupling is not 
all to all, because we can no longer speak of "absorptions." Recall that in the all-to-all 
case, a synchronous subset of oscillators remains synchronous forever. This is not the 
case with any other topology-a synchronous group can now be disrupted by pulses 
impinging on the boundary of the group. 

4.2.2. Nonidentical oscillators. Another restrictive assumption is that the oscil- 
lators are identical; then synchrony occurs even with arbitrarily small coupling. It 
would be more realistic to let the oscillators have a random distribution of intrinsic 
frequencies. Most of the work on mutual entrainment of smoothly coupled oscillators 
deals with this case [8], [lo], [ l l ] ,  [29], [31], [36], [37], [42], [43], [47], [48], but 
almost nothing is known for the case of pulse coupling. 

One property of the present model can be anticipated: in a synchronous population 
the fastest oscillator would set the pace. This idea often crops up in popular discussions 
of synchronization, and is widely accepted in cardiology, but it is known to be wrong 
for certain populations of oscillators [6], [9], [23], [26], [31], [48]; nevertheless it is 
true for the present model. To see this, imagine that all the oscillators have just fired 
and are now at x =0. Then the first oscillator to reach threshold is the fastest one. 
Given our assumption that the population remains synchronous, all the other oscillators 
have to be pulled up to threshold at the same time. Thus the frequency of the population 
is that of the fastest oscillator. 

A periodic solution of this form would be possible if the pulse strength were large 
enough to pull the slowest oscillator up to threshold. Even a weaker pulse might suffice 
if it could set off a "chain reaction" of firing by other oscillators. 

Of course, such a synchronous solution might not be stable, and even if it were, 
there might be other locally stable solutions. For instance, could a synchronous state 
coexist with arrhythmia? Such bistability might have relevance for certain rhythm 
disturbances of the cardiac pacemaker. 
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