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Abstract. We introduce a framework, called “physicomimetics,” that provides distributed control of large col-
lections of mobile physical agents in sensor networks. The agents sense and react to virtual forces, which are
motivated by natural physics laws. Thus, physicomimetics is founded upon solid scientific principles. Furthermore,
this framework provides an effective basis for self-organization, fault-tolerance, and self-repair. Three primary
factors distinguish our framework from others that are related: an emphasis on minimality (e.g., cost effectiveness
of large numbers of agents implies a need for expendable platforms with few sensors), ease of implementation,
and run-time efficiency. Examples are shown of how this framework has been applied to construct various regular
geometric lattice configurations (distributed sensing grids), as well as dynamic behavior for perimeter defense and
surveillance. Analyses are provided that facilitate system understanding and predictability, including both qualitative
and quantitative analyses of potential energy and a system phase transition. Physicomimetics has been implemented
both in simulation and on a team of seven mobile robots. Specifics of the robotic embodiment are presented in the
paper.
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1. Introduction

The focus of our research is to design and build
rapidly deployable, scalable, adaptive, cost-effective,
and robust networks of autonomous distributed vehi-
cles. This combines sensing, computation and network-
ing with mobility, thereby enabling deployment, self-
organization, and reconfiguration of the multi-agent
collective. Our objective is to provide a scientific, yet
practical, approach to the design and analysis of aggre-
gate sensor systems.

The general purpose for deploying tens to hundreds
of such agents can be summarized as “volumetric con-
trol.” Volumetric control means monitoring, detecting,

tracking, reporting, and responding to environmental
conditions within a specified physical region. This is
done in a distributed manner by deploying numerous
vehicles, each carrying one or more sensors, to collect,
aggregate, and fuse distributed data into a tactical as-
sessment. The result is enhanced situational awareness
and the potential for rapid and appropriate response.
Our objective is to design fully automated, coordinated,
multi-agent sensor systems.

The team vehicles could vary widely in type, as well
as size, e.g., from nanobots or micro-electromechanical
systems (MEMS) to micro-air vehicles (MAVs) and
micro-satellites. An agent’s sensors perceive the world,
including other agents, and an agent’s effectors make
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changes to that agent and/or the world, including other
agents. It is assumed that agents can only sense and
affect nearby agents; thus, a key challenge has been to
design “local” control rules. Not only do we want the
desired global behavior to emerge from the local inter-
action between agents (self-organization), but we also
require fault-tolerance, that is, the global behavior de-
grades very gradually if individual agents are damaged.
Self-repair is also desirable, in the event of damage.
Self-organization, fault-tolerance, and self-repair are
precisely those principles exhibited by natural physi-
cal systems. Thus, many answers to the problems of
distributed control can be found in the natural laws of
physics.

This paper presents a framework, called “physi-
comimetics” or “artificial physics” (AP), for distributed
control. We use the term “artificial” (or virtual) because
although we are motivated by natural physical forces,
we are not restricted to them (Spears and Gordon,
1999). Although the forces are virtual, agents act as
if they were real. Thus the agent’s sensors must see
enough to allow it to compute the force to which it is
reacting. The agent’s effectors must allow it to respond
to this perceived force.

We see two potential advantages to this approach.
First, in the real physical world, collections of small
entities yield surprisingly complex behavior from very
simple interactions between the entities. Thus there is a
precedent for believing that complex control is achiev-
able through simple local interactions. This is required
for very small agents, since their sensors and effec-
tors will necessarily be primitive. Second, since the
approach is largely independent of the size and num-
ber of agents, the results scale well to larger agents and
larger sets of agents.

Three primary emphases distinguish the AP frame-
work from others that are related: minimality, ease of
implementation, and run-time efficiency. First, AP for-
mations are achieved with a minimal set of sensors and
sensor information. The rationale for this emphasis is
that it will: (1) reduce overall vehicle cost, (2) enable
physical embodiment with small agents, and (3) in-
crease vehicle stealthiness if sensing is active. Second,
the paper presents theoretical results that translate di-
rectly into practical advice on how to set system pa-
rameters for desired swarm performance. This makes
the robotic implementation straightforward. Third, AP
is designed to be computationally efficient. Therefore,
we avoid physics-based multi-agent algorithms such
as Kraus et al. (1999), which compute potential fields

and then transform to forces at run-time. Instead, AP
computes forces only at run-time.

The paper is organized as follows. First, we present
the general AP framework, which is currently based
on Newtonian physics, but is extendible to other types
of physics. Then, a sequence of examples shows how
the framework has been applied to construct a vari-
ety of both static and dynamic multi-agent formations
and behaviors. This includes regular geometric lattices
for distributed sensing, as well as dynamic behaviors
for surveillance and perimeter defense. Fault-tolerance
and self-repair are addressed in the context of these
applications. Theoretical analyses are provided that fa-
cilitate deeper system understanding and predictabil-
ity, including qualitative and quantitative analyses of
a system phase transition and of system potential en-
ergy. Then, details are provided regarding the physical
implementation of AP on a team of seven robots with
minimal sensing capabilities. We conclude with dis-
cussions of related and future work.

2. The Physicomimetics Framework

The basic AP framework is elegantly simple. In
essence, virtual physics forces drive a multi-agent sys-
tem to a desired configuration or state. The desired
configuration (state) is one that minimizes overall sys-
tem potential energy. In essence, the system acts as a
molecular dynamics ( �F = m �a) simulation.

At an abstract level, AP treats agents as physical
particles. This enables the framework to be embodied
in vehicles ranging in size from nanobots to satellites.
Particles exist in two or three dimensions and are point-
masses. Each particle i has position �x and velocity �v.
We use a discrete-time approximation to the continu-
ous behavior of the system, with time-step �t . At each
time step, the position of each particle undergoes a per-
turbation ��x . The perturbation depends on the current
velocity, i.e., ��x = �v�t . The velocity of each particle
at each time step also changes by ��v. The change in
velocity is controlled by the force on the particle, i.e.,
��v = �F�t/m, where m is the mass of that particle
and �F is the force on that particle.1 A frictional force
is included, for self-stabilization. This is modeled as
a viscous friction term, i.e., the product of a viscos-
ity coefficient and the agent’s velocity (independently
modeled in the same fashion by Howard et al. (2002)).

We require that AP map easily to physical hardware,
and our model reflects this design philosophy. Particle
mass allows our simulated robots to have momentum.
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Robots need not have the same mass. The frictional
force allows us to model actual friction, whether it is
unavoidable or deliberate. With full friction, the robots
come to a complete stop between sensor readings and
with no friction the robots continue to move as they
sense. The time step �t reflects the amount of time
the robots need to perform their sensor readings. If the
time step is small the robots get readings frequently,
whereas if the time step is large readings are obtained
infrequently. We have also included a parameter Fmax,
which restricts the maximum force felt by a particle.
This provides a necessary restriction on the accelera-
tion a robot can achieve. Also, a parameter Vmax re-
stricts the velocity of the particles, which is very im-
portant for modeling real robots.

Although our framework does not require them,
our design philosophy reflects further real-world con-
straints. The first is that AP be as distributed as possible
and the second is that we require as little information
as possible. To this end, we assume that sensors are
minimal in information content and that the sensors
(passive and active) are extremely local in nature. Oc-
casionally we have to rely on very small amounts of
global information and/or control, but this is done as
infrequently as possible. If real-world systems have a
richer suite of information, we can take advantage of it,
but we do not rely on that information for the system to
function.

Due to the particle-like nature of our simulation,
one important aspect of the real world is not modeled,
namely, collisions of robots with other robots or objects
in the environment. This was a deliberate design deci-
sion, since we wanted AP to be as platform independent
as possible. Once a physical platform is selected, that
aspect of the simulation must be modeled separately,
and a lower-level algorithm is responsible for collision
avoidance. For example, with small physical robots,
gentle collisions can be tolerated and dealt with by us-
ing simple bumper sensors and routines. However, with
MAVs, collisions must be avoided. The AP framework
can avoid collisions through strong repulsive forces, but
if additional guarantees are required then they must be
modeled separately.

Also, we do not model the behavioral dynamics of
the actual robot. Although our robots can stop and turn
on a dime, other platforms, such as MAVs, may not
have this capability. AP is an algorithm that determines
“way points” for the physical platforms. Lower-level
software is necessary to control the movement of the
robots toward their desired locations.

Given a set of initial conditions and some desired
global behavior, it is necessary to define what sensors,
effectors, and local force laws are required for the de-
sired behavior to emerge. This is explored, in the next
few sections, for a variety of static and dynamic multi-
agent configurations. Our implementation with robots
is discussed in Section 7.

3. Hexagonal Lattices

The example considered in this section was originally
inspired by an application that required a swarm of
MAVs to form a hexagonal lattice, thus creating a dis-
tributed sensing grid (Kellogg et al., 2002). Such lat-
tices create a virtual antenna or synthetic aperture radar
to improve radar image resolution.

3.1. Designing Hexagonal Lattices

Since MAVs (or other small agents such as nanobots)
will have simple sensors and primitive CPUs, our goal
was to provide the simplest control rules requiring
minimal sensors and effectors. At first blush, creating
hexagons appears to be somewhat complicated, requir-
ing sensors that can calculate distance, the number of
neighbors, their angles, etc. However, only distance and
bearing information is required. To understand this, re-
call an old high-school geometry lesson in which six
circles of radius R can be drawn on the perimeter of
a central circle of radius R. Figure 1 illustrates this
construction. If the particles (shown as small circular
spots) are deposited at the intersections of the circles,
they form a hexagon with a particle in the middle.

The construction indicates that hexagons can be cre-
ated via overlapping circles of radius R. To map this
into a force law, imagine that each particle repels other
particles that are closer than R, while attracting par-
ticles that are further than R in distance. Thus each
particle has a circular “potential well” around itself

Figure 1. Six circles can be drawn on the perimeter of a central
circle, forming a hexagon at the intersection of the circles.
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at radius R—and neighboring particles will be sepa-
rated by distance R. The intersection of these potential
wells is a form of constructive interference that creates
“nodes” of low potential energy where the particles
are likely to reside. The nodes are the small circular
spots in the previous figure. Thus the particles serve to
create the very potential energy surface to which they
are responding. Note that the potential energy surface
is never actually computed by the robots. Robots only
compute local force vectors. Potential energy is only
computed for visualization or mathematical analysis.

With this in mind we defined a force law F =
Gmi m j/r p, where F ≤ Fmax is the magnitude of the
force between two particles i and j , and r is the dis-
tance between the two particles. The variable p is a
user-defined power, which ranges from −5.0 to 5.0.
When p = 0.0 the force law is constant for all dis-
tances. Unless stated otherwise, we assume p = 2.0
and Fmax = 1 in this paper. Also, mi = 1.0 for all
particles. The “gravitational constant” G is set at ini-
tialization. The force is repulsive if r < R and attractive
if r > R. Each particle has one sensor that can detect
the distance and bearing to nearby particles. The one
effector enables movement with velocity v ≤ Vmax. To
ensure that the force laws are local, we allow parti-
cles to sense only their nearest neighbors. In a perfect
hexagon, nearest neighbors are R away, and next near-
est neighbors are

√
3R away. Hence, particles have a

visual range of only 1.5R.
Figure 2 shows the magnitude of the force F , when

R = 50, G = 1,200, p = 2, and Fmax = 1 (the system
defaults). There are three discontinuities in the force
law. The first occurs where the force law transitions
from Fmax to F = Gmi m j/r p. The second occurs when
the force law switches from repulsive to attractive at R.

Figure 2. The force law, when R = 50, G = 1,200, p = 2 and Fmax = 1. The force has a maximum magnitude of 1 and a magnitude of 0 at
1.5R = 75. The force is repulsive when the distance is less than 50 and attractive when the distance is between 50 and 75.

The third occurs at 1.5R (=75), when the force goes
to 0.

The initial conditions are also inspired by the MAV
application. The MAVs are released from a canister
dropped from a plane, then they propel outward (due
to repulsive forces) until the desired geometric config-
uration is achieved. A two-dimensional Gaussian ran-
dom variable (variance σ 2) initializes the positions of
all particles. Their velocities are initialized to 0.0, al-
though the framework does not require this. An ex-
ample initial configuration for N = 200 particles is
shown in Fig. 3(left). The 200 particles move for 1,000
time steps, using this very simple force law (see Fig. 3,
right). For R = 50, G = 1,200 provides good results.
These values remain fixed throughout this paper unless
stated otherwise.

There are a number of important observations to
make about Fig. 3(right). First, a reasonably well-
defined hexagonal lattice has been formed from the
interaction of simple local force laws that involve only
the detection of distance and bearing to nearby neigh-
bors. The hexagonal lattice is not perfect—there is a
flaw near the center of the structure. Also, the perime-
ter is not a hexagon, although this is not surprising,
given the lack of global constraints. However, many
hexagons are clearly embedded in the structure and the
overall structure is quite hexagonal. Second, each node
in the structure can have multiple particles (“a cluster”).
Clustering is an emergent property that provides robust-
ness, because the disappearance (failure) of individual
particles from a cluster will have minimal effect. Clus-
tering depends on the value of G, which we explore
later in this section.

The formation shown in Fig. 3(right) is stable, and
does not change to any significant degree as t increases
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Figure 3. Initially, the particles are assumed to be in a tight cluster
t = 0 (left). Then particles repel and after 1,000 time steps form a
good hexagonal lattice (right).

past 1,000. The dynamics of the system (t < 1,000) is
fascinating to watch, yet is hard to simply convey in a
paper. As opposed to displaying numerous snapshots,
we instead measure well-defined characteristics of the
system at every time step. These characteristics provide
useful insights into the system dynamics.

3.2. Evaluating Lattice Quality

The first characteristic we considered was orientation
error, in the sense that the orientation of the lattice
should be the same everywhere. To measure this char-
acteristic, choose any pair of particles separated by 2R.
We use 2R instead of R to smooth out local noise, since
we care about global error. Specifically, two particles
are separated by 2R if 1.98R < r < 2.02R. These two
particles form a line segment. Then choose any other
pair of particles separated by 2R, forming another line
segment. Measure the angle between the two line seg-
ments. For a hexagonal lattice, this angle should be
close to some multiple of 60◦. The error is the absolute
value of the difference between the angle and the clos-
est multiple of 60. The maximum error is 30◦ and the

Figure 4. Initially, the particles have many nearby neighbors. Then the particles repel and separate at t = 6. As the hexagonal lattice forms,
some particles form small clusters at the nodes of low potential energy t > 10 (left). After 1,000 time steps G is decreased linearly. At t =
2,200 (G = 700), the small clusters suddenly separate again, showing a phase transition (right). Note that the y-axis scale is different in the two
graphs.

minimum is 0◦. To evaluate lattice quality, we averaged
the error over all distinct pairs of particle pairs.

Since error ranges from 0◦ to 30◦, the average er-
ror at t = 0 is 15◦. Then the error decreases—the rate
at which the decrease occurs indicates how quickly
the system is stabilizing. For this system, the error de-
creases smoothly until t = 200, resulting in a final
error of 5.6◦ over the whole structure (averaged over
40 independent runs, with σ = 3.6◦). Further improve-
ments can be achieved by gradually reducing friction
as time progresses.

3.3. Observing a Lattice Phase Transition

The second characteristic we considered was the size
of clusters at the lattice nodes. For each particle i we
counted the number of particles that were close to i
(0 < r < 0.2R). We always included the particle i
itself, so the minimum cluster size is 1.0. This was
averaged over all particles and displayed for every time
step (Fig. 4, left). At t = 0 particles are close together,
yielding a high clustering. The particles then separate,
due to repulsion, so that by t = 6 the particles are
apart. However, after t = 6 clusters re-emerge, with
a final cluster size of roughly 2.5. The re-emergence
of clusters serves to lower the total potential energy
of the system, and the size of the re-emerged clusters
depends on G, R, and the geometry of the system.
We summarize here one interesting experiment with
G. We continued the previous experiment, evolving
the system until t = 2,500. However, after t = 1,000,
G is lowered by 0.5 at every time step. The results are
shown in Fig. 4(right).
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We expected the average cluster size to linearly de-
crease with G, but in fact the behavior was much
more interesting. The cluster size remained relatively
constant, until t = 2,000 (G = 700). At this point
the cluster size dramatically dropped until t = 2,200
(G = 600), where the particles are separated (cluster
size is one). This is very similar to a phase transition
in natural physics, e.g., from a solid to a liquid.

3.4. Analysis of the Phase Transition

A primary objective of our research is to model and an-
alyze multi-agent behavior, thus enabling predictions
and, if needed, corrections. Complex, evolving multi-
agent systems are notoriously difficult to predict. It is
quite disconcerting when they exhibit anomalous be-
haviors for which there is no explanation. Because AP
is built upon fundamental physics principles, it can be
modeled and analyzed using traditional physics tech-
niques, thus leading to explanatory physics-based laws.

Consider the case of the observed phase transition
just described. We first conducted a qualitative analy-
sis of this transition. In particular, we explored math-
ematical visualizations of the virtual potential energy
(PE) fields. By definition, V = − ∫

s
�F · d�s, where

V is the traditional variable used for PE. This line
(path) integral is a measure of the work done by a
virtual particle to get to some position in the force
field.

A line integral may be used to calculate PE if the
force is (or is approximately) conservative because in

Figure 5. The PE field when G = 1,200 (left), G = 800 (middle), and G = 600 (right), for a system of seven particles. The PE field at each x, y
position is computed from the point of view of a virtual particle at that position. Bright areas represent areas of positive potential energy, while
black represents negative potential energy. A potential well surrounds the central particle for G ≥ 800 but that well disappears when G = 600.

that case the work to get from point a to point b is
independent of the path taken. The force field is con-
servative if its curl (a measure of rotation of the vector
force field near a point) is zero. Due to the radial sym-
metry of our force law, the curl is zero everywhere, and
the PE field is meaningful.

Figure 5(left) illustrates the PE field for a system
of seven particles that have stabilized into a hexago-
nal formation (G = 1,200). Lighter shading represents
high positive PE, while black represents low (zero or
negative) PE. It is important to realize that the PE field
shown does not illustrate the stability of the seven par-
ticles, because it is not from the point of view of any of
those seven particles. Indeed, it is possible to construct
such field diagrams, and they show that all seven par-
ticles are very stable. However, Fig. 5(left) illustrates
what would happen if a new eighth virtual particle were
brought into the system. Thus, the PE field is from the
point of view of that virtual particle, and the PE at each
(x, y) position is computed from the point of view of
a virtual particle at that position. Positive PE indicates
that work is required to push the virtual particle to that
position. Negative PE indicates that work is required
to push the virtual particle away from that position. A
virtual particle placed in this field moves from regions
of high PE to low PE. For example, consider the central
particle, which is surrounded by a region of low PE. A
virtual particle that is close to the central particle will
stay near that center. Thus the central particle is in a
PE well that can attract another particle. This is not
surprising, since we showed earlier that a G of 1,200
results in clustering.
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Now lower G to 800. Figure 5(center) illustrates the
PE field. While the central PE well is not as large as it
was previously, it can still attract another particle. Fi-
nally, lower G to 600 (Fig. 5, right). The central PE well
no longer exists. The central particle is now surrounded
by regions of lower PE—thus a virtual particle near the
central particle will move away from that particle. A
phase transition has occurred and clustering ceases.

Visualization of the PE field has led to an under-
standing of why the behavior of the dynamical system
exhibits a phase transition. Large forces result in deep
potential wells, allowing particles to form very sta-
ble sensing grids, with multiple particles clustering at
nodes of low PE. In this situation the formation acts like
a solid. The phase transition occurs when the potential
wells disappear. At this point, the forces that promote
cluster fragmentation are stronger than the forces that
promote cluster cohesion. In this situation the forma-
tion acts like a liquid.

We have now set the stage for a quantitative anal-
ysis of the phase transition. In particular, we want to
calculate the value of G (in terms of other parameter
settings) where the phase transition will occur. Based
on the qualitative analysis, we derived a standard bal-
ance of forces law to predict the phase transition. This
quantitative law states that the phase transition will oc-
cur when the cohesion force, which keeps a particle
within a cluster, equals the fragmentation force, which
repels the particle from the cluster (Gordon-Spears and
Spears, 2003). To specify this law, it is necessary to de-
rive the expressions for these forces.

Figure 5(right) indicates that a particle placed near
the central particle will escape along trajectories that
avoid the perimeter particles. This has been confirmed
via observation of the simulation. We depict these es-
cape paths in Fig. 6. In this figure, there are two particles
at the center of the formation, and one particle each at

Figure 6. If two particles are at the center of a hexagon formation,
one particle can escape along any of the six paths directed between
the outer particles.

the perimeter nodes. Label one of the two particles in
the center as “A.” Due to symmetry, without loss of
generality we can focus on any of the escape paths for
particle A. Let us examine the escape paths along the
horizontal axis. Particle A can be expelled along this
axis by the other central particle, which exerts a repul-
sive force of Fmax (because r is small). Therefore, the
fragmentation force upon particle A is Fmax.

Next, we derive an expression for the cohesion force
on A. Particle A is held near the center by the perimeter
particles. Without loss of generality we again focus on
the horizontal axis. Consider the force exerted by the
four perimeter particles closest to the horizontal axis,
on particle A. If A moves slightly to the right (or left),
two particles will pull A back to the center (attraction),
while two particles will push A back to the center (re-
pulsion). All four particles contribute to the cohesion
of the central cluster. For each particle, the magnitude
of this force is G/R p. The projection of this force on
the horizontal axis is

√
3/2 times the magnitude of this

force—because the angle between the chosen perime-
ter particles and the horizontal axis is 30◦. Since there
are four perimeter particles exerting this force (the re-
maining two have a force of 0 after projection), we
multiply this amount by four to get a total cohesion
force of 2

√
3G/R p.

When the cohesion force is greater than the fragmen-
tation force, the central cluster remains intact. When the
fragmentation force is greater, the central cluster sepa-
rates. The phase transition occurs when the two forces
are in balance: Fmax = 2

√
3G/R p. Thus the phase tran-

sition will occur when G = Fmax R p/2
√

3. We denote
this value of G as Gt . Thus our phase transition law is:

Gt = Fmax R p

2
√

3

We tested this law for varying values of R, Fmax, and
p. The results are shown in Table 1, averaged over 10
independent runs, with N = 200. The system evolved
until equilibrium with a high value of G. Then G was
gradually lowered. Cluster size was monitored, and we
noted the value of G when the average cluster size
dropped below 1.5. The observed values are very close
to those that are predicted (within 6%), despite the enor-
mous range in the magnitude of predicted values (ap-
proximately four orders). The variance among runs is
low, with the normalized standard deviation being less
than 5.7%.

These results indicate that we have a very good pre-
dictor of Gt , which incorporates the most important
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Table 1. The predicted/observed values of Gt for different values of R, p, and Fmax. The three
columns under Fmax have p = 2. The three columns under p have Fmax = 1. The predicted values are
very close to those that are observed.

Fmax p

R 0.5 1.0 2.0 1.5 2.0 3.0

25 90/87 180/173 361/342 36/35 902/874 4,510/4,480

50 361/355 722/687 1,440/1,430 102/96 5,100/5,010 36,100/35,700

100 1,440/1,410 2,890/2,840 5,780/5,630 289/277 28,900/28,800 289,000/291,000

system parameters p, R, and Fmax. Notice that N (the
number of particles) does not appear in our law. The
phase transition behavior is largely unaffected by N ,
due to the local nature of the force law.

There are several uses for this equation. Not only can
we predict the value of Gt at which the phase transi-
tion will occur, but we can also use Gt to help design
our system. For example, a value of G ≈ 0.9Gt will
yield the best unclustered formations, while a value of
G ≈ 1.8Gt will yield the best clustered formations.
The reason for this is explored in the next section.

3.5. Conservation of Energy and the Role
of Potential Energy

Because the force is conservative, AP should obey con-
servation of energy. Furthermore, as we shall see, the
initial PE of the starting configuration yields important
information concerning the dynamics of the system.

First, we measured the PE of the system at every
time step, using the path integral shown earlier. This is
the amount of work required to push each particle into
position, one after another, for the current configura-
tion of particles. Because the force is conservative, the
order in which the particles are chosen is not relevant.
Then we also measured the kinetic energy (KE) of the
particles (mv2/2). We modeled friction as heat energy.
If there is no friction, the heat energy component is
zero.

Figure 7 illustrates the energy dynamics of AP.
As expected, the total energy remains constant over
time. The system starts with only PE. Note that the
graph illustrates one of the foundational principles of
AP, namely, that the system lowers PE until a mini-
mum is reached. This reflects the stability of the fi-
nal aggregate system, requiring work to move the sys-
tem away from desired configurations (thus increasing
PE).

Figure 7. Conservation of energy, showing how the total energy
remains constant, although the amount of different forms of energy
changes over time. In the beginning, all energy is potential energy.
This is transformed to kinetic energy when the particles move, and
finally to heat as the particles stabilize due to friction.

As the system evolves, PE is converted into KE and
heat, and the particles exhibit maximum motion (see
Fig. 7). Finally, the particles slow, and only heat re-
mains. Note that PE is negative after a certain point.
This illustrates stability of individual particles (as well
as the collective)—it would require work to push indi-
vidual particles out of these configurations. Hence this
graph shows that the system is resilient to moderate
amounts of force acting to disrupt it, once stable con-
figurations are achieved. This issue will be addressed
in the next section.

The initial configuration (t = 0) PE also predicts im-
portant properties of the final evolved system, namely
how well it evolves and the size of the formation.
Higher initial PE determines that more work will be
done by the system—and the creation of bigger for-
mations requires more work. Higher initial PE is also
correlated with better formations, because higher PE
leads to greater initial linear momentum of the parti-
cles. As with simulated annealing, this momentum can
help overcome problems with local optima.
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Figure 8. The amount of potential energy of the initial configuration of the hexagonal lattice system is maximized when GV = 1,300 and
GV = 65,000, for a 200 particle system, when p = 2 (left) and p = 3 (right). The arrows show the values of GV and Gmax, where Gmax is the
maximum setting of G.

For example, consider Fig. 8(left), which shows the
PE of the initial configuration of the 200 particle sys-
tem, when p = 2, for different values of G. In the
graphs, GV is the value of G at which PE is max-
imized, and Gmax is the largest useful setting of G.
Interestingly, PE is maximized at the range of values
of G (1,200–1,400) that have been found empirically
to yield the best structures. To test this hypothesis, we
recalculated PE for the system when p = 3. The re-
sults are shown in Fig. 8(right). Again, maximum PE
is achieved for a G value that is very close to those that
yield the best structures.

As with the phase transition analysis, the goal is to
derive a general expression for GV . We first need to cal-
culate the potential energy, V . We begin by calculating
the PE of a two particle system.

Figure 9. The force law, when G = 4,000 (left) and G = 5,625 (right), representing the second and third situations. The force has a maximum
magnitude of 1 and a magnitude of 0 at 1.5R = 75. The force is repulsive when the distance is less than 50 and attractive when the distance is
between 50 and 75.

It is necessary to consider three different situations,
depending on the radial extent to which Fmax dominates
the force law F = G/r p. Recall that agents use Fmax

when F ≥ Fmax. This occurs when G/r p ≥ Fmax

or, equivalently, when r ≤ (G/Fmax)1/p ≡ R′. The
first situation occurs when Fmax is used only at close
distances, i.e., when 0 ≤ R′ ≤ R (see Fig. 2). The
second situation occurs when R ≤ R′ ≤ 1.5R. The
third situation occurs when R′ > 1.5R. In the third
situation the force law has a constant magnitude of
Fmax, and V remains constant with increasing G (see
Fig. 9, left and right).

Let us now compute the PE for the first situation,
which requires the calculation of three separate in-
tegrals. The first represents the attractive force felt
by one particle as it approaches the other, from a
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distance of 1.5R to R. The second is the repulsive force
of F = G/r p when r < R and F < Fmax. The third
represents the repulsive force of Fmax when 0 ≤ r ≤
R′. Then:

V = −
∫ 1.5R

R

G

r p
dr +

∫ R

R′

G

r p
dr +

∫ R′

0
Fmax dr

The first term is negative because the force is attractive,
whereas the latter two terms are positive because the
force is repulsive. We assume that p 	= 1.0, since AP
is not run with that setting. Solving and substituting for
R′ yields:

V = [2R1−p − (1.5R)1−p]G

(1 − p)
− pG1/p

(1 − p)Fmax
(1−p)/p

The second situation is similar. The computation of PE
is:

V = −
∫ 1.5R

R′

G

r p
dr −

∫ R′

R
Fmaxdr +

∫ R

0
Fmax dr

Solving and substituting for R′ yields:

V =
[
(G/Fmax)(1−p)/p − (1.5R)1−p

]
G

(1 − p)

− Fmax[2R − (G/Fmax)1/p]

Finally, the third situation is:

V = −
∫ 1.5R

R
Fmaxdr +

∫ R

0
Fmaxdr

Solving and substituting for R′ yields:

V = Fmax R

2

The first situation occurs with low G, when G ≤
Fmax R p. The second situation occurs with higher val-
ues of G, when Fmax R p ≤ G ≤ Fmax(1.5R)p. The
third situation occurs when G ≥ Fmax(1.5R)p. In the
third situation the PE of the system remains constant
as G increases even further. Thus the maximum useful
setting of G is Gmax = Fmax(1.5R)p. We can see this
in Fig. 8 (which represent the full curves over all three
situations) for values of Gmax = 5,625 and Gmax =
421,875 respectively. Above these values of Gmax, PE
stays constant.

It is now simple to generalize the computations for
V to N particles, denoted as VN . Regardless of the situ-
ation, we can build the N particle system one particle at
a time, in any order (because forces are conservative),
resulting in an expression for the total initial PE:

VN =
N−1∑
i=0

iV = VN(N − 1)

2

where V is defined above for the two particle system.
Now that we have a general expression for the po-

tential energy, VN , we need to find the value of G that
maximizes VN . First, we need to determine whether
the maximum occurs in the first or second situation.
The slope of the PE equation for the second situation is
strictly negative; thus the maximum must occur in the
first situation. To find the maximum, we take the deriva-
tive of VN for the first situation with respect to G, set
it to zero, and solve for G. The resulting maximum is:

GV = Fmax R p[2 − 1.51−p]
p/(1−p)

The value of GV does not depend on the number of
particles, which is a nice result. This simple formula is
surprisingly predictive of the dynamics of a 200 particle
system. For example, when Fmax = 1, R = 50, and
p = 2, GV = 1,406, which is only about 7% higher
than the value shown in Fig. 8(left). Similarly, when
p = 3, GV = 64,429, which is very close to the value
shown in Fig. 8(right). The differences in values arise
because our simulation has initial conditions specified
by a 2D Gaussian random variable with a small variance
σ 2, whereas our analysis assumes σ 2 = 0. Despite this
difference, the equation for GV works quite well.

In Section 3.4, empirical observations suggested that
the best clustered formations occur when G ≈ 1.8Gt .
This is equivalent to stating that GV /Gt ≈ 1.8, because
maximum V is correlated with the best formations.
Using our prior expressions for GV and Gt , the ratio is:

GV /Gt = 2
√

3[2 − 1.51−p]
p/(1−p)

The ratio depends only on p and the sensor range, but
not on Fmax or R. For p = 2 and p = 3 we get ratios
of 1.9 and 1.77 respectively, which agree nicely with
empirical observations.

Our final observation is that as G is increased be-
yond the optimal point GV , PE decreases, yielding less
energy to build large formations. As an example, for
p = 2, with N = 200, we found empirically that when
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G = 1,200, the number of clusters in the final forma-
tion was 29. When G was doubled to 2,400 the number
of clusters halved to 16. Finally, when G was doubled
again to 4,800 the number of clusters was 7. In this sit-
uation Gmax = 5,625. When G is set to the maximum,
a minimal structure consisting of four clusters in a dia-
mond formation is created. This result appears to hold
in general, regardless of system parameters.

In summary, we have built a picture of how to set
the value of G, given other system parameters. For un-
clustered behavior, set G to be slightly lower than the
phase transition point Gt . For the best clustered behav-
ior with the largest formations, set G to GV (which
is greater than Gt ). For the smallest formations with
maximal clustering, set G to Gmax. We are currently
attempting to predict the number of clusters given G.

3.6. Robustness

If G ≈ GV , and the system has reached equilibrium,
then it is very robust with respect to the disappearance
of numerous particles. Since lattice nodes of low PE are

Figure 10. Beginning with 99 particles (top left), 10 particles are randomly removed (top right), then another 20 (bottom left), and finally
another 20 (bottom right). The overall structure and integrity remain intact, demonstrating robustness.

created via the intersection of many circular PE wells,
the removal of particles from a node decreases the PE
well depth of neighboring nodes but usually does not
alter the lattice structure. The lattice is also preserved
because non-neighboring nodes are unaffected by the
particle removal—since they are out of sensing range.
However, if enough particles disappear from a node,
the balance of forces at neighboring nodes can change
enough to cause particles in those neighbor nodes to
move. In particular, if the cluster fragmentation force
exceeds the cohesion force at a neighbor node, then one
or more particles will be ejected from that cluster. Nev-
ertheless, an ejected particle will move to another node
of low PE. If this node was previously empty, then the
movement just described will partially repair the lat-
tice. In summary, the lattice structure degrades slowly,
except for possible fragmentation into disjoint sets in
very rare situations, or when a very large percentage
of particles are removed. Figure 10 shows this clearly.
Beginning with 99 particles, 10 particles are removed,
then another 20, and finally another 20. Removed parti-
cles are randomly chosen from the interior and perime-
ter of the lattice. The lattice is reduced in overall size,



148 Spears et al.

but its overall structure and integrity remain intact. The
lines in this figure represent the force bonds between
particles, and are useful for visualization.

The concept of PE also provides a natural mecha-
nism for self-repair of formations if they are disturbed.
The disturbances increase PE, and the system attempts
to correct itself by lowering PE again. To test the effi-
cacy of this approach we added a simulated blast (e.g.,
an explosion that causes a gust of wind) to our simula-
tion. Weak gusts, which cause bends in the formation,
are easily repaired with AP. More severe disturbances,
that distort the shape of the perimeter, require monitor-
ing, checking, and steering techniques (Gordon et al.,
1999).

4. Square Lattices

Given the success in creating hexagonal lattices, we
investigated other regular structures. The square lattice
is an obvious choice, since it also tiles a 2D plane.

4.1. Designing Square Lattices

The success of the hexagonal lattice hinged upon the
fact that nearest neighbors are R in distance. This is not
true for squares, since if the distance between particles
along an edge is R, the distance along the diagonal is√

2R. Particles have no way of knowing whether their
relationship to neighbors is along an edge or along a
diagonal.

Once again it appears that we need to know an-
gles or the number of neighbors to solve this difficulty.
However, a much simpler approach will do the trick.
Suppose each particle is given another attribute, called
“spin”. Half of the particles are initialized to be spin
“up”, whereas the other half are spin “down”.2

Consider the square depicted in Fig. 11. Particles
that are spin up are open circles, while particles that
are spin down are filled circles. Particles of unlike spin
are distance R from each other, whereas particles of like
spin are distance

√
2R from each other. This “coloring”

of particles extends to square lattices, with alternating
spins along the edges of squares, and same spins along
the diagonals.

Figure 11. Square lattices can be formed by using particles of two
“spins”. Unlike spins are R apart while like spins are

√
2R apart.

Figure 11 indicates that square lattices can be cre-
ated if particles sense not only distance and bearing to
neighbors, but also their spin. Thus sensors must de-
tect one more bit of information, spin. We use the same
force law as before: F = Gmi m j/r p. However, r is
renormalized to r/

√
2 if two particles have the same

spin. Once again the force is repulsive if r < R and
attractive if r > R. The one effector enables movement
with velocity v ≤ Vmax. To ensure that the force law is
local, particles cannot see other particles that are fur-
ther than cR, where c = 1.3 if particles have like spin
and 1.7 otherwise.

The initial conditions are the same as those for the
hexagonal lattice. The 200 particles move for 4,000
time steps (the system is somewhat slower to stabilize
than the hexagon), using this very simple force law.
The final result is shown in Fig. 12. Again, we measure
orientation error by choosing pairs of particle pairs sep-
arated by 2R. By insisting that each particle pair has like
spins, we ensure that pairs are aligned with the rows and
columns of the lattice. In this case the angle between
the two line segments should be close to some multiple
of 90◦. The error is the absolute value of the difference
between the angle and the closest multiple of 90. The
maximum error is 45◦ while the minimum is 0◦. Av-
eraged over 40 independent runs, the final error was
about 12.8◦, with σ = 6.7◦.

The results are clearly suboptimal. Locally, the parti-
cles have formed square lattices. This can be observed
by noting that the spins alternate along the edges of
squares, whereas spins are the same along diagonals.
Once again each “node” in the lattice can have multiple
particles, providing robustness (the average cluster size
is roughly 1.75). However, large global flaws split the

Figure 12. Using the same initial conditions as for the hexagonal
lattice, 200 particles form a square lattice by t = 4,000, but global
flaws exist.
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structure into separate square lattices. Thus, although
the local force laws work reasonably well, they (not
surprisingly) do not rule out difficulties at the global
level. The question is whether global repair is needed
or whether local repairs will suffice.

4.2. Local Self-Repair of Square Lattices

As with other physical systems, noise can help re-
move global flaws in structures. Furthermore, systems
should also self-repair at the local level. For exam-
ple, if all particles at a particular lattice node are de-
stroyed, a local hole opens in the lattice. Our goal is
to provide a simple mechanism that repairs both lo-
cal and global faults. To achieve this goal we focused
again on the concept of spin. Figure 12 indicates that
clusters are almost always made up of particles of like
spin. There is an aversion to having clusters of unlike
spins.

Spins are set at initialization. What would happen,
though, if one particle in a cluster of like spins changes
spin? It could fly away from that cluster to another
cluster with the same spin as it now has. It could also
land at an empty node which, although empty, is still an
area of very low PE. In essence, clusters represent nodes
with excess capacity, and that excess can fix problems
in the structure as they arise. Our hypothesis is that this
increased flow of particles (noise) can repair both local
and global flaws in the square lattice.

Testing this hypothesis only required one change to
the code. Again, particles are initialized with a given
spin. However, if a particle has a very close neighbor
(r < 1.0), the particle may flip its spin with a small
probability. Particles have one additional effector—
they can change their own spin. This does not create
structural holes, since a particle only leaves a cluster if
there is excess capacity in that cluster.

Once again, the 200 particles moved for 4,000 time
steps, using the same force law, coupled with this sim-
ple spin-flip repair mechanism. The initial conditions
were the same as those in the previous section. The
results are shown in Fig. 13. The previously shown
global flaws are no longer in evidence, although a mi-
nor portion of the lattice is still misaligned. Many of
the flaws that remain are local and are a result of a still
operating spin-flip repair mechanism that continues to
occasionally send particles from cluster to cluster. Ob-
servation of the evolving system shows that holes are
continually filled, as particles leave their cluster and
head toward open areas of low PE. An exact Wilcoxon

Figure 13. Using “spin-flip” local repair, the 200 particles form a
better square lattice at t = 4,000. Global flaws are almost absent
although some local flaws still exist.

rank-sum test indicates that the mean error with spin-
flip repair (4.9◦, σ = 6.0◦) is statistically significantly
less (p < 0.001) than the mean error without spin-flip
repair (12.8◦, σ = 6.7◦).

4.3. Phase Transition Analysis

Square lattices also display a phase transition as G de-
creases. The derivation of a quantitative law for square
lattices is a straightforward analogue of the analysis
for hexagonal lattices. The one difference is that in a
square lattice, one of the two particles in the central
cluster is expelled along a path to one of the perimeter
particles, rather than between them (see Fig. 14).

In Fig. 14, there are two particles in the center of the
formation, and one particle each at the perimeter nodes.
Label one of the two particles in the center as “A.” Using
the same reasoning as before the fragmentation force
upon particle A is Fmax. Particle A is held near the center
by the perimeter particles. Using the geometry of the
situation as we did with hexagons, the total cohesion

Figure 14. If two particles are at the center of a square formation,
one particle can escape along any of the eight paths directed towards
the outer particles.
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Table 2. The predicted/observed values of Gt for different values of R, p, and Fmax. The three
columns under Fmax have p = 2. The three columns under p have Fmax = 1. The predicted values are
very close to those that are observed.

Fmax p

R 0.5 1.0 2.0 1.5 2.0 3.0

25 65/69 130/136 259/278 26/26 647/651 3,236/3,312

50 259/272 519/530 1,036/1,066 73/74 3,662/3,730 25,891/26,850

100 1,036/1,112 2,071/2,138 4,143/4,405 207/206 20,713/21,375 207,125/211,350

force on A is (2
√

2 + 2)G/R p (Gordon-Spears and
Spears, 2003). The phase transition will occur when
G = Fmax R p/(2

√
2 + 2). The phase transition law for

square lattices is:

Gt = Fmax R p

2
√

2 + 2

We tested this law for varying values of R, Fmax, and
p. The results are shown in Table 2, averaged over 10
independent runs, with N = 200. The observed val-
ues are very close to those that are predicted (within
7%), and the normalized standard deviation is less
than 6.2%.

4.4. Potential Energy Analysis

We can also compute the PE of the initial configura-
tion. This computation is slightly more difficult than
before because there are two “species” of particles
(spin up and spin down), with different inter-species
and intra-species sensor ranges. The computation is
performed in three stages. First assemble all spin up
particles together in a cluster. Then assemble all spin
down particles in a cluster. Finally, join these two
clusters together. We consider only the first situation
(0 ≤ R′ ≡ (G/Fmax)1/p ≤ R), since this is where the
maximum PE occurs.

First, compute the PE of the initial configuration of
two spin up particles. When particles of like spin inter-
act, r is renormalized by

√
2, and their sensor range is

1.3R. Thus:

V = −
∫ 1.3

√
2R

√
2R

G

(r/
√

2)
p dr

+
∫ √

2R

√
2R′

G

(r/
√

2)
p dr +

∫ √
2R′

0
Fmax dr

Solving and substituting for R′ yields:

V =
√

2

[
(2R1−p − (1.3R)1−p)G

(1 − p)

− pG1/p

(1 − p)Fmax
(1−p)/p

]

The computation for V is very similar to that for the
hexagonal lattice, differing only by a constant factor of√

2 and the sensor range. We now generalize to N spin
up particles:

VN = V N (N − 1)

2

The computation for spin down particles is identical.
We now combine the two clusters of N spin up and N
spin down particles:

VN+N = VN + VN −
∫ 1.7R

R

G N 2

r p
dr

+
∫ R

R′

G N 2

r p
dr +

∫ R′

0
Fmax N 2 dr

Solving and substituting for R′ yields:

VN+N = V (N − 1)N + N 2

[
(2R1−p − (1.7R)1−p)G

(1 − p)

− pG1/p

(1 − p)Fmax
(1−p)/p

]

To determine the value of G for which PE is maximized,
we take the derivative of VN+N with respect to G, set
it to zero, and solve for G:

GV = Fmax R p

×
[√

2(N − 1)[2 − 1.31−p] + N [2 − 1.71−p]√
2(N − 1) + N

]p/(1−p)
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Figure 15. The amount of potential energy of the initial configuration of the square lattice system is maximized when GV = 1,466 and GV =
67,330, for a 200 particle system, when p = 2 (left) and p = 3 (right). The arrows show the values of GV and Gmax, where Gmax is the maximum
setting of G.

Note that in this case GV depends on the number
of particles N . It occurs because of the weighted aver-
age of different inter-species and intra-species sensor
ranges. However, because this difference is not large,
the dependency on N is also not large. For example,
with R = 50, Fmax = 1, and p = 2, then GV =
1,466 if there are 200 particles. With only 20 particles
GV = 1,456. Similarly, when p = 3, GV = 67,330
and GV = 66,960 respectively, for 200 and 20 particle
systems (Fig. 15).

As we did with the hexagonal lattices, we can also
compute the value of Gmax, which is the highest value
of G that will have any effect on the system. For square
lattices we get:

Gmax = Fmax(1.7R)p

For our standard settings, when p = 2, Gmax = 7225,
and when p = 3, Gmax = 614,125 (Fig. 15).

5. Perfect Lattices and Transformations

Transformations are easily achieved in AP. For the
original hexagonal and square lattices, transformations
are accomplished by ignoring or not ignoring spins.
Figure 16 illustrates a transformation from a square
lattice to a hexagonal lattice, to another square lattice,
and to a final hexagonal lattice. There is no guaran-
tee that the same lattice will appear under successive
transformations.

By adding other attributes (Spears and Gordon,
1999), perfect hexagonal and square lattices (and their
transformations) are also easily achieved. Each par-

ticle carries two different sets of attributes, one for
hexagonal lattices and one for square lattices. When
the system switches from one pair to the other, it trans-
forms. Figure 17 illustrates a transformation from a per-
fect square lattice to a perfect hexagonal lattice (given
the number of particles). The square lattice structure is
thoroughly destroyed, showing almost no structure at
all. Despite this catastrophic disturbance the hexago-
nal structure eventually emerges, illustrating extreme
robustness. The reverse transformation works equally
well.

6. Other Formations in Two
and Three Dimensions

Our simulation tool generalizes easily to three dimen-
sions, which is necessary for the MAV task. Figure 18
shows 499 simulated MAVs in three separate planes of
hexagonal lattices. Both top-down and side views are
shown. Cubic lattices are also relatively easy to form,
as are regular structures with triangular facets (such as
triangular pyramids or regular icosahedrons). We have
observed, however, as with natural crystals, that it is of-
ten easier to build these structures particle by particle,
as opposed to building them in “batch.”

The previous sections have described formations that
have been planned in advance. However, our simu-
lation tool provides the opportunity to change force
law parameters in arbitrary and unusual ways. The re-
sults are often surprising, yielding unanticipated struc-
tures, especially in two dimensions. Figure 19 shows
two unusual but potentially useful structures. We have
found that some structures can be assembled easily by
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Figure 16. Agents can transform smoothly between hexagonal and square lattices. A square lattice (top left) transforms to a hexagonal lattice
(top right), back to a square lattice (bottom left) and finally back to a hexagonal lattice (bottom right).

Figure 17. Agents can also transform from perfect square lattices to perfect hexagonal lattices (shown) and back (not shown).
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Figure 18. Three planes of MAVs in hexagonal lattices, shown from
top-down and side views. There are 499 particles in this simulation.

fixing the relevant parameters at the beginning. Others,
however, are easier to create dynamically via transfor-
mation, as parameters are slowly changed. This also
raises the possibility of searching the space of force
laws (e.g., with genetic algorithms (Holland, 1975;
Goldberg, 1989; Spears et al., 1993)) to create desired
behavior.

7. Dynamic Behaviors: Obstacle Avoidance

Previous sections of this paper have focused on the
creation of formations, but for most applications for-
mations will have to move (often toward some goal).
Also, for ground platforms, obstacles pose a serious
challenge to the movement of the formation. To ad-
dress this, we have extended our simulation to include
goals (both stationary and moving) as well as obstacles.
Larger obstacles are created from multiple, point-sized
obstacles; this enables flexible creation of obstacles of

Figure 19. Unusual two dimensional formations can be achieved by changing the system parameters. These particular formations could be
useful for perimeter defense applications.

arbitrary size and shape. While the obstacles are sta-
tionary, the goal can be moved by the mouse as the
simulation is running.

As a generalization to our standard paradigm, goals
are attractive, whereas obstacles are repulsive (similar
to potential field approaches, e.g. (Khatib, 1986)). The
goal can be sensed at a far distance of 6R, while obsta-
cles are sensed at a very short distance of 0.25R. If the
goal and obstacle forces are constant, we achieve good
results.

Using this generalized paradigm we ran two sets of
experiments. In the first, G < Gt , to remove clustering
and to have fluid-like particle flow. The particles flow
naturally around the obstacles, and do not retain any
particular formation. In the second, G ≈ GV > Gt ,
to enhance the creation of clusters and rigid forma-
tions. Over numerous runs, three types of behavior are
observed. First, the formation avoids obstacles via a se-
quence of rotations and counter-rotations of the whole
collective. If this cannot be accomplished, the forma-
tion deforms by stretching force bonds between parti-
cles, diverging around obstacles directly in their path,
and then converging again into a cohesive formation
after the obstacle is passed. In the third situation, force
bonds are broken and the formation fragments around
an obstacle and then re-coalesces. One danger with this
third situation is that particles can be permanently sep-
arated from the main formation.

In the previous experiments the goal was stationary.
Preliminary results indicate that slowly moving goals
are successfully tracked without difficulty.3 The low G
(liquid) version generally performs better on this task.
One can easily imagine a situation where the formation



154 Spears et al.

lowers G to move around obstacles, and then raises G
to achieve better formations after the obstacles have
been avoided.

It is important to emphasize that this simulation mod-
els obstacle avoidance at an abstract level, and any ap-
plication to platforms with complex dynamics (such as
MAVs) will require additional modeling.

8. Dynamic Behaviors: Surveillance
and Perimeter Defense

We have also explored surveillance and perimeter de-
fense tasks. By using an analogy with the motion of
gas molecules in a container, AP is successful on both
of these tasks. The algorithm for surveillance is simple
and elegant—agents repel each other, and are also re-
pelled by the perimeter boundary. Friction is negligible.
The surveillance task is shown in Fig. 20(left). Particles
start at the center and move toward the perimeter, due to
repulsion. They act like a gas in a container. If particles
are destroyed, the remaining particles still search the
enclosed area, but with less virtual “pressure.” Like-
wise, the addition of particles is also treated gracefully,
increasing the pressure in the system. The two small
squares inside the perimeter represent intruders. Parti-
cles are attracted towards intruders, but since they also
repel each other, the number of particles that can cover
an intruder is limited.

Perimeter defense is hardly more complex (see
Fig. 20, right). Once again, particles start from the cen-
ter and repel each other. The inner and outer squares
form a corridor to be monitored by the particles. The in-

Figure 20. Simulated agents perform surveillance (left) and perimeter defense (right). For surveillance, agents are repelled by each other and
by walls, while they are attracted by objects of interest. For perimeter defense agents repel each other and are drawn to the corridor between the
two walls (the inner wall is porous and excess capacity is stored in the interior area). Friction is zero, because constant movement is required.

ner square is porous to the particles. Both the inner and
outer walls are attractive, and particles are drawn to the
space between them. One intruder is shown, which is
attractive. Notice that some particles remain in the cen-
tral area. This represents a situation of over-capacity—
there are too many particles for the corridor. If particles
in the corridor die, particles in the central area move
to the corridor to replace them. This is a nice demon-
stration of the robustness of the system. An interesting
phase transition of this system depends on the value of
G. When G is high, particles fill the corridor uniformly,
providing excellent on-the-spot coverage. When G is
low, particles move toward the corners of the corridor,
providing excellent line-of-sight coverage. Depending
on whether the physical robots are better at motion or
sensing, the G parameter can be tuned appropriately.
Analysis of these dynamic systems will center around
the kinetic theory of gases, as has been initiated by
Jantz et al. (1997).

9. Application to a Team of Mobile Robots

The current focus of this project is the physical em-
bodiment of AP on a team of robots. Our choice of
robots and sensors expresses a preference for minimal
expense and expendable platforms.

For our initial experiments we have used inexpensive
kits from KIPR (KISS Institute for Practical Robotics).
These kits come with a variety of sensors and effectors,
and two micro-computers—the RCX and the Handy
Board. Due to its generality and ease of programming,
we are currently using the Handy Board. The Handy
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Board has a HC11 Motorola processor with 32 K of
static RAM, a two line LCD screen, and the capacity
to drive several DC motors and servos. It also has ports
for a variety of digital and analog sensors.

Our robotic platform has two independent drive
trains and two casters, allowing the platform to turn
on a dime and move forward and backward. Slot sen-
sors are incorporated into the drive trains to function as
shaft encoders, yielding reasonably precise measures of
the angle turned by the robot and the distance moved.
The transmissions are geared down 25:1 to minimize
slippage with the floor surface.

The “head” of the robot is a sensor platform used to
detect other robots in the vicinity. For distance infor-
mation we use Sharp GP2D12 IR sensors. This sensor
provides fairly accurate distance readings (10% error
over a range of 6 to 50 inches). The readings are rel-
atively non-influenced by the material sensed, unless
the material is highly reflective. However, the angle
of orientation of the sensed object does have signifi-
cant effects, especially if the object is reflective. As a
consequence, each “head” is a circular cardboard (non-
reflective) cylinder, allowing for accurate readings by
the IR sensors.

The head is mounted horizontally on a servo mo-
tor. With 180◦ of servo motion, and two Sharp sensors
mounted on opposite sides, the head provides a sim-
ple “vision” system with a 360◦ view. After a 360◦

scan, object detection is performed. A first derivative
filter detects object boundaries, even under conditions
of partial occlusion. Width filters are used to ignore
narrow and wide objects (chair legs and walls). This
algorithm detects nearby robots, producing a “robot”
list that gives the bearing and distance to each neigh-
boring robot (Fig. 21).

Once sensing and object detection is complete, the
AP algorithm computes the virtual force felt by that
robot. In response, the robot turns and moves to some
position. This “cycle” of sensing, computation and mo-
tion continues until we shut down the robots or they run
out of power. Figure 22 shows the AP code. It takes a
robot neighbor list as input, and outputs the vector of
motion in terms of a turn and distance to move.

For our experiments, we built seven robots. Each
robot ran the same piece of software. The objective of
the first experiment was to form a hexagon. The desired
distance R between robots was 23 inches. Using the
theory, we chose a G of 270 (p = 2 and Fmax = 1). The
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Figure 21. Example of robot detection where there are five nearby
robots, one partially occluded by two others. The 360◦ scan produces
a graph of distance values (top). The first derivative filter looks for
large positive or negative values of the derivative, which yield object
boundaries (middle). Regions between boundaries are potential ob-
jects. Objects that are too wide or are really empty space are filtered,
producing an object list (bottom). The narrow false object to the right
in the object list is also filtered.
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Figure 22. The main AP code, which takes as input a robot neighbor list (with distance and bearing information) and outputs a vector of
motion.

beginning configuration was random. The results were
very consistent, producing a hexagon ten times in a row
and taking approximately seven cycles on average. Our
scan algorithm takes about 22 seconds per cycle for
this first implementation; however, a new localization
technology we are developing will be much faster. For
all runs the robots were separated by 20.5 to 26 inches
in the final formation, which is only slightly more error
than the sensor error.

The objective of the second experiment was to form
a hexagon and then move in formation to a goal. For
this experiment, we placed four photo-diode light sen-
sors on each robot, one per side. These produced an
additional force vector, moving the robots towards a
light source (a window). The reflection of the win-
dow on the floor is not noticed by the robots and is
not the light source. The results, shown in Fig. 23,
were consistent over ten runs, achieving an accuracy
comparable to the formation experiment above. The

robots moved about one foot in 13 cycles of the AP
algorithm.

10. Summary and Related Work

This paper has introduced a framework for distributed
control of swarms of vehicles in sensor networks, based
on laws of artificial physics (AP). The motivation for
this approach is that natural laws of physics satisfy
the requirements of distributed control, namely, self-
organization, fault-tolerance, and self-repair.

The results have been quite encouraging. We illus-
trated how AP can self-organize hexagonal and square
lattices. The concept of spin-flip from natural physics
was shown to be a useful repair mechanism for square
lattices, if no global information is available. Struc-
tures in three dimensions are easily achieved, as well as
transformations between structures. We have also pre-
sented preliminary results with dynamic multi-agent
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Figure 23. Seven robots self-organize into a hexagonal formation, which then moves towards a light source. Pictures taken at the initial
conditions, at two minutes, fifteen minutes, and thirty minutes.

behaviors such as goal tracking, obstacle avoidance,
surveillance, and perimeter defense. Finally, we have
shown our first embodiment of AP on a team of seven
mobile robots.

This paper also presents a novel physics-based anal-
ysis of AP, focusing on potential energy and force
balance equations. This analysis provides a predictive
technique for setting important parameters in the sys-
tem, enabling the user to create unclustered formations,
large clustered formations, and minimal clustered for-
mations. The unclustered formations act like liquids,
whereas the clustered formations act like solids. This
analysis combines the geometry of the formations with
important parameters of the system, namely, G, R, p,
Fmax, and sensor range. The parameter N was also
included, but it is of little relevance for our most impor-
tant results. This is a nice feature, since one motivation
for AP was scalability to large numbers of agents. In-
cluding other relevant parameters such as �t , Vmax and
friction requires a more dynamic analysis—we are cur-
rently focusing on “kinetic theory.”

In conclusion, AP, although simple and elegant, has
shown itself to be adept in a wide range of sensor net-
work applications. AP demonstrates the capabilities

of self-organization, fault-tolerance, self-repair,and ef-
fectiveness in spite of minimal sensing capabilities.
There is a straightforward amenity to theoretical analy-
sis, thereby enabling predictions of the behavior of the
multi-agent swarm, and providing ease of implementa-
tion on a team of robots. Due to the lack of computation
of potential fields, it is also computationally efficient.

Our discussion of related work will first focus on
swarms and then on their theoretical analyses. Early
work on swarm robotics focused on central con-
trollers. For example, Carlson et al. (1997) investi-
gated techniques for controlling swarms of micro-
electromechanical agents with a global controller that
imposes an external potential field that is sensed by
the agents. Recently, there has been movement away
from global controllers, due to the brittleness of such
an approach. AP is a distributed, rather than global,
control framework for swarm management, although
global control can be incorporated, if desired (Gordon
et al., 1999).

Most of the swarm literature can be subdi-
vided into swarm intelligence, behavior-based, rule-
based, control-theoretic and physics-based techniques.
Swarm intelligence techniques are ethologically
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motivated and have had excellent success with for-
aging, task allocation, and division of labor problems
(Bonabeau et al., 1999; Hayes et al., 2002). In Beni
and Wang (1989) and Beni and Hackwood (1992), a
swarm distribution is determined via a system of linear
equations describing difference equations with peri-
odic boundary conditions. Behavior-based approaches
(Brogan and Hodgins, 1997; Matarić, 1995; Parker,
1998; Fredslund and Matarić, 2002; Balch and Arkin,
1998; Schultz and Parker, 2002) are also very popu-
lar. They derive vector information in a fashion sim-
ilar to AP. Furthermore, particular behaviors such as
“aggregation” and “dispersion” are similar to the at-
tractive and repulsive forces in AP. Both behavior-
based and rule-based (e.g., Schultz et al., 1996; Wu,
1999) systems have proved quite successful in demon-
strating a variety of behaviors in a heuristic manner.
Behavior-based and rule-based techniques do not make
use of potential fields or forces. Instead, they deal di-
rectly with velocity vectors and heuristics for changing
those vectors (although the term “potential field” is of-
ten used in the behavior-based literature, it generally
refers to a field that differs from the strict Newtonian
physics definition). Control-theoretic approaches have
also been applied effectively (e.g., Alur et al., 1999;
Fax and Murray, 2002). Our approach does not make
the assumption of having leaders and followers, as in
Desai et al. (1998, 2001) and Fierro et al. (2001).

One of the earliest physics-based techniques is the
potential fields (PF) approach (e.g., Khatib, 1986).
Most of the PF literature deals with a small number of
robots (typically just one) that navigate through a field
of obstacles to get to a target location. The environment,
rather than the agents, exert forces. Obstacles exert re-
pulsive forces while goals exert attractive forces. Re-
cently, Howard et al. (2002) and Vail and Veloso (2003)
extended PF to include inter-agent repulsive forces—
for the purpose of achieving coverage. Although this
work was developed independently of AP, it affirms the
feasibility of a physics force-based approach. Another
physics-based method is the “Engineered Collective”
work by Duncan at the University of New Mexico and
Robinett at Sandia National Laboratory. Their tech-
nique has been applied to search-and-rescue and other
related tasks (Schoenwald et al., 2001). Kraus et al.
(1999) converts a generic, goal-oriented problem into
a PE problem, and then automatically derives the forces
needed to solve the problem. The social potential fields
(Reif and Wang, 1999) framework is highly related to
AP. Reif and Wang (1999) rely on a force-law sim-

ulation that is similar to our own, allowing different
forces between different agents. Their emphasis is on
synthesizing desired formations by designing graphs
that have a unique PE embedding. We plan to merge
this approach with ours.

Other physics-based approaches of relevance
include research in flocking and other biologically
motivated behavior. Reynolds models the physics of
each agent and uses behavior-based rules to control
its motion. Central to his work is “velocity matching”,
wherein each agent attempts to match the average
velocity of its neighbors. The primary emphasis is on
flocking (Reynolds, 1987). Tu and Terzopoulos pro-
vide a sophisticated model of the physics of fish, which
are controlled by behavior-based rules. The emphasis
is on “schooling” and velocity matching (Tu and
Terzopoulos, 1994). Vicsek provides a point particle
approach, but uses velocity matching (with random
fluctuations) and emphasizes biological behavior
(Vicsek et al., 1995; Czirok et al., 1999; Helbing et al.,
2000). His work on “escape panic” utilizes an �F = m �a
model, but includes velocity matching (Helbing et al.,
2000). Toner and Tu (1998) provide a point particle
model, with sophisticated theory, but again emphasize
velocity matching and flocking behavior. These
models are quite different from ours, since we impose
no velocity matching condition. Also, their models do
not obey standard conservation laws. Furthermore, we
utilize minimal sensory information, whereas velocity
matching requires the computation of relative velocity
differences between neighbors, which is more complex
than our model. Finally, our motivation is to control
vehicles for distributed sensing tasks. We are especially
interested in regular geometric formations. For moving
formations, our goal is to provide precise control of
the formation, rather than “life-like” behavior.

One can also divide the related literature by the
form of theoretical analysis, both in terms of the goal
of the analysis and the method. There are generally
two goals: stability and convergence/correctness. Un-
der stability is the work by Schoenwald et al. (2001),
Fierro et al. (2002), Olfati-Saber and Murray (2002),
Liu et al. (2003), and Lerman and Galstyan (2001).
The first three apply Lyapunov methods. Liu et al. use
a geometric/topological approach, and Lerman uses
differential equations to model system dynamics. Un-
der convergence/correctness is the work by Suzuki and
Yamashita (1999), Parker (1998), and Liu et al. (2003).
Methods here include geometry, topology and graph
theory. Other goals of theoretical analyses include time
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complexity (Kraus et al., 1999), synthesis (Reif and
Wang, 1999), prediction of movement cohesion (Liu
et al., 2003), coalition size (Lerman and Galstyan,
2001), number of instigators to switch strategies
(Numaoka, 1995), and collision frequency (Jantz et al.,
1997).

Methods of analysis are also similarly diverse. We
focus only on physics-based analyses of physics-based
swarm robotics systems. We know of four methods.
The first are the Lyapunov analyses by Schoenwald
et. al. (2001), Fierro et al. (2002), and Olfati-Saber and
Murray (2002). The second is the kinetic gas theory
by Jantz et al. (1997). The third is the minimum energy
analysis by Reif and Wang (1999). The fourth develops
macro-level equations describing flocking as a fluid-
like movement (Toner and Tu, 1998).

To the best of our knowledge, the only analy-
ses mentioned above that can set system parameters
are those of Lerman and Galstyan (2001), Numaoka
(1995), and Toner and Tu (1998). The first two anal-
yses are of behavior-based systems, while the latter
is of a “velocity matching” particle system. The ca-
pability of being able to set system parameters based
on theory has enormous practical value, in terms of
ease of implementation. The research presented in this
paper provides practical laws for setting system pa-
rameters, to achieve the desired behavior with actual
robots.

11. Future Work

Currently, we are improving our mechanism for robot
localization. This work is an extension of Navarro-
Serment et al. (1999), using a combination of RF with
acoustic pulses to perform trilateration. This will distin-
guish robots from obstacles in a straightforward fash-
ion, and will be much faster than our current “scan”
technique.

From a theoretical standpoint, we plan to formally
analyze all important aspects of AP systems. This anal-
ysis will be more dynamic (e.g., kinetic theory) than
the analysis presented here. We also intend to expand
the repertoire of formations, both static and dynamic.
For example, initial progress has been made on de-
veloping static and dynamic linear formations. Many
other formations are possible within the AP framework.
Using evolutionary algorithms to create desired force
laws is one intriguing possibility that we are currently
investigating.

We also plan to address the topic of optimality, if
needed. It is well understood that PF approaches can
yield sub-optimal solutions. Since AP is similar to PF,
similar problems arise with AP. Our experience thus far
indicates that this is not a crucial concern, especially
for the tasks that we have examined. However, if opti-
mality is required we can apply new results from con-
trol theory to design force laws that guarantee optimal-
ity (Olfati-Saber and Murray, 2002; Fax and Murray,
2002).

Finally, future work will focus on transitioning to
real-world applications. For example, to transition to
MAVs, more attention will be given to the interaction
between the platforms and the environment. We are
currently modeling four different environmental in-
teractions: (1) goals, (2) obstacles, (3) the effects of
wind, and (4) the friction of the medium. However, a
richer suite is required for accurate models, such as
signal propagation loss, occlusions of MAVs by obsta-
cles or other MAVs, and weather effects. Also, if “ve-
locity matching” is eventually required, information
about “facing” and the relative speed of neighbors
must be observed via sophisticated sensors or ob-
tained via communication within a common coordi-
nate system. Analysis will be more difficult under these
situations. The speed of MAVs does not appear to
be a major issue—higher speed implies a need for
smaller �t (i.e., faster sensors). AP is able to indi-
cate how fast sensors must be, and to set limits on
the strength of obstacle and goal forces to maintain a
formation.

We consider AP to be one level of a more complex
control architecture. The lowest level controls the ac-
tual movement of the platforms. AP is at the next higher
level, providing “way points” for the robots, as well
as providing simple repair mechanisms. Our goal is
to put as much behavior as possible into this level,
in order to provide the ability to generate laws gov-
erning important parameters. However, the current AP
paradigm will not solve more complex tasks, involv-
ing planning, learning, repair from more catastrophic
events, and global information. For example, certain
arrangements of obstacles (such as cul-de-sacs) will
require the addition of memory and planning. Hence,
even higher levels will be required (Simmons et al.,
2002). Learning is especially interesting to us, and
we would like to add it to AP. Learning is advan-
tageous in the context of behavior-based (Fernandez
and Parker, 2002; Goldberg and Matarić, 2000) and
rule-based (Schultz et al., 1996; Potter et al., 2001)
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systems, but its value has not been explored in the con-
text of a physics-based system. Planning is also im-
portant, to provide forward reasoning, as opposed to
reactive responses.
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Notes

1. F and v denote the magnitude of vectors �F and �v.
2. Spin is merely a particle label and has no relation to the rotational

spin used in navigation templates (Slack, 1990).
3. “Slowly” is relative to �t . In the real world, faster motion implies

smaller values of �t (i.e., sensing must occur more often).
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