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Abstract— We discuss an old distributed algorithm for reach-
ing consensus that has received a fair amount of recent
attention. In this algorithm, a number of agents exchange
their values asynchronously and form weighted averages with
(possibly outdated) values possessed by their neighbors. We
overview existing convergence results, and establish some new
ones, for the case of unbounded intercommunication intervals.

I. I NTRODUCTION

We consider a setN = {1, . . . , n} of agents that try to
reach agreement on a common scalar value by exchanging
tentative values and combining them by forming convex
combinations. The “agreement algorithm” considered here
and its original analysis is due to Tsitsiklis et al. ([9], [10]),
and a simplified version is presented in the text [2]. A special
case of the algorithm was later proposed by Vicsek [11], as
a model of cooperative behavior. The subject has attracted
considerable recent interest, within the context of flocking
and multiagent coordination ([6], [3], [8], [7]). A further
special case (“gossip algorithms”), concerns the computation
of the exact average of the agents’ values (as opposed to
reaching consensus on some intermediate value); see, e.g.,
[4] and references therein.

The remainder of this paper is organized as follows.
In Section 2, we present the basic model of interest. In
Section 3, we present convergence results in the absence
of communication delays. In Section 4, we allow for com-
munication delays and establish convergence, even with
unbounded intercommunication intervals, as long as some
weak form of symmetry is present. Section 5 provides some
brief concluding comments.

II. T HE AGREEMENTALGORITHM.

In the absence of communication delays, the algorithm is
as follows. Each agenti starts with a scalar valuexi(0). The
vector x(t) = (x1(t), . . . , xn(t)) with the values held by
the agents aftert updates, evolves according to the equation

This research was supported by Communauté francaise de Belgique -
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x(t + 1) = A(t)x(t), or

xi(t + 1) =
n∑

j=1

aij(t)xj(t),

where A(t) is a nonnegative matrix with entriesaij(t),
and where the updates are carried out at some discrete
set of times which we will take, for simplicity, to be the
nonnegative integers. We will assume that the row-sums of
A(t) are equal to 1, so thatA(t) is a stochastic matrix. In
particular,xi(t+1) is a weighted average of the valuesxj(t)
held by the agents at timet. We are interested in conditions
that guarantee the convergence of eachxi(t) to a constant,
independent ofi.

Throughout, we assume the following.

Assumption 1.There exists a positive constantα such that:
(a) aii(t) ≥ α, for all i, t.
(b) aij(t) ∈ {0} ∪ [α, 1], for all i, j, t.
(c)

∑n
j=1 aij(t) = 1, for all i, t.

Intuitively, wheneveraij(t) > 0, agentj communicates
its current valuexj(t) to agenti. Each agenti updates its
own value, by forming a weighted average of its own value
and the values it has just received from other agents.

The communication pattern at each time step can be
described in terms of a directed graphG(t) = (N,E(t)),
where (j, i) ∈ E(t) if and only if i 6= j and aij(t) > 0.
A minimal assumption, which is necessary for consensus to
be reached, requires that following an arbitrary timet, and
for any i, j, there is a sequence of communications through
which agenti will influence (directly or indirectly) the value
held by agentj.

Assumption 2. (Connectivity)The graph(N,∪s≥tE(s)) is
strongly connected for allt ≥ 0.

We note various special cases of possible interest.

Fixed coefficients:There is a fixed matrixA, with entries
aij such that, for eacht, we haveaij(t) ∈ {0} ∪ {aij}
(depending on whether there is a communication fromj to
i at that time). This is the case presented in [2].

Symmetric model: If (i, j) ∈ E(t) then (j, i) ∈ E(t). That
is, wheneveri communicates toj, there is a simultaneous
communication fromj to i.

Vicsek model ([11]): Here,

aij(t) =
{

1/(ni(t) + 1), if j ∈ Ni(t),
0, if j /∈ Ni(t),

whereNi(t) = {j 6= i | (j, i) ∈ E(t)} is the set of agentsj
who communicate toi at timet, andni(t) is its cardinality.



Note that in this model, the constantα of Assumption 1 is
equal to1/n.

Gossip algorithm ([4]): This is the special case of both the
symmetric model and of the Vicsek model in which, at each
time, there is a set of disjoint pairs of agents who commu-
nicate (bidirectionally) with each other. Ifi communicates
with j, thenxi(t+1) = xj(t+1) = (xi(t)+xj(t))/2. Note
that the sumx1(t) + · · · + xn(t) is conserved; therefore, if
consensus is reached, it has to be on the average of the initial
values of the nodes.

The assumption below is referred to as “partial asynchro-
nism” in [2]. We will see that it is sometimes necessary for
convergence.

Assumption 3. (Bounded intercommunication intervals)
If i communicates toj an infinite number of times [that is,
if (i, j) ∈ E(t) infinitely often], then there is someB such
that, for all t, (i, j) ∈ E(t)∪E(t + 1)∪ · · · ∪E(t + B− 1).

III. C ONVERGENCE RESULTS IN THE ABSENCE OF

DELAYS.

We say that the agreement algorithmguarantees asymp-
totic consensusif the following holds: for everyx(0),
and for every sequence{A(t)} allowed by whatever as-
sumptions have been placed, there exists somec such that
limt→∞ xi(t) = c, for all i.

Theorem 1. Under Assumptions 1, 2 (connectivity), and
3 (bounded intercommunication intervals), the agreement
algorithm guarantees asymptotic consensus.

Theorem 1 subsumes the special cases of symmetry or
of Vicsek’s model, and therefore subsequent convergence
results and proofs for those cases.

Theorem 1 is presented in [10] and is proved in [9]; a
simplified proof, for the special case of fixed coefficients
can be found in [2]. The main idea, which applies to most
results of this type, is as follows. Letm(t) = mini xi(t) and
M(t) = maxi xi(t). It is straightforward to verify thatm(t)
andM(t) are nondecreasing and nonincreasing, respectively.
It then suffices to verify that the differenceM(t) − m(t)
is reduced by a constant factor over a sufficiently large
time interval; the interval is chosen so that every agent gets
to influence (indirectly) every other agent; by tracing the
chain of such influences, and using the assumption that each
influence has a nontrivial “strength” (our assumption that
wheneveraij(t) is nonzero, it is bounded below byα > 0),
the result follows.

In the absence of the bounded intercommunication interval
assumption, and without symmetry, the algorithm does not
guarantee asymptotic consensus, as shown by Example 1 be-
low (Exercise 3.1, in p. 517 of [2]). In particular, convergence
to consensus fails even in the special case of a nonsymmetric
Vicsek model. The main idea is that the agreement algorithm
can closely emulate a nonconvergent algorithm that keeps
executing the three instructionsx1 := x3, x3 := x2, x2 :=
x1, one after the other.

Example 1. Let n = 3, and suppose thatx(0) = (0, 0, 1).
Let ε1 be a small positive constant. Consider the following
sequence of events. Agent 3 communicates to agent 1; agent
1 forms the average of its own value and the received value.
This is repeatedt1 times, wheret1 is large enough so that
x1(t1) ≥ 1− ε1. Thus,x(t1) ≈ (1, 0, 1). We now let agent 2
communicates to agent 3,t2 times, wheret2 is large enough
so thatx3(t1 + t2) ≤ ε1. In particular,x(t1 + t2) ≈ (1, 0, 0).
We now repeat the above two processes, infinitely many
times. During thekth repetition,ε1 is replaced byεk (and
t1, t2 get adjusted accordingly). Furthermore, by permuting
the agents at each repetition, we can ensure that Assumption
2 is satisfied. Afterk repetitions, it can be checked thatx(t)
will be within 1− ε1 − · · · − εk of a unit vector. thus, if we
choose theεk so that

∑∞
k=1 εk < 1/2, asymptotic consensus

will not be obtained.

On the other hand, in the presence of symmetry, the
bounded intercommunication interval assumption is unnec-
essary. This result is proved in [7] and [3] for the special
case of the symmetric Vicsek model and in [8], [5], for the
more general symmetric model. A more general result will
be established in Theorem 4 below.

Theorem 2. Under Assumptions 1 and 2, and for the sym-
metric model, the agreement algorithm guarantees asymp-
totic consensus.

IV. PRODUCTS OF STOCHASTIC MATRICES AND

CONVERGENCE RATE

Theorem 1 and 2 can be reformulated as results on the
convergence of products of stochastic matrices.

Corollary 1. Consider an infinite sequence of stochastic
matricesA(0), A(1), A(2), . . ., that satisfies Assumptions 1
and 2. If either Assumption 3 (bounded intercommunication
intervals) is satisfied, or if we have a symmetric model, then
there exists a nonnegative vectord such that

lim
t→∞

A(t)A(t− 1) · · ·A(1)A(0) = 1dT .

(Here,1 is a column vector whose elements are all equal to
one.)

According to Wolfowitz’s Theorem ([12]) convergence
occurs whenever the matrices are all taken from a finite set
of ergodic matrices, and the finite set is such that any finite
product of matrices in that set is again ergodic. Corollary 1
extends Wolfowitz’s theorem, by not requiring the matrices
A(t) to be ergodic, though it is limited to matrices with
positive diagonal entries.

The presence of long matrix products suggests that con-
vergence to consensus in the linear iteration

x(t + 1) = A(t)x(t),

with A(t) stochastic, might be characterized in terms of a
joint spectral radius. The joint spectral radiusρ(M) of a set
of matrices



M is a scalar that measures the maximal asymptotic
growth rate that can be obtained by forming long products
of matrices taken from the setM:

ρ(M) = lim sup
k→∞

sup
Mi1 ,Mi2 ,...,Mik

∈M
||Mi1Mi2 . . .Mik

||
1
k .

This quantity does not depend on the norm used. Moreover,
for any q > ρ(M) there exists aC for which

||Mik
. . .Mi1y|| ≤ Cqk ||y||

for all y andMij
∈M.

Stochastic matrices satisfy||Ax||∞ ≤ ||x||∞ andA1 = 1,
and so they have a spectral radius equal to one. The product
of two stochastic matrices is again stochastic and so the
joint spectral radius of any set of stochastic matrices is
equal to one. To analyze the convergence rate of products
of stochastic matrices, we consider the dynamics induced by
the matrices on a space of smaller dimension.

Consider a matrixP ∈ <(n−1)×n defining an orthogonal
projection on the space orthogonal tospan{1}. We have
P1 = 0, and||Px||2 = ||x||2 wheneverxT 1 = 0. Associated
to anyA(t), there is a unique matrixA′(t) ∈ <(n−1)×(n−1)

that satisfiesPA(t) = A′(t)P . The spectrum ofA′(t) is
the spectrum ofA(t) after removing one multiplicity of the
eigenvalue1. Let M′ be the set of all matricesA′(t).

Let γ = 1T x(t)/n be the mean value of the entries of
x(t), then

Px(t)− Pγ1 = Px(t)
= PA(t)A(t− 1) . . . A(0)x(0)
= A′(t)A′(t− 1) . . . A′(0)Px(0).

Since(x(t)− γ1)T 1 = 0, we have

||x(t)− γ1||2 = ||P (x(t)− γ1)||2 ≤ Cqt ||x(0)||2
for someC and for anyq > ρ(M′).

Assume now thatlimt→∞ x(t) = c1 for some scalarc.
Because all matrices are stochastic,c must belong to the
convex hull of the entries ofx(t) for all t. We therefore
have

||x(t)− c1||∞ ≤ 2 ||x(t)− γ1||∞ ≤ 2 ||Px(t)− Pγ1||2 ,

and we may then conclude that

||x(t)− c1||∞ ≤ 2Cqt ||x(0)||2 .

The joint spectral radiusρ(M′ therefore gives a measure
of the convergence rate ofx(t) towards its limit valuec1.
However, for this bound will be nontrivial all of the matrices
in M need to be ergodic; indeed, in the absence of an
ergodicity condition, the convergence ofx(t) need not be
geometric.

V. CONVERGENCE IN THE PRESENCE OF DELAYS.

The model considered so far assumes that messages from
one agent to another are immediately delivered. However, in
a distributed environment, and in the presence of commu-
nication delays, it is conceivable that an agent will end up
averaging its own value with anoutdatedvalue of another

processor. A situation of this type falls within the framework
of distributed asynchronous computation developed in [2].

Communication delays are incorporated into the model as
follows: when agenti, at time t, uses the valuexj from
another agent, that value is not necessarily the most recent
one,xj(t), but rather an outdated one,xj(τ i

j(t)), where0 ≤
τ i
j(t) ≤ t, and wheret−τ i

j(t)) represents communication and
possibly other types of delay. In particular,xi(t) is updated
according to the following formula:

xi(t + 1) =
n∑

j=1

aij(t)xj(τ i
j(t)). (1)

We make the following assumption on theτ i
j(t).

Assumption 4. (Bounded delays)(a) If aij(t) = 0, then
τ i
j(t) = t.

(b) limt→∞ τ i
j(t) = ∞, for all i, j.

(c) τ i
i (t) = t, for all i.

(d) There exists someB > 0 such thatt−B+1 ≤ τ i
j(t) ≤ t,

for all i, j, t.

Assumption 4(a) is just a convention: whenaij(t) = 0, the
value ofτ i

j(t) has no effect on the update. Assumption 4(b)
is necessary for any convergence result: it requires that newer
values ofxj(t) get eventually incorporated in the updates of
other agents. Assumption 4(c) is quite natural, since an agent
generally has access to its own most recent value. Finally,
Assumption 4(d) requires delays to be bounded by some
constantB,

The next result, from [9], [10], is a generalization
of Theorem 1. The idea of the proof is similar to the
one outlined for Theorem 1, except that we now de-
fine m(t) = mini mins=t,t−1,...,t−B+1 xi(s) and M(t) =
maxi maxs=t,t−1,...,t−B+1 xi(s). Once more, one shows that
the differenceM(t) − m(t) decreases by a constant factor
after a bounded amount of time.

Theorem 3.Under Assumptions 1-4 (connectivity, bounded
intercommunication intervals, and bounded delays), the
agreement algorithm with delays [cf. Eq. (1)] guarantees
asymptotic consensus.

Theorem 3 assumes bounded intercommunication intervals
and bounded delays. The example that follows (Example
1.2, in p. 485 of [2]) shows that Assumption 4(d) (bounded
delays) cannot be relaxed. This is the case even for a
symmetric model, or the further special case whereE(t)
has exactly two arcs(i, j) and (j, i) at any given timet,
and these satisfyaij(t) = aji(t) = 1/2, as in the gossip
algorithm.

Example 2.We have two agents who initially hold the values
x1(0) = 0 andx2(0) = 1, respectively. At time 0, each agent
communicates its value to the other agent, who receives it
immediately. There is no further communication fort1 time
steps. Each agent forms repeatedly the average of its own
value with the most recently received value from the other
agent. We will then havex1(t1) = 1 − ε1 andx2(t1) = ε1,
where ε1 > 0 can be made arbitrarily small, by choosing



t1 large enough. Therefore, during this phase the absolute
difference|x1(t) − x2(t)| contracts by a factor of1 − 2ε1.
Next, each agent communicates its value to the other agent
again and proceeds forming averages with the value just
received. We continue with an infinity of such phases, except
that each phase is longer (largertk) so that the corresponding
contraction factors1−2εk are increasingly smaller. If theεk

are chosen so that
∑

k εk < ∞, then
∏∞

k=1(1 − 2εk) > 0,
and the disagreement|x1(t) − x2(t)| does not converge to
zero.

According to the preceding example, the assumption of
bounded delays cannot be relaxed. On the other hand, the
assumption of bounded intercommunication intervals can be
relaxed, in the presence of symmetry, leading to the following
generalization of Theorem 2, which is a new result.

Theorem 4. Under Assumptions 1, 2 (connectivity), and
4 (bounded delays), and for the symmetric model, the
agreement algorithm with delays [cf. Eq. (1)] guarantees
asymptotic consensus.

Proof. Let

Mi(t) = max{xi(t), xi(t− 1), . . . , x(t−B + 1)},
M(t) = max

i
Mi(t),

mi(t) = min{xi(t), xi(t− 1), . . . , x(t−B + 1)},
m(t) = min

i
mi(t).

An easy inductive argument, as in p. 512 of [2], shows
that the sequencesm(t) and M(t) are nondecreasing and
nonincreasing, respectively. The convergence proof rests on
the following lemma.

Lemma 1: If m(t) = 0 and M(t) = 1, then there exists a
time τ ≥ t such thatM(τ)−m(τ) ≤ 1− αnB .

Given Lemma 1, the convergence proof is completed as
follows. Using the linearity of the algorithm, there exists a
timeτ1 such thatM(τ1)−m(τ1) ≤ (1−αnB)(M(0)−m(0)).
By applying Lemma 1, witht replaced byτk−1, and using
induction, we see that for everyk there exists a timeτk

such thatM(τk) − m(τk) ≤ (1 − αnB)k(M(0) − m(0)),
which converges to zero. This, together with the monotonic-
ity properties ofm(t) and M(t), implies that m(t) and
M(t) converge to a common limit, which is equivalent to
asymptotic consensus.q.e.d.

Proof of Lemma 1: For k = 1, . . . , n, we say that “Property
Pk holds at timet” if m(t) ≥ 0, and there exist at leastk
indicesi for which mi(t) ≥ αkB .

We assume, without loss of generality, thatm(0) = 0.
Then, m(t) ≥ 0 for all t, because of the monotonicity of
m(t). We also assume thatM(0) = 1. Thus, there exists
somei and someτ ∈ {−B + 1,−B + 2, . . . , 0} such that
xi(τ) = 1. Using the inequalityxi(t + 1) ≥ αxi(t), we
obtainmi(τ +B) ≥ αB . This shows that there exists a time
at which propertyP1 holds.

We continue inductively. Suppose thatk < n and that
PropertyPk holds at some timet. LetS be a set of cardinality

k containing indicesi for which mi(t) ≥ αkB , and letSc be
the complement ofS. Let τ be the first time, greater than or
equal tot, at whichaij(τ) 6= 0, for somej ∈ S and i ∈ Sc

(i.e., an agentj in S gets to influence the value of an agent
i in Sc). Such a time exists by the connectivity assumption
(Assumption 2).

Note that between timest and τ , the agents̀ in the set
S only form convex combinations between the values of the
agents in the setS (this is a consequence of the symmetry
assumption). Since all of these values are bounded below by
αkB , it follows that this lower bound remains in effect, and
that m`(τ) ≥ αkB , for all ` ∈ S.

For timess ≥ τ , and for every` ∈ S, we havex`(s +
1) ≥ αx`(s), which implies thatx`(s) ≥ αkBαB , for s ∈
{τ + 1, . . . , τ + B}. Therefore,m`(τ + B) ≥ α(k+1)B , for
all ` ∈ S.

Consider now an agenti ∈ Sc for which aij(τ) 6= 0. We
have

xi(τ + 1) ≥ aij(τ)xj(τ i
j(τ)) ≥ αmi(τ) ≥ αkB+1.

Using also the factxi(s+1) ≥ αxi(s), we obtain thatmi(τ+
B) ≥ α(k+1)B . Therefore, at timeτ + B, we havek + 1
agents withm`(τ + B) ≥ α(k+1)B (namely, the agents in
S, together with agenti). It follows that PropertyPk+1 is
satisfied at timeτ + B.

This inductive argument shows that there is a timeτ at
which PropertyPn is satisfied. At that timemi(τ) ≥ αnB for
all i, which implies thatm(τ) ≥ αnB . On the other hand,
M(τ) ≤ M(0) = 1, which proves thatM(τ) − m(τ) ≤
1− αnB . q.e.d.

The symmetry condition [(i, j) ∈ E(t) iff (j, i) ∈ E(t)]
used in Theorem 4 is somewhat unnatural in the presence of
communication delays, as it requires perfect synchronization
of the update times. A looser and more natural assumption
is the following.

Assumption 5. If (i, j) ∈ E(t), then there exists someτ
such that|t− τ | < B and (j, i) ∈ E(t).

Assumption 5 allows for protocols such as the following.
Agent i sends its value to agentj. Agent j responds by
sending its own value to agenti. Both agents update their
values (taking into account the received messages), within
a bounded time from receiving other agent’s value. In a
realistic setting, with unreliable communications, even this
loose symmetry condition may be impossible to enforce
with absolute certainty. One can imagine more complicated
protocols based on an exchange of acknowledgments, but
fundamental obstacles remain (see the discussion of the
“two-army problem” in pp. 32-34 of [1]). A more realistic
model would introduce a positive probability that some of
the updates are never carried out. (A simple possibility is to
assume that eachaij(t), with i 6= j, is changed to a zero,
independently, and with a fixed probability.) The convergence
result that follows remains valid in such a probabilistic
setting (with probability 1). Since no essential new insights
are provided, we only sketch a proof for the deterministic
case.



Theorem 5. Under Assumptions 1, 2 (connectivity), 4
(bounded delays), and 5, the agreement algorithm with delays
[cf. Eq. (1)] guarantees asymptotic consensus.

Proof. (Outline) A minor change is needed in the proof of
Lemma 1. In particular, we definePk as the event that there
exist at leastk indicesl for which ml(t) ≥ α2kB . It follows
that P1 holds at timet = 2B.

By induction, letPk hold at timet, and letS be the set of
cardinalityk containing indicesl for which ml(t) ≥ α2kB .
Furthermore, letτ be the first time after timet thataij(τ) 6=
0 where exactly one ofi, j is in S. Along the same lines as
in the proof of Lemma 1,ml(τ) ≥ α2kB for l ∈ S; since
xl(t + 1) ≥ αxl(t), it follows thatml(τ + 2B) ≥ α2(k+1)B

for eachl ∈ S. By our assumptions, exactly one ofi,j is in
Sc. If i ∈ Sc, thenxi(τ + 1) ≥ aij(τ)xj(τ i

j(τ)) ≥ α2kB+1

and consequentlyxi(τ +2B) ≥ α2B−1α2kB+1 = α2(k+1)B .
If j ∈ Sc, then there must exist a timeτj ∈ {τ + 1, τ +
2, . . . , τ + B − 1} with aji(τj) > 0. It follows that:

mj(τ + 2B) ≥ ατ+2B−(τj+1)xj(τj + 1)
≥ ατ+2B−τj−1αxi(τj)
≥ ατ+2B−τj−1αατj−τα2kB

= α2(k+1)B

Therefore,Pk+1 holds at timeτ + 2B and the induction is
complete. q.e.d.

VI. CONCLUDING REMARKS

Many variations of the available convergence results and
of the new ones presented here are possible, by considering
additional sources of asynchronism, as well as probabilistic
(rather than deterministic) assumptions. The proof technique
introduced in [2] (based on the contraction of the difference
M(t)−m(t)) has so far been able to handle such variations.

One particular variation that has been investigated in the
recent literature is one where strong connectivity is relaxed:
some agents act as “leaders” and influence the values of the
other agents (the “followers”) but not vice versa. This is
similar to the setting considered in Chapter 6 of [2] where
leaders and followers correspond to the “computing” and
“noncomputing” processors of [2].

Let us also note that there is a related algorithm for
distributed load balancing, for which similar convergence
results are available (see Section 7.4 of [2]). The latter
algorithm has some commonalities with the gossip algorithm:
the sum of the agents’ entries/loads is a long-term invariant,
although in the load balancing algorithm, some of the load
can be temporarily “in transit.”
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