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Abstract—We discuss an old distributed algorithm for reach-  x(t + 1) = A(t)z(t), or
ing consensus that has received a fair amount of recent "
attention. In this algorithm, a number of agents exchange ' _ - _
their values asynchronously and form weighted averages with zi(t+1) = Z aij (t)z;(t),
(possibly outdated) values possessed by their neighbors. We J=1

overview existing convergence results, and establish some newhere A(t) is a nonnegative matrix with entries;;(t),

ones, for the case of unbounded intercommunication intervals. and where the updates are carried out at some discrete
set of times which we will take, for simplicity, to be the
nonnegative integers. We will assume that the row-sums of
A(t) are equal to 1, so thal(t) is a stochastic matrix. In

We consider a seN = {1,...,n} of agents that try to particular,z;(t+1) is ayveighted average of thg valueys_(z?)
reach agreement on a common scalar value by exchangi'ﬂ@ld by the agents at time We are interested in conditions
tentative values and combining them by forming convefiat guarantee the convergence of eaft) to a constant,
combinations. The “agreement algorithm” considered hef@dependent of. _
and its original analysis is due to Tsitsiklis et al. ([9], [10]), 1hroughout, we assume the following.
and a simplified version is presented in the text [2]. A specigdssumption 1.There exists a positive constamtsuch that:
case of the algorithm was later proposed by Vicsek [11], 8&) a;;(t) > «, for all i, ¢.

a model of cooperative behavior. The subject has attractgo) a;;(¢) € {0} U [, 1], for all 4, 7, ¢.

considerable recent interest, within the context of flockingc) >°7_, a;;(t) = 1, for all 4, .

and multiagent coordination ([6], [3], [8], [7]). A further
special case (“gossip algorithms”), concerns the computatif]a
of the exact average of the agents’ values (as opposed
reaching consensus on some intermediate value); see, e
[4] and references therein.

I. INTRODUCTION

Intuitively, whenevera,;(t) > 0, agentj communicates

current valuer;(t) to agenti. Each agent updates its

awn value, by forming a weighted average of its own value
idl the values it has just received from other agents.

) i ) ) The communication pattern at each time step can be

The remainder of this paper is organized as followSyagcribed in terms of a directed grap(t) = (N, E(1)),

In S_ection 2, we present the basic model pf interest. IR nare (4,i) € E(t) if and only if i # j and a;;(t) > 0.

Section 3, we present convergence results in the absengeyinimal assumption, which is necessary for consensus to

of cqmmunlcatmn delays. In Sgcuon 4, we allow for COMpe reached, requires that following an arbitrary titnend

munication delays and establish convergence, even W'fBr anyi, j, there is a sequence of communications through

unbounded intercommunication intervals, as long as soMgich ‘agent will influence (directly or indirectly) the value
weak form of symmetry is present. Section 5 provides some.iq by agentj

brief concluding comments. ) o )
Assumption 2. (Connectivity) The graph(N, Us>,E(s)) is

Il. THE AGREEMENTALGORITHM. strongly connected for afl > 0.

o ) ~ We note various special cases of possible interest.
In the absence of communication delays, the algorithm is

as follows. Each ageritstarts with a scalar value;(0). The Fixed coefficients: There is a fixed matrix4, with entries
vector z(t) = (1(t),...,z(t)) with the values held by % Such that, for eactt, we havea;;(t) € {0} U {ai;}
the agents aftet updates, evolves according to the equatiofd€Pending on whether there is a communication froto

¢ at that time). This is the case presented in [2].
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Note that in this model, the constantof Assumption 1 is Example 1.Let n = 3, and suppose that(0) = (0,0,1).
equal tol/n. Let ¢; be a small positive constant. Consider the following
sequence of events. Agent 3 communicates to agent 1; agent

symmetric model and of the Vicsek model in which, at eac forms the average of its own value and the received value.
time, there is a set of disjoint pairs of agents who commu-h('? ;s;elpfate(?rlhﬂgne(sé \)Nie(rffb 'i)la\;\?: neor\]/slllgthaszgrgt
nicate (bidirectionally) with each other. if communicates *“!\'*) = *—€1- L) 72 AL L) TR 9

with j, thenz (t +1) = x;(t+ 1) = (x:() +2;(¢))/2. Note communicates to agent 8, times, wheré,, is large enough

that the sumes (¢) + - - + za({) Is conserved; therefore, if \S/\? thnaot\fv3 (rté J;?t) tﬁeelétlgv%artt\:\clzg larrygétels:;? ;fi(rllftgi 0).rnan
consensus is reached, it has to be on the average of the inittla? =P - P ' y y

imes. During thekth repetition,e; is replaced bye, (and
values of the nodes. . . .

t1,to get adjusted accordingly). Furthermore, by permuting

The assumption below is referred to as “partial asynchrahe agents at each repetition, we can ensure that Assumption

nism” in [2]. We will see that it is sometimes necessary fop is satisfied. Aftek repetitions, it can be checked tha(t)
convergence. will be within 1 —¢; — - -- — ¢, of a unit vector. thus, if we
choose the;, so thatzz":1 er < 1/2, asymptotic consensus
will not be obtained.

Gossip algorithm ([4]): This is the special case of both the

Assumption 3. (Bounded intercommunication intervals)
If ¢ communicates tg an infinite number of times [that is,
if (i,7) € E(t) infinitely often], then there is som& such On the other hand, in the presence of symmetry, the
that, for allt, (¢,j) € E(t)UE(t+1)U---UE(t+B—1). bounded intercommunication interval assumption is unnec-
essary. This result is proved in [7] and [3] for the special

I1l. CONVERGENCE RESULTS IN THE ABSENCE OF case of the symmetric Vicsek model and in [8], [5], for the
DELAYS. more general symmetric model. A more general result will

We say that the agreement algorittguarantees asymp- be established in Theorem 4 below.

totic consensusf the following holds: for everyxz(0), Theorem 2.Under Assumptions 1 and 2, and for the sym-
and for every sequenc¢A(t)} allowed by whatever as- metric model, the agreement algorithm guarantees asymp-
sumptions have been placed, there exists sersach that totic consensus.

limy_, o x;(t) = ¢, for all 4.

IV. PRODUCTS OF STOCHASTIC MATRICES AND

Theorem 1. Under Assumptions 1, 2 (connectivity), and
CONVERGENCE RATE

3 (bounded intercommunication intervals), the agreement
algorithm guarantees asymptotic consensus. Theorem 1 and 2 can be reformulated as results on the

Theorem 1 subsumes the special cases of symmetry tnvergence of products of stochastic matrices.

of Vicsek’s model, and therefore subsequent convergengsrollary 1. Consider an infinite sequence of stochastic

results and proofs for those cases. matricesA(0), A(1), A(2), ..., that satisfies Assumptions 1
Theorem 1 is presented in [10] and is proved in [9]; and 2. If either Assumption 3 (bounded intercommunication

simplified proof, for the special case of fixed coefficientsntervals) is satisfied, or if we have a symmetric model, then

can be found in [2]. The main idea, which applies to mosthere exists a nonnegative vecibsuch that

results of this type, is as follows. Let(t) = min; z;(¢) and

M (t) = max; z;(t). It is straightforward to verify thatn(t) tlirgc A(H)A(t —1)--- A(1)A(0) = 1d”.

and M (t) are nondecreasing and nonincreasing, respectively.

It then suffices to verify that the differenck/(t) — m(t) (Here,1is a column vector whose elements are all equal to

is reduced by a constant factor over a sufficiently largene.)

time interval; the interval is chosen so that every agent getSAccording to Wolfowitz's Theorem ([12]) convergence

to influence (indirectly) every other agent; by tracing the,-.,,rs \henever the matrices are all taken from a finite set
chain of such influences, and using the assumption that €3Gl o gic matrices, and the finite set is such that any finite
influence has a nontrivial “strength” (our assumption thaf,qct of matrices in that set is again ergodic. Corollary 1
whenevera;; (t) is nonzero, it is bounded below ly>0),  gytends Wolfowitz's theorem, by not requiring the matrices

the result follows. _ ~A() to be ergodic, though it is limited to matrices with
In the absence of the bounded intercommunication '”tervﬁbsitive diagonal entries.

assumption, and without symmetry, the algorithm does not The presence of long matrix products suggests that con-

guarantee asymptotic consensus, as shown by Example 1 98fgence to consensus in the linear iteration
low (Exercise 3.1, in p. 517 of [2]). In particular, convergence

to consensus fails even in the special case of a nonsymmetric z(t+1) = At)x(t),

Vicsek model. The main idea is that the agreement algorithm

can closely emulate a nonconvergent algorithm that keepsth A(t) stochastic, might be characterized in terms of a
executing the three instructions := z3, 3 := x3, 2 := joint spectral radius. The joint spectral radjpsM) of a set
1, one after the other. of matrices



M is a scalar that measures the maximal asymptotjgrocessor. A situation of this type falls within the framework
growth rate that can be obtained by forming long productsf distributed asynchronous computation developed in [2].
of matrices taken from the se¥: Communication delays are incorporated into the model as
follows: when agent, at time ¢, uses the valuer; from
another agent, that value is not necessarily the most recent
one,z;(t), but rather an outdated one;(7}(t)), where0 <
This quantity does not depend on the norm used. Moreovqrz,( t) < t,and where—rj(t)) represents communication and
for any ¢ > p(M) there exists &' for which p055|bly other types of delay. In particular,(t) is updated

1M, ... My, yl| < CqF ||yl according to the following formula:

p(M) = limsup sup [|Mi, M, ... My, ||F .

k—o0 M;, eM

Tiq Mg,y My,

for all y and M;, € M.

Stochastic matrices satisfydz|| < ||z||, andAl =1, (1) Za” ) (75(0). @
and so they have a spectral radius equal to one. The product
of two stochastic matrices is again stochastic and so th¥e make the following assumption on th(t).
joint spectral radius of any set of stochastic matrices iassumption 4. (Bounded delays)a) If a;;(t) = 0, then
equal to one. To analyze the convergence rate of produqts(t) =1,
of stochastic matrices, we consider the dynamics induced Ipu) lim; o0 7 i(t) = oo, for all 4, j.
the matrices on a space of smaller dimension. (c) Ti(t) = t, for all 4.

Consider a matrix? € ®»~1*" defining an orthogonal (d) There exists somB > 0 such that— B+1 < 7 L) <t,
projection on the space orthogonal 4pan{1}. We have for all 4, j, t

P1=0, and||Pz||, = ||z||, wheneverz"1 = 0. Associated o o _
to any A(t), there is a unique matrid/(t) € R(—Dx (-1 Assumption 4(a) is just a convention: whep(t) = 0, the

that satisfiesPA(t) = A’(t)P. The spectrum ofd’(¢) is yalue of 7; (t)fhas ho effect on the upd;’;ti. Assymp;c;]ont 4(b)
the spectrum ofA(¢) after removing one multiplicity of the IS lrleces?aryt or atny corsvenge_nce resut. :j reclalres dat neV\;er
eigenvaluel. Let M’ be the set of all matriced’(t). values ofz;(t) get eventually incorporated in the updates o

Let v = 17x(t)/n be the mean value of the entries Ofother agents. Assumption 4(c) is quite natural, since an agent
2(t), then generally has access to its own most recent value. Finally,

Assumption 4(d) requires delays to be bounded by some
Px(t)— Pyl = Px(t) constantB,
= PA(M)A(t—-1)...A(0)x(0)

— AA(E—1)... A(0)Px(0). The next result, from [9], [10], is a generalization

of Theorem 1. The idea of the proof is similar to the

Since(z(t) —v1)T1 =0, we have one outlined for Theorem 1, except that we now de-
fine m(t) = min; ming—¢;—1. +—p+12:(s) and M(t) =
— t s yeens
|lz(t) = vy = [[P(z(t) — DIl < Cq" [|z(0)]]; max; maxe— 1.+ p+1 % (s). Once more, one shows that
for someC' and for anyg > p(M). the differenceM (¢t) — m(t) decreases by a constant factor

Assume now thatim,_... z(t) = ¢1 for some scalae. after a bounded amount of time.

Because all matrices are stochasticmust belong to the Theorem 3.Under Assumptions 1-4 (connectivity, bounded
convex hull of the entries of(t) for all ¢t. We therefore jntercommunication intervals, and bounded delays), the
have agreement algorithm with delays [cf. Eg. (1)] guarantees

[o(t) = el < 2|l2(t) = 12|, < 2[|Pa(t) — Py1||,, ~ ASYmPIotic consensus.

Theorem 3 assumes bounded intercommunication intervals
and bounded delays. The example that follows (Example
l|z(t) — 1|, < 2Cq" ||z(0)]], . 1.2, in p. 485 of [2]) shows that Assumption 4(d) (bounded
delays) cannot be relaxed. This is the case even for a
symmetric model, or the further special case whérg)
has exactly two arcgi,j) and (j,¢) at any given timet,
and these satisfy,;;(t) = a;;(t) = 1/2, as in the gossip
a&gorithm.

and we may then conclude that

The joint spectral radiug(M’ therefore gives a measure
of the convergence rate af(t) towards its limit valuecl.
However, for this bound will be nontrivial all of the matrices
in M need to be ergodic; indeed, in the absence of

ergodicity condition, the convergence oft) need not be
geometric. Example 2.We have two agents who initially hold the values

21(0) = 0 andz2(0) = 1, respectively. At time 0, each agent
V. CONVERGENCE IN THE PRESENCE OF DELAYSS communicates its value to the other agent, who receives it
The model considered so far assumes that messages frommediately. There is no further communication fertime
one agent to another are immediately delivered. However, steps. Each agent forms repeatedly the average of its own
a distributed environment, and in the presence of commualue with the most recently received value from the other
nication delays, it is conceivable that an agent will end upgent. We will then have;(t;) = 1 — 1 andza(t1) = e,
averaging its own value with aautdatedvalue of another wheree; > 0 can be made arbitrarily small, by choosing



t, large enough. Therefore, during this phase the absolutecontaining indices for which m;(t) > o*Z, and letS¢ be
difference|z,(t) — x2(t)| contracts by a factor of — 2¢;.  the complement of. Let 7 be the first time, greater than or
Next, each agent communicates its value to the other agesqual tot, at whicha,;(7) # 0, for somej € S andi € S°©
again and proceeds forming averages with the value jugte., an agenj in S gets to influence the value of an agent
received. We continue with an infinity of such phases, exceptin S¢). Such a time exists by the connectivity assumption
that each phase is longer (lardg} so that the corresponding (Assumption 2).
contraction factord — 2¢;, are increasingly smaller. If the, Note that between timesand r, the agentd in the set
are chosen so tha_, e; < oo, then];—,(1 — 2¢,) > 0, S only form convex combinations between the values of the
and the disagreement; () — z2(t)| does not converge to agents in the se$ (this is a consequence of the symmetry
zero. assumption) Since all of these values are bounded below by
(ﬁ. , it follows that this lower bound remains in effect, and
tm
t

Accordin he pr ing example, th mption
ccording to the preceding example, the assumptio 7)>a*B forall L € S.

bounded delays cannot be relaxed. On the other hand, or tlmes > 7., and for everyl € S, we haves,(s +
assumption of bounded intercommunication intervals can b<3 > ax )swhéh implies thatq):/( ) > ahBob, ff)i i c
o o(s

relaxed, in the presence of symmetry, leading to the followin (+1)B
generalization of Theorem 2, which is a new result. 3” /e S 7+ B}. Thereforem,(r + B) > a for

Theorem 4. Under Assumptions 1, 2 (connectivity), and Consider now an ageritc S¢ for which a;;(7) # 0. We
4 (bounded delays), and for the symmetric model, thRave

agreement algorithm with delays [cf. Eq. (1)] guarantees wi(r+1) > aij(T)l'j(T;(T)) > amy(r) > oFBFL,

asymptotic consensus.
Using also the fact;(s+1) > ax;(s), we obtain thatn; (7+

Proof. Let B) > oFtDEB  Therefore, at timer + B, we havek + 1
M;(t) = max{z;(t),z;(t —1),...,2(t — B+1)}, agents withm,(t + B) > o**DB (namely, the agents in
M) = maXM (t), S, together with agent). It follows that PropertyPy is

satisfied at timer + B.
mi(t) = mln{xz(t%fﬂi(t —1),...,z(t— B+ 1)}, This inductive argument shows that there is a timat
m(t) = minm(t). which PropertyP,, is satisfied. At that timen;(7) > a"? for

all i, which implies thatm(7) > o™Z. On the other hand,
An easy inductive argument, as in p. 512 of [2], shows\/[(T) < M(0) = 1, which proves thatM (1) — m(7) <
that the sequences:(t) and M (t) are nondecreasing and 1 — o2, q.e.d.

nonincreasing, respectively. The convergence proof rests OnThe symmetry condition(f, j) € E(t) iff (i) € E()]

he following lemma. . . :

the following lemma used in Theorem 4 is somewhat unnatural in the presence of
Lemma 1: If m(t) = 0 and M(t) = 1, then there exists a communication delays, as it requires perfect synchronization
time 7 > ¢ such thatM (7) — m(7) < 1 — a"P. of the update times. A looser and more natural assumption

Given Lemma 1, the convergence proof is completed &8 the following.
follows. Using the linearity of the algorithm, there exists aAssumption 5. If (i,j) € E(t), then there exists some
time 7 such thatV () —m(r1) < (1—a™B)(M(0)—m(0)).  such thatlt — 7| < B and (j,i) € E(t).
By applying Lemma 1, witht replaced byr,_,, and using
induction, we see that for every there exists a timer
such thatM (1) — m(m) < (1 — a"B)F(M(0) — m(0)),
which converges to zero. This, together with the monotoni
ity properties ofm(t) and M (t), implies thatm(t) and
M (t) converge to a common limit, which is equivalent to
asymptotic consensus.g.e.d.

Assumption 5 allows for protocols such as the following.
Agent i sends its value to agent Agent j responds by
sending its own value to agemnt Both agents update their
Salues (taking into account the received messages), within
a bounded time from receiving other agent’'s value. In a
realistic setting, with unreliable communications, even this
loose symmetry condition may be impossible to enforce

Proof of Lemma 1: Fork = 1,...,n, we say that “Property with absolute certainty. One can imagine more complicated
P, holds at timet” if m(t) > 0, and there exist at leagt protocols based on an exchange of acknowledgments, but
indicesi for which m;(t) > k5. fundamental obstacles remain (see the discussion of the

We assume, without loss of generality, tha{0) = 0. “two-army problem” in pp. 32-34 of [1]). A more realistic
Then, m(t) > 0 for all ¢, because of the monotonicity of model would introduce a positive probability that some of
m(t). We also assume that/(0) = 1. Thus, there exists the updates are never carried out. (A simple possibility is to
somei and somer € {—B +1,—-B+2,...,0} such that assume that each;;(t), with i # j, is changed to a zero,
x;(t) = 1. Using the inequalityx;(t + 1) > «az;(¢), we independently, and with a fixed probability.) The convergence
obtainm; (7 + B) > o. This shows that there exists a timeresult that follows remains valid in such a probabilistic
at which propertyP; holds. setting (with probability 1). Since no essential new insights

We continue inductively. Suppose that< n and that are provided, we only sketch a proof for the deterministic
PropertyP;, holds at some time Let S be a set of cardinality case.



Theorem 5. Under Assumptions 1, 2 (connectivity), 4 [6]
(bounded delays), and 5, the agreement algorithm with delays
[cf. Eq. (1)] guarantees asymptotic consensus.

Proof. (Outline) A minor change is needed in the proof of [7]
Lemma 1. In particular, we definB, as the event that there

exist at least indices! for which m;(t) > o?*Z. It follows [8]
that P, holds at timet = 2B.
By induction, letP; hold at timet, and letS be the set of  [g]

cardinality £ containing indiced for which m;(¢) > o2*5.
Furthermore, let be the first time after timethata;; (1) #
0 where exactly one of, j is in S. Along the same lines as [10]
in the proof of Lemma 1yn;(7) > o8 for | € S; since
zy(t 4+ 1) > ax(t), it follows thatm (7 4 2B) > o?F+1)B

for eachl € S. By our assumptions, exactly one @f is in  [11]
Se.1f i € S¢ thenw; (1 4 1) > ay(1)x;(7)(1)) > a?kB+1
and consequently; (7 +2B) > a5~ 1B = o2FDE o)

If 7 € S° then there must exist a timg € {7 + 1,7 +
2,...,7+ B — 1} with a;;(7;) > 0. It follows that:

m;(r+2B) > o 2B g 41)
2 a7+237‘rj71a1,i(7_j)
2 aT+QB—T_7—1aarj —Ta2kB

o2(k+1)B

Therefore, Py, holds at timer + 2B and the induction is
complete. g.e.d.

VI. CONCLUDING REMARKS

Many variations of the available convergence results and
of the new ones presented here are possible, by considering
additional sources of asynchronism, as well as probabilistic
(rather than deterministic) assumptions. The proof technique
introduced in [2] (based on the contraction of the difference
M (t) —m(t)) has so far been able to handle such variations.

One particular variation that has been investigated in the
recent literature is one where strong connectivity is relaxed:
some agents act as “leaders” and influence the values of the
other agents (the “followers”) but not vice versa. This is
similar to the setting considered in Chapter 6 of [2] where
leaders and followers correspond to the “computing” and
“noncomputing” processors of [2].

Let us also note that there is a related algorithm for
distributed load balancing, for which similar convergence
results are available (see Section 7.4 of [2]). The latter
algorithm has some commonalities with the gossip algorithm:
the sum of the agents’ entries/loads is a long-term invariant,
although in the load balancing algorithm, some of the load
can be temporarily “in transit.”

REFERENCES

[1] D. P. Bertsekas and R. G. Gallag&ata Networks Prentice Hall,
2nd edition, 1991.

[2] D. P. Bertsekas and J. N. TsitsikliBarallel and Distributed Com-
putation: Numerical MethodsPrentice Hall, 1989.

[3] M. Cao, A. S. Morse, B. D. O. Anderson, “Coordination of an
Asynchronous, Multi-Agent System via Averaging,” preprint, 2004.

[4] S. P. Boyd, A. Ghosh, B. Prabhakar, D. Shah, “Gossip Algorithms:
Design, Analysis and ApplicationsProceedings of Infocom 05

[5] J. M. Hendrickx and V. D. Blondel, preprint, 2005.

A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups
of mobile autonomous agents using nearest neighbor rulegE
Transactions on Automatic Controbol. 48, no. 6, 2003, pp. 988-
1001.

S. Li, H. Wang, “Multi-agent
nearest-neighbor  rules:  revisiting
http://arxiv.org/abs/cs.MA/0407021

L. Moreau, “Stability of multi-agent systems with time-dependent
communication links,IEEE Transactions on Automatic Contydfol.

50, No. 2, 2005, pp. 169-182.

J. N. Tsitsiklis, Problems in decentralized decision making and
computation, Ph.D. thesis, Dept. of Electrical Engineering and
Computer Science, Massachusetts Institute of Technology, 1984;
http://web.mit.edu/jnt/www/PhD-84-jnt.pdf

J. N. Tsitsiklis, D. P. Bertsekas and M. Athans, “Distributed Asyn-
chronous Deterministic and Stochastic Gradient Optimization Algo-
rithms,” IEEE Transactions on Automatic Controlpl. 31, No. 9,
1986, pp. 803-812.

T. Vicsek, A. Czirok, E. Ben-Jacob, |. Cohen, and O. Schochet,
“Novel type of phase transitions in a system of self-driven particles,”
Physical Review Letter§fol. 75, No. 6, 1995, pp. 1226-1229.

J. Wolfowitz, “Products of indecomposable, aperiodic, stochastic
matrices,” Proceedings of the American Mathematical Socigbl,

15, 1963, pp. 733-737.

coordination
the  Vicsek

using
model”;



