
Sourcery G++

ARM EABI

Sourcery G++ 2011.02-2

Getting Started

Sourcery G++: ARM EABI: Sourcery G++ 2011.02-2: Getting
Started
CodeSourcery, Inc.
Copyright © 2005, 2006, 2007, 2008, 2009, 2010, 2011 CodeSourcery, Inc.
All rights reserved.

Abstract

This guide explains how to install and build applications with Sourcery G++, CodeSourcery's cus-
tomized, validated, and supported version of the GNU Toolchain. Sourcery G++ includes everything
you need for application development, including C and C++ compilers, assemblers, linkers, and
libraries.

When you have finished reading this guide, you will know how to use Sourcery G++ both from the
IDE and from the command line.

Table of Contents
Preface .. v

1. Intended Audience ... vi
2. Organization ... vi
3. Typographical Conventions .. vii

1. Quick Start .. 1
1.1. Installation and Set-Up ... 2
1.2. Configuring Sourcery G++ for the Target System ... 2
1.3. Building Your Program ... 3
1.4. Running and Debugging Your Program .. 3

2. Installation and Configuration ... 4
2.1. Terminology ... 5
2.2. System Requirements ... 5
2.3. Registering with the Sourcery G++ Portal ... 6
2.4. Downloading an Installer ... 6
2.5. Installing Sourcery G++ .. 7
2.6. Installing Sourcery G++ Updates .. 10
2.7. Setting up the Environment .. 10
2.8. License Keys ... 12
2.9. Installing Add-Ons ... 17
2.10. Uninstalling Sourcery G++ ... 18

3. Sourcery G++ for ARM EABI ... 20
3.1. Included Components and Features .. 21
3.2. Library Configurations .. 21
3.3. CodeSourcery C Library .. 24
3.4. Using Sourcery G++ with Kinetis Boards ... 24
3.5. Using Sourcery G++ with Stellaris Boards .. 25
3.6. Using Sourcery G++ with STM32 Boards ... 26
3.7. Peripheral Register Browsing ... 26
3.8. Using Flash Memory .. 28
3.9. Using VFP Floating Point .. 29
3.10. ABI Compatibility .. 30
3.11. ARM Profiling Implementation ... 31
3.12. Object File Portability ... 31

4. Using the Sourcery G++ IDE .. 33
4.1. Overview .. 34
4.2. Building Applications ... 34
4.3. Debugging Applications .. 41
4.4. Advanced IDE Features ... 52

5. Using Sourcery G++ from the Command Line ... 65
5.1. Building an Application ... 66
5.2. Running Applications on the Target System ... 66
5.3. Running Applications from GDB .. 66

6. CS3™: The CodeSourcery Common Startup Code Sequence .. 69
6.1. Linker Scripts .. 70
6.2. Program Startup and Termination .. 72
6.3. Memory Layout ... 75
6.4. Interrupt Vectors and Handlers .. 77
6.5. Supported Boards for ARM EABI ... 78
6.6. Interrupt Vector Tables ... 148

7. Sourcery G++ Debug Sprite .. 163
7.1. Probing for Debug Devices ... 164

iii

7.2. Debug Sprite Example ... 164
7.3. Invoking Sourcery G++ Debug Sprite ... 165
7.4. Sourcery G++ Debug Sprite Options .. 166
7.5. ARMUSB (Stellaris) Devices .. 167
7.6. Remote Debug Interface Devices ... 169
7.7. Actel FlashPro Devices .. 169
7.8. Keil ULINK2 Devices ... 170
7.9. Altera Devices ... 172
7.10. SEGGER J-Link Devices ... 173
7.11. P&E Devices ... 174
7.12. Debugging a Remote Board .. 175
7.13. Supported Board Files ... 176
7.14. Board File Syntax ... 181

8. Next Steps with Sourcery G++ .. 185
8.1. Sourcery G++ Support ... 186
8.2. Sourcery G++ Knowledge Base ... 186
8.3. Example Programs .. 186
8.4. Manuals for GNU Toolchain Components ... 186
8.5. Help for the Sourcery G++ IDE ... 187

A. Sourcery G++ Release Notes .. 189
A.1. Changes in Sourcery G++ for ARM EABI .. 190

B. Sourcery G++ Licenses ... 197
B.1. Licenses for Sourcery G++ Components ... 198
B.2. Sourcery G++ Software License Agreement .. 199
B.3. Attribution .. 207

iv

Sourcery G++

Preface
This preface introduces the Sourcery G++ Getting Started guide. It explains the structure
of this guide and describes the documentation conventions used.

v

1. Intended Audience
This guide is written for people who will install and/or use Sourcery G++. This guide provides a
step-by-step guide to installing Sourcery G++ and to building simple applications. Parts of this doc-
ument assume that you have some familiarity with using the command-line interface.

2. Organization
This document is organized into the following chapters and appendices:

Chapter 1, “Quick Start” This chapter includes a brief checklist to follow when in-
stalling and using Sourcery G++ for the first time. You may
use this chapter as an abbreviated guide to the rest of this
manual.

Chapter 2, “Installation and Config-
uration”

This chapter describes how to download, install and configure
Sourcery G++. This section describes the available installation
options and explains how to set up your environment so that
you can build applications.

Chapter 3, “Sourcery G++ for ARM
EABI”

This chapter contains information about using Sourcery G++
that is specific to ARM EABI targets. You should read this
chapter to learn how to best use Sourcery G++ on your target
system.

Chapter 4, “Using the Sourcery G++
IDE”

This chapter explains how to use the Sourcery G++ IDE,
which is based on Eclipse. The IDE provides a fully-integrated
programming environment that allows you to edit, build, and
debug programs.

Chapter 5, “Using Sourcery G++
from the Command Line”

This chapter explains how to build applications with Sourcery
G++ using the command line. In the process of reading this
chapter, you will build a simple application that you can use
as a model for your own programs.

Chapter 6, “CS3™: The Code-
Sourcery Common Startup Code Se-
quence”

CS3 is CodeSourcery's low-level board support library. This
chapter documents the boards supported by Sourcery G++
and the compiler and linker options you need to use with them.
It also explains how you can use and modify CS3-provided
definitions for memory maps, system startup code and inter-
rupt vectors in your own code.

Chapter 7, “Sourcery G++ Debug
Sprite”

This chapter describes the use of the Sourcery G++ Debug
Sprite for remote debugging. The Sprite allows you to debug
programs running on a bare board without an operating system.
This chapter includes information about the debugging devices
and boards supported by the Sprite for ARM EABI.

Chapter 8, “Next Steps with Sourcery
G++”

This chapter describes where you can find additional docu-
mentation and information about using Sourcery G++ and its
components. It also provides information about Sourcery G++
subscriptions. CodeSourcery customers with Sourcery G++
subscriptions receive comprehensive support for Sourcery
G++.

vi

Preface

Appendix A, “Sourcery G++ Release
Notes”

This appendix contains information about changes in this re-
lease of Sourcery G++ for ARM EABI. You should read
through these notes to learn about new features and bug fixes.

Appendix B, “Sourcery G++ Li-
censes”

This appendix provides information about the software li-
censes that apply to Sourcery G++. Read this appendix to
understand your legal rights and obligations as a user of
Sourcery G++.

3.Typographical Conventions
The following typographical conventions are used in this guide:

> command arg ... A command, typed by the user, and its output. The “>” character is the
command prompt.

command The name of a program, when used in a sentence, rather than in literal
input or output.

literal Text provided to or received from a computer program.

placeholder Text that should be replaced with an appropriate value when typing a
command.

\ At the end of a line in command or program examples, indicates that a
long line of literal input or output continues onto the next line in the
document.

vii

Preface

Chapter 1
Quick Start
This chapter includes a brief checklist to follow when installing and using Sourcery G++ for
the first time.You may use this chapter as an abbreviated guide to the rest of this manual.

1

Sourcery G++ for ARM EABI is intended for developers working on embedded applications or
firmware for boards without an operating system, or that run an RTOS or boot loader. This Sourcery
G++ configuration is not intended for Linux or uClinux kernel or application development.

Follow the steps given in this chapter to install Sourcery G++ and build and run your first application
program. The checklist given here is not a tutorial and does not include detailed instructions for each
step; however, it will help guide you to find the instructions and reference information you need to
accomplish each step.

You can find additional details about the components, libraries, and other features included in this
version of Sourcery G++ in Chapter 3, “Sourcery G++ for ARM EABI”.

1.1. Installation and Set-Up
Register with the Sourcery G++ Support Portal. You must register with the Sourcery G++
Portal1 before you can use this subscription version of Sourcery G++. Free evaluations are also
available from the Portal. Registering with the Portal also gives you access to the latest software
updates, the Sourcery G++ Knowledge Base, and support for subscription customers.

Install Sourcery G++ on your host computer. You may download an installer package from
the Sourcery G++ Support Portal, or you may have received an installer on CD. The installer is an
executable program that pops up a window on your computer and leads you through a series of dialogs
to configure your installation. If the installation is successful, it will offer to launch the Sourcery
G++ IDE and the Getting Started guide. For more information about installing Sourcery G++, includ-
ing host system requirements and tips to set up your environment after installation, refer to Chapter 2,
“Installation and Configuration”.

Install drivers for your debug device. If you plan to use the Sourcery G++ Debug Sprite, you
may need to install drivers, libraries, or other software on your host system. Refer to Chapter 7,
“Sourcery G++ Debug Sprite” for a list of supported devices and information about installing drivers
and other device set-up. Sourcery G++ also supports third-party debug devices that communicate
via the GDB remote serial protocol. If you plan to use one of these devices, follow the manufacturer's
directions to connect the device and install any required drivers or software.

Install a license key. License keys are managed from the Sourcery G++ IDE. When you start the
IDE for the first time, it pops up a dialog box to guide you through the steps to download and/or install
your license key. For detailed help, refer to Section 2.8, “License Keys”.

1.2. Configuring Sourcery G++ for the Target
System
Identify your target board. On bare-metal targets, you must either select an appropriate board
when using the Sourcery G++ IDE to build your application, or explicitly specify a linker script for
your target board on your link command line. Supported boards are listed in Chapter 6, “CS3™: The
CodeSourcery Common Startup Code Sequence”. If CS3 does not support your board directly, you
may use the Sourcery G++ Board Builder to create a custom board definition and linker scripts.
Choose QEMU as your target board if you want to run your program in the QEMU simulator instead
of on target hardware.

Identify your target libraries. Sourcery G++ supports libraries optimized for different targets.
Libraries are selected automatically by the linker, depending on the processor and other options you

1 https://support.codesourcery.com/GNUToolchain/

2

Quick Start

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

have specified. Refer to Section 3.2, “Library Configurations” for details. Some libraries are not in-
cluded in the base Sourcery G++ installation, but are available as add-ons for Standard and Profes-
sional Edition subscribers. If you get a linker error when building your application, most likely the
cause is that you have not installed the appropriate add-on libraries. Refer to Section 2.9, “Installing
Add-Ons” for instructions on installing add-ons.

1.3. Building Your Program
Build your program using the Sourcery G++ IDE. In the Sourcery G++ IDE, create a new
managed build C project. Use the dialog in the C Project wizard to configure the board and other
target properties for building your project. Using the editor in the IDE, create a file containing a
simple test program; save the file and build the project. For a tutorial introduction to the Sourcery
G++ IDE that covers these steps, refer to Section 4.2, “Building Applications”.

Build your program with Sourcery G++ command-line tools. If you prefer, you can build your
program from the command line instead of using the IDE. Create a simple test program, and follow
the directions in Chapter 5, “Using Sourcery G++ from the Command Line” to compile and link it
using Sourcery G++. On bare-metal targets, you must specify a linker script using the -T option on
your link command line. Supported boards and linker scripts are listed in Chapter 6, “CS3™: The
CodeSourcery Common Startup Code Sequence”.

1.4. Running and Debugging Your Program
The steps to run or debug your program depend on your target system and how it is configured.
Choose the appropriate method for your target. For general information and a tutorial on using the
Sourcery G++ IDE for debugging, see Section 4.3, “Debugging Applications”.

Debug your program in the QEMU emulator. The QEMU emulator provides an easy way to
try out your program without requiring target hardware. QEMU support is integrated with the debugger
in the Sourcery G++ IDE. Refer to Section 4.3, “Debugging Applications” for help with using the
debugger. You can also run your program in QEMU from command-line GDB, as described in
Section 5.3.1, “Connecting to the QEMU Emulator”.

Debug your program on the target using the Debug Sprite. You can use the Sourcery G++
Debug Sprite to load and execute your program on the target from the debugger. If you have built
your program for a ROM memory profile, flash programming is handled automatically by the Sprite.
For instructions on using the Sourcery G++ IDE to debug your program, refer to Section 4.3, “De-
bugging Applications”. The IDE also supports using the Sprite to run your program without debugger
control; see Section 4.4.8, “Using Run Launches”. Refer to Section 5.3, “Running Applications from
GDB” for instructions on using the Sprite from the GDB command line. Detailed reference material
for the Sourcery G++ Debug Sprite, including information about supported debug devices, can be
found in Chapter 7, “Sourcery G++ Debug Sprite”.

Debug your program on the target using a third-party debug device. Sourcery G++ supports
debugging programs on the remote target using third-party debug devices that can communicate via
the GDB remote serial protocol. In the Sourcery G++ IDE, select the External Embedded Server
debugging mode; see Section 4.3, “Debugging Applications” for detailed instructions. For command-
line GDB instructions, see Section 5.3, “Running Applications from GDB”.

3

Quick Start

Chapter 2
Installation and Configuration
This chapter explains how to install Sourcery G++.You will learn how to:

1. Verify that you can install Sourcery G++ on your system.

2. Download the appropriate Sourcery G++ installer.

3. Install Sourcery G++.

4. Obtain and install your Sourcery G++ license key.

5. Configure your environment so that you can use Sourcery G++.

4

2.1.Terminology
Throughout this document, the term host system refers to the system on which you run Sourcery
G++ while the term target system refers to the system on which the code produced by Sourcery G++
runs. The target system for this version of Sourcery G++ is arm-none-eabi.

If you are developing a workstation or server application to run on the same system that you are using
to run Sourcery G++, then the host and target systems are the same. On the other hand, if you are
developing an application for an embedded system, then the host and target systems are probably
different.

2.2. System Requirements
2.2.1. Host Operating System Requirements

This version of Sourcery G++ supports the following host operating systems and architectures:

• Microsoft Windows 2000, Windows XP, Windows Vista, and Windows 7 systems using IA32,
AMD64, and Intel 64 processors.

• GNU/Linux systems using IA32, AMD64, or Intel 64 processors, including Debian 3.1 (and later),
Red Hat Enterprise Linux 3 (and later), and SuSE Enterprise Linux 8 (and later).

Sourcery G++ is built as a 32-bit application. Therefore, even when running on a 64-bit host system,
Sourcery G++ requires 32-bit host libraries. If these libraries are not already installed on your system,
you must install them before installing and using Sourcery G++. Consult your operating system
documentation for more information about obtaining these libraries.

Installing on Ubuntu and Debian GNU/Linux Hosts

The Sourcery G++ graphical installer is incompatible with the dash shell, which is the
default /bin/sh for recent releases of the Ubuntu and Debian GNU/Linux distributions.
To install Sourcery G++ on these systems, you must make /bin/sh a symbolic link to
one of the supported shells: bash, csh, tcsh, zsh, or ksh.

For example, on Ubuntu systems, the recommended way to do this is:

> sudo dpkg-reconfigure -plow dash
Install as /bin/sh? No

This is a limitation of the installer and uninstaller only, not of the installed Sourcery G++
toolchain.

2.2.2. Host Hardware Requirements

In order to install and use Sourcery G++, you must have at least 512MB of available memory.

The amount of disk space required for a complete Sourcery G++ installation directory depends on
the host operating system and the number of target libraries included. When you start the graphical
installer, it checks whether there is sufficient disk space before beginning to install. Note that the
graphical installer also requires additional temporary disk space during the installation process. On
Microsoft Windows hosts, the installer uses the location specified by the TEMP environment variable
for these temporary files. If there is not enough free space on that volume, the installer prompts for

5

Installation and Configuration

an alternate location. On Linux hosts, the installer puts temporary files in the directory specified by
the IATEMPDIR environment variable, or /tmp if that is not set.

2.2.3.Target System Requirements

See Chapter 3, “Sourcery G++ for ARM EABI” for requirements that apply to the target system.

2.3. Registering with the Sourcery G++ Portal
If you do not already have a Sourcery G++ Portal account, you must register for one now. You must
have an active Sourcery G++ subscription to download an installer or generate a license key. Evalu-
ation subscriptions are available at no charge and also give you access to support from CodeSourcery.

If you purchased Sourcery G++ directly from CodeSourcery, you already have an account, and you
may skip ahead to the next section. However, if you received Sourcery G++ with a hardware devel-
opment kit or from a distributor, you probably do not have an account.

To register for an account, visit the Sourcery G++ Portal1. Click on the link to register for an evaluation
subscription. Follow the instructions on the web site to create your account. Then, once your account
is active, click the button to request an evaluation subscription.

You should request an evaluation version of Sourcery G++ that matches the version you received
with your development kit. Select the host system where you will install Sourcery G++, and ARM
EABI as the target system where you will run applications. Then click the Request Evaluation
button.

If there are newer versions of Sourcery G++ than the one provided with your development kit, they
will be visible through the Sourcery G++ Portal once your evaluation subscription is active. Code-
Sourcery recommends that you first work with the version of Sourcery G++ that came with your
development kit, since CodeSourcery and the manufacturer have tested that particular combination
of hardware and software. However, you may also wish to experiment with newer versions.

2.4. Downloading an Installer
If you have received Sourcery G++ on a CD, or other physical media, then you do not need to
download an installer. You may skip ahead to Section 2.5, “Installing Sourcery G++”.

Log into the Sourcery G++ Portal2 to download your Sourcery G++ toolchain(s). This version of
Sourcery G++ requires a valid subscription or evaluation. CodeSourcery also makes some toolchains
available to the general public from the Sourcery G++ web site3. These publicly available toolchains
do not include all the functionality of CodeSourcery's product releases.

Once you have navigated to the appropriate web site, download the installer that corresponds to your
host operating system. For Microsoft Windows systems, the Sourcery G++ installer is provided as
an executable with the .exe extension. For GNU/Linux systems Sourcery G++ is provided as an
executable installer package with the .bin extension.

On Microsoft Windows systems, save the installer to the desktop. On GNU/Linux systems, save the
download package in your home directory.

1 https://support.codesourcery.com/GNUToolchain/
2 https://support.codesourcery.com/GNUToolchain/
3 http://www.codesourcery.com/gnu_toolchains/

6

Installation and Configuration

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
http://www.codesourcery.com/gnu_toolchains/

2.5. Installing Sourcery G++
The method used to install Sourcery G++ depends on your host system and the kind of installation
package you have downloaded.

2.5.1. Using the Sourcery G++ Installer on Microsoft Windows

If you have received Sourcery G++ on CD, insert the CD in your computer. On most computers, the
installer then starts automatically. If your computer has been configured not to automatically run
CDs, open My Computer, and double click on the CD. If you downloaded Sourcery G++, double-
click on the installer.

After the installer starts, follow the on-screen dialogs to install Sourcery G++. The installer is intended
to be self-explanatory and on most pages the defaults are appropriate.

Running the Installer. The graphical installer guides you through the steps to
install Sourcery G++.

You may want to change the install directory pathname and customize the shortcut installation.

7

Installation and Configuration

Choose Install Folder. Select the pathname to your install directory.

Choose Shortcut Folder. You can customize where the installer creates
shortcuts for quick access to Sourcery G++.

When the installer has finished, it asks if you want to launch the Sourcery G++ IDE and a viewer
for the Getting Started guide. Finally, the installer displays a summary screen to confirm a successful
install before it exits.

8

Installation and Configuration

Install Complete. You should see a screen similar to this after a successful
install.

If you prefer, you can run the installer in console mode rather than using the graphical interface. To
do this, invoke the installer with the -i console command-line option. For example:

> /path/to/package.exe -i console

2.5.2. Using the Sourcery G++ Installer on GNU/Linux Hosts

Start the graphical installer by invoking the executable shell script:

> /bin/sh ./path/to/package.bin

After the installer starts, follow the on-screen dialogs to install Sourcery G++. For additional details
on running the installer, see the discussion and screen shots in the Microsoft Windows section above.

If you prefer, or if your host system does not run the X Window System, you can run the installer
in console mode rather than using the graphical interface. To do this, invoke the installer with the
-i console command-line option. For example:

> /bin/sh ./path/to/package.bin -i console

2.5.3. Installing the Java Runtime Environment

Sourcery G++ for ARM EABI includes the Sourcery G++ IDE, based on the Eclipse Integrated De-
velopment Environment. Eclipse is a Java application and requires the Java Runtime Environment
(JRE).

If you use the graphical installer, the JRE is included when you install the Sourcery G++ IDE. Oth-
erwise you must install the JRE separately if you wish to use the Sourcery G++ IDE. The Java
Runtime Environment is available at no charge from Sun Microsystems Java website4. You may
download either the Java Runtime Environment (JRE) or the Java Development Kit (JDK). (The
JDK includes the JRE.)

4 http://java.sun.com/j2se/

9

Installation and Configuration

http://java.sun.com/j2se/
http://java.sun.com/j2se/

2.6. Installing Sourcery G++ Updates
If you have already installed an earlier version of Sourcery G++ for ARM EABI on your system, it
is not necessary to uninstall it before using the installer to unpack a new version in the same location.
The installer detects that it is performing an update in that case.

Note that the names of the Sourcery G++ commands for the ARM EABI target all begin with
arm-none-eabi. This means that you can install Sourcery G++ for multiple target systems in the
same directory without conflicts.

2.7. Setting up the Environment
As with the installation process itself, the steps required to set up your environment depend on your
host operating system.

2.7.1. Setting up the Environment on Microsoft Windows Hosts

2.7.1.1. Setting the PATH

In order to use the Sourcery G++ tools from the command line, you should add them to your PATH.
If you plan to use only the Sourcery G++ IDE, it is not necessary to adjust your PATH, and you may
skip this step. You may also skip this step if you used the graphical installer, since the installer
automatically adds Sourcery G++ to your PATH.

To set the PATH on a Microsoft Windows Vista system, use the following command in a cmd.exe
shell:

> setx PATH "%PATH%;C:\Program Files\Sourcery G++\bin"

where C:\Program Files\Sourcery G++ should be changed to the path of your Sourcery
G++ installation.

To set the PATH on a system running Microsoft Windows 7, from the desktop bring up the Start
menu and right click on Computer. Select Properties and click on Advanced system
settings. Go to the Advanced tab, then click on the Environment Variables button.
Select the PATH variable and click the Edit. Add the string ;C:\Program Files\Sourcery
G++\bin to the end, and click OK. Be sure to adjust the pathname to reflect your actual installation
directory.

To set the PATH on older versions of Microsoft Windows, from the desktop bring up the Start
menu and right click on My Computer. Select Properties, go to the Advanced tab, then click
on the Environment Variables button. Select the PATH variable and click the Edit. Add
the string ;C:\Program Files\Sourcery G++\bin to the end, and click OK. Again, you
must adjust the pathname to reflect your installation directory.

You can verify that your PATH is set up correctly by starting a new cmd.exe shell and running:

> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ 2011.02-2.

10

Installation and Configuration

2.7.1.2. Working with Cygwin

Sourcery G++ does not require Cygwin or any other UNIX emulation environment. You can use
Sourcery G++ directly from the Eclipse IDE or from the Windows command shell. You can also use
Sourcery G++ from within the Cygwin environment, if you prefer.

The Cygwin emulation environment translates Windows path names into UNIX path names. For
example, the Cygwin path /home/user/hello.c corresponds to the Windows path c:\cygwin\
home\user\hello.c. Because Sourcery G++ is not a Cygwin application, it does not, by default,
recognize Cygwin paths.

If you are using Sourcery G++ from Cygwin, you should set the CYGPATH environment variable.
If this environment variable is set, Sourcery G++ automatically translates Cygwin path names into
Windows path names. To set this environment variable, type the following command in a Cygwin
shell:

> export CYGPATH=cygpath

To resolve Cygwin path names, Sourcery G++ relies on the cygpath utility provided with Cygwin.
You must provide Sourcery G++ with the full path to cygpath if cygpath is not in your PATH.
For example:

> export CYGPATH=c:/cygwin/bin/cygpath

directs Sourcery G++ to use c:/cygwin/bin/cygpath as the path conversion utility. The value
of CYGPATH must be an ordinary Windows path, not a Cygwin path.

When you run GDB from a Cygwin shell instead of a bare Windows console, Cygwin's terminal input
handling conflicts with some features used by GDB, such as Ctrl+C, arrow key support, and auto-
matic page breaks. To work around these issues, Sourcery G++ includes a Cygwin wrapper for GDB.
When you use a Cygwin console, xterm, or SSH session, run arm-none-eabi-cyggdb instead
of arm-none-eabi-gdb.

2.7.2. Setting up the Environment on GNU/Linux Hosts

If you installed Sourcery G++ using the graphical installer then you may skip this step. The installer
does this setup for you.

Before using Sourcery G++ you should add it to your PATH. The command you must use varies with
the particular command shell that you are using. If you are using the C Shell (csh or tcsh), use
the command:

> setenv PATH $HOME/CodeSourcery/Sourcery_G++/bin:$PATH

If you are using Bourne Shell (sh), the Korn Shell (ksh), or another shell, use:

> PATH=$HOME/CodeSourcery/Sourcery_G++/bin:$PATH
> export PATH

If you are not sure which shell you are using, try both commands. In both cases, if you have installed
Sourcery G++ in an alternate location, you must replace the directory above with bin subdirectory
of the directory in which you installed Sourcery G++.

You may also wish to set the MANPATH environment variable so that you can access the Sourcery
G++ manual pages, which provide additional information about using Sourcery G++. To set the

11

Installation and Configuration

MANPATH environment variable, follow the same steps shown above, replacing PATH with MANPATH,
and bin with share/doc/sourceryg++-arm-none-eabi/man.

You can test that your PATH is set up correctly by running the following command:

> arm-none-eabi-g++ -v

Verify that the last line of the output contains: Sourcery G++ 2011.02-2.

2.8. License Keys
Sourcery G++ requires a license key. Each license key is associated with a particular computer, and
allows you to use Sourcery G++ on that computer under the terms of your subscription and license
agreement.

License Keys and the GPL

A license key is required to use the version of the GNU Compiler Collection included in
Sourcery G++. Because GCC is made available under the terms of the GPL, all of the code
linked into GCC is also covered by the GPL, including the code that checks for a license
key. The GPL permits you to recompile the source code to remove the requirement that a
license key be present. However, CodeSourcery's support covers only the original, validated
GCC binaries provided with Sourcery G++.

2.8.1. Using the Licensing Wizard

When you start the Sourcery G++ IDE for the first time, it launches the Sourcery G++ Licensing
wizard to guide you through the steps to install your license key.

Licensing Wizard. Use the Licensing wizard to install your license key.

The wizard displays the host ID (or host IDs) for the computer on which you have installed Sourcery
G++. If your computer has more than one host ID, you must choose one of them for generating your
license key.

Host IDs are either 12-digit hexadecimal numbers based on network interface addresses, or hard
drive serial numbers prefixed with the text DISK_SERIAL_NUM=. You should choose a host ID

12

Installation and Configuration

associated with a device that is unlikely to be removed from your computer. If Sourcery G++ can
determine your hard drive serial number, this is usually the best choice for your host ID, since network
interface addresses may change if you change your networking configuration, as on a laptop that
you use with a dock or removable network card.

Computers without a Host ID

If Sourcery G++ cannot determine your network interface address or hard drive serial
number, it reports that there is no host ID for your computer.

On GNU/Linux systems, the network interface address is determined by looking for the
eth0 interface. Therefore, if your network interface has a different name, the wizard is
unable to determine your host ID.

If the Sourcery G++ Licensing wizard cannot determine your host ID, please contact
<support@codesourcery.com> for assistance.

To continue with the Licensing wizard, you must select a license installation method.

Obtain a license automatically. If you select this option, the Licensing wizard contacts the
Sourcery G++ Portal to download the license key for your host. This is the easiest way to install the
license for a new Sourcery G++ subscription. Refer to Section 2.8.2, “Obtaining a License Automat-
ically” for instructions on how to continue.

Obtain a license for a computer that is not on the Internet. If your host system is not on the
Internet, or if access to the Sourcery G++ Portal is blocked by a firewall, you can download a license
key manually from the Portal using another computer. Refer to Section 2.8.4, “Manually Downloading
Your License Key” for detailed instructions.

Install a license file you already have. You can use this method if you already have a valid license
key file for your Sourcery G++ product. If you choose this installation method, refer to Section 2.8.5,
“Installing a License File”.

2.8.2. Obtaining a License Automatically

As mentioned in Section 2.8.1, “Using the Licensing Wizard”, if more than one host ID was found
for your host computer, you must choose one to associate with your license. If the Licensing wizard
has found only one host ID, it uses that ID and skips the selection screen.

13

Installation and Configuration

Select Preferred Host ID. Select the host ID to associate with your license.

The next step is to supply your login information for the Sourcery G++ Portal. When you click on
Next, the Licensing wizard downloads and installs your license.

License Install Complete. You should see a screen similar to this when your
license key has been installed successfully.

2.8.3. Configuring a Proxy Server

If the Licensing wizard is unable to connect to the Sourcery G++ Portal, this may mean access to
the Portal is blocked by a firewall or VPN that requires the use of a proxy server for access to external
web sites.

To set up your proxy configuration, first cancel the Licensing wizard. Then select Window →
Preferences from the top menu, and then the General → Network Connections panel
of the dialog. Contact your local system administrator for assistance with the proxy settings; they
are typically the same as required for your regular web browser.

14

Installation and Configuration

After you save your proxy settings, restart the Licensing wizard by selecting Help → Sourcery
G++ for ARM EABI Licensing from the top menu bar.

If you cannot use a proxy server to fetch your license key, you may still be able to download and
install a license key manually, as described in the following sections. Otherwise, contact
<support@codesourcery.com> for assistance.

2.8.4. Manually Downloading Your License Key

If you cannot use the automatic license download option because your host system is not on the In-
ternet or is behind a firewall that blocks access to the Sourcery G++ Portal, you can obtain a license
key file manually using another computer to access the Portal. Choosing the Obtain a license
for a computer that is not on the Internet option in the Licensing wizard brings
up a wizard page summarizing the steps to follow, which are discussed in more detail in this section.

To generate your license key, first log in to the Sourcery G++ Portal5. If you do not yet have an ac-
count, you must register for one at this time.

After you log in, click on the ID of the Sourcery G++ product configuration for which you need a
license key. On the next screen, click on the Generate Key button. The Sourcery G++ Portal
then displays a form:

License Key Creation. Provide your Host ID to the Sourcery G++ Portal to
generate a license key.

Caution

You must use one of the host ID values displayed by the Sourcery G++ IDE's Licensing
wizard. If you enter an incorrect host ID, you will not be able to correct the value. Instead,
you must contact CodeSourcery for assistance in regenerating your license.

Enter your host ID in the box. After checking the value, click the Generate Key button.

After generating your key, the Sourcery G++ Portal provides a link that you can use to download
your license file:

5 https://support.codesourcery.com/GNUToolchain/

15

Installation and Configuration

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

License Download. Use the button to download your license file.

Click on the Download Key button and save the file on your desktop or in another convenient
location. Then, if you are installing Sourcery G++ on a different computer, copy the license file to
that computer.

You must install your license file before you can use Sourcery G++. If you chose the Obtain a
license for a computer that is not on the Internet option in the Licensing
wizard, click on the Next button to continue with the Install a license file you
already have page, as documented in the next section.

2.8.5. Installing a License File

If you choose the Install a license file you already have option in the Sourcery
G++ Licensing wizard, the next screen allows you to select the file containing your license key. Click
Next to install your license.

Install License File. Enter the filename to install a license from a file you
already have.

2.8.6. Viewing or Reinstalling Your License Key

The Sourcery G++ Licensing wizard is normally started automatically when you run the IDE without
a valid license key installed. You may also start the wizard explicitly by selecting Help → Sourcery
G++ for ARM EABI Licensing from the top menu bar.

If you start the Licensing wizard when you already have a valid license key installed, the wizard
displays information about your current license on the first page. You can also request or install a
new license key by invoking the Licensing wizard in this way. For example, this allows you to replace

16

Installation and Configuration

a temporary evaluation license key with a permanent one after you purchase a Sourcery G++ sub-
scription.

2.9. Installing Add-Ons
Standard and Professional Edition subscribers may download and install add-ons that provide addi-
tional features and functionality for Sourcery G++, including:

• Run-time libraries optimized for additional target configurations, as listed in Section 3.2, “Library
Configurations”.

• Source code for the run-time libraries packaged for the debugger. While library source code is
included in the freely available Sourcery G++ source package as well, the add-on package arranges
the files for the debugger to find them and includes additional source files generated automatically
during the build process. Note that source code for the proprietary CodeSourcery C Library
(CSLIBC) is not included.

Add-ons are managed from the Sourcery G++ IDE. To browse for and install available add-ons for
your version of Sourcery G++, start the IDE and select Help → Install New Software....

Note about Screen Shots

The screen shots included in this section are provided for illustrative purposes only. The
list of available add-ons for your version of Sourcery G++ will be different than those shown
in these examples.

Install New Software. Add-on configurations are managed from the Sourcery
G++ IDE.

In the Work with: drop-down, choose the Sourcery G++ update site for your target.

17

Installation and Configuration

At this point, the IDE prompts you to enter your username and password for the Sourcery G++ Portal,
as you did when installing your license key. See Section 2.3, “Registering with the Sourcery G++
Portal”. If your computer is behind a firewall and you have problems accessing the Portal from the
Sourcery G++ IDE, you may need to check your proxy settings. Refer to Section 2.8.3, “Configuring
a Proxy Server” for instructions.

Scanning the update site populates the list of available add-ons. Click the checkboxes for the ones
you want to install; selecting the top-level list entry selects all available Sourcery G++ add-ons.

Available Software. Choose the Sourcery G++ update site, then check the
boxes for the add-ons you want to install.

Click Next to continue and follow the prompts in the remaining pages of the wizard to download
the add-ons. Then restart the Sourcery G++ IDE when prompted by the dialog box. At that point,
installation of the add-ons is complete.

2.10. Uninstalling Sourcery G++
The method used to uninstall Sourcery G++ depends on the method you originally used to install it.
If you have modified any files in the installation it is recommended that you back up these changes.
The uninstall procedure may remove the files you have altered. In particular, the arm-none-eabi
directory located in the install directory will be removed entirely by the uninstaller.

2.10.1. Using the Sourcery G++ Uninstaller on Microsoft Windows

You should use the provided uninstaller to remove a Sourcery G++ installation originally created
by the graphical installer. Start the graphical uninstaller by invoking the Uninstall executable located
in your installation directory, or use the uninstall shortcut created during installation. After the unin-
staller starts, follow the on-screen dialogs to uninstall Sourcery G++.

18

Installation and Configuration

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall executable found in your Sourcery G++ installation directory with the -i console
command-line option.

To uninstall third-party drivers bundled with Sourcery G++, first disconnect the associated hardware
device. Then use Uninstall a program (Vista and newer) or Add or Remove Programs
(older versions of Windows) to remove the drivers separately. Depending on the device, you may
need to reboot your computer to complete the driver uninstall.

2.10.2. Using the Sourcery G++ Uninstaller on GNU/Linux

You should use the provided uninstaller to remove a Sourcery G++ installation originally created
by the executable installer script. Start the graphical uninstaller by invoking the executable Uninstall
shell script located in your installation directory. After the uninstaller starts, follow the on-screen
dialogs to uninstall Sourcery G++.

You can run the uninstaller in console mode, rather than using the graphical interface, by invoking
the Uninstall script with the -i console command-line option.

19

Installation and Configuration

Chapter 3
Sourcery G++ for ARM EABI
This chapter contains information about features of Sourcery G++ that are specific to ARM
EABI targets.You should read this chapter to learn how to best use Sourcery G++ on your
target system.

20

3.1. Included Components and Features
This section briefly lists the important components and features included in Sourcery G++ for ARM
EABI, and tells you where you may find further information about these features.

NotesVersionComponent

GNU programming tools

Separate manual included.4.5.1GNU Compiler Collection

Includes assembler, linker, and other utilities.
Separate manuals included.

2.20.51GNU Binary Utilities

Sourcery G++ IDE

See Chapter 4, “Using the Sourcery G++ IDE”.
Additional documentation is available through
the Eclipse online help facility.

HeliosEclipse IDE

7.0M7Eclipse C/C++ Development Tools

2011.02-2Sourcery G++ Eclipse Plugin(s)

2011.02-2Sourcery G++ IDE Launcher

See Section 4.4.1, “Using the Sourcery G++
Board Builder”.

2011.02-2Sourcery G++ Board Builder

Debugging support and simulators

Separate manual included.7.2.50GNU Debugger

See Section 2.7.1.2, “Working with Cygwin”.2011.02-2Sourcery G++ Cygwin GDB Wrapper

See Chapter 7, “Sourcery G++ Debug Sprite”.2011.02-2Sourcery G++ Debug Sprite for ARM

See Section 5.3.1, “Connecting to the QEMU
Emulator”.

0.11.50QEMU Emulator

Target libraries

See Chapter 6, “CS3™: The CodeSourcery
Common Startup Code Sequence”.

2011.02-2CodeSourcery Common Startup Code
Sequence

Separate manual included.2011.02-2CodeSourcery C Library

Available as an add-on for Standard and Profes-
sional Edition subscribers. See Section 2.9, “In-
stalling Add-Ons”.

N/ALibrary Debug Information

Other utilities

Build support on Windows hosts.N/AGNU Make

Build support on Windows hosts.N/AGNU Core Utilities

3.2. Library Configurations
Sourcery G++ includes copies of run-time libraries that have been built with optimizations for different
target architecture variants or other sets of build options. Each such set of libraries is referred to as
a multilib. When you link a target application, Sourcery G++ selects the multilib matching the build
options you have selected.

21

Sourcery G++ for ARM EABI

Sourcery G++'s library support includes linker scripts that pull in appropriate CS3 startup code, as
well as the libraries themselves. You can find these linker scripts in multilib-specific subdirectories
of the arm-none-eabi/lib directory of your Sourcery G++ install.

In addition to the libraries included in the base installation package, this version of Sourcery G++
supports add-on multilibs which can be downloaded separately from the Sourcery G++ Portal1. These
additional multilibs are only available to Standard and Professional Edition subscribers. Refer to
Section 2.9, “Installing Add-Ons” for information about how to download and install add-ons.

Important

If you attempt to build your application with options that correspond to one of the add-on
multilibs, and you do not have that multilib installed, you will get a link error. Sourcery
G++ does not automatically select another multilib from those that are available. You must
either install the add-on or change your project build options to select a different multilib.

3.2.1. Base Library Configurations

The following library configurations are available in the base installation of Sourcery G++ for ARM
EABI.

ARMv4 - Little-Endian, Soft-Float

defaultCommand-line option(s):

./Library subdirectory:

ARMv4 Thumb - Little-Endian, Soft-Float

-mthumbCommand-line option(s):

thumb/Library subdirectory:

ARMv5TE - Little-Endian, Soft-Float

-march=armv5teCommand-line option(s):

armv5te/Library subdirectory:

ARMv7 Thumb-2 - Little-Endian, Soft-Float

-mthumb -march=armv7 -mfix-cortex-m3-ldrdCommand-line option(s):

thumb2/Library subdirectory:

ARMv6-M Thumb - Little-Endian, Soft-Float

-mthumb -march=armv6-mCommand-line option(s):

armv6-m/Library subdirectory:

3.2.2. Add-On Libraries

The following additional library configurations are available as add-on subpackages.

1 https://support.codesourcery.com/GNUToolchain/

22

Sourcery G++ for ARM EABI

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

ARMv4 - Big-Endian, Soft-Float

-mbig-endianCommand-line option(s):

be/Library subdirectory:

ARMv5TE - Little-Endian, VFP

-march=armv5te -mfloat-abi=softfpCommand-line option(s):

vfp/Library subdirectory:

ARMv5TE - Big-Endian, VFP

-march=armv5te -mfloat-abi=softfp
-mbig-endian

Command-line option(s):

vfp-be/Library subdirectory:

ARMv7-A - Little-Endian, VFP, NEON

-march=armv7-a -mfloat-abi=softfp -mfpu=neonCommand-line option(s):

armv7-a-neon/Library subdirectory:

ARMv7-A - Little-Endian, VFP ABI, NEON

-march=armv7-a -mfloat-abi=hard -mfpu=neonCommand-line option(s):

armv7-a-hard/Library subdirectory:

This multilib uses an ABI that is not link-compatible with any
other Sourcery G++ multilib. It is useful for some floating-point
intensive applications and to interoperate with code produced by
certain ARM RealView configurations.

Notes:

ARMv7 Thumb-2 - Big-Endian, Soft-Float

-mthumb -march=armv7 -mbig-endianCommand-line option(s):

thumb2-be/Library subdirectory:

3.2.3. Library Selection

A given multilib may be compatible with additional processors and build options beyond those listed
above. However, even if a particular set of command-line options produces code compatible with
one of the provided multilibs, those options may not be sufficient to identify the intended library to
the linker. For example, on some targets, specifying only a processor option on the command line
may imply architecture features or floating-point support for compilation, but not for library selection.
The details of the mapping from command-line options to multilibs are target-specific and quite
complex. In some cases, you may need to supply different options for linking than for compilation
to select the appropriate multilib.

When you use the Sourcery G++ IDE to build your application, the target options that you set from
the C/C++ Project wizard or the Target tab of the project properties dialog apply to both compilation
and linking. (The specific options for ARM EABI targets are documented in Section 4.2.1, “Setting
Up an Example Project”.) This dialog also includes an option to display the multilib selected by the
other build options, for informational purposes. This option is read-only; you cannot use it to select
a different multilib explicitly. If you need to adjust the compiler and linker command-line options
separately to select some other multilib, see Section 4.2.5, “Customizing Build Actions”.

23

Sourcery G++ for ARM EABI

When invoked from the command line, GCC can tell you which multilib corresponds to a given set
of link options if you add the -print-multi-directory option to your other command-line
options. For example:

> arm-none-eabi-gcc -print-multi-directory options...

The output of this command is a directory name for the multilib, which you can look up in the tables
given previously.

3.3. CodeSourcery C Library
Sourcery G++ for ARM EABI includes the CodeSourcery C Library (CSLIBC). This library is spe-
cially optimized for smaller code size on embedded targets. On ARM targets, commonly-used
functions such as memcpy have been hand-optimized for better performance.

CSLIBC is an exclusive feature of CodeSourcery's subscription (non-Lite) toolchains and is licensed
as a Redistributable Component. Refer to Appendix B, “Sourcery G++ Licenses” for more information
about Sourcery G++ licenses.

3.4. Using Sourcery G++ with Kinetis Boards
This section covers special features of Sourcery G++ to support debugging applications on Kinetis
boards.

3.4.1. Using the Sourcery G++ Debug Sprite with Kinetis Boards

The Sourcery G++ Debug Sprite allows you to run and debug applications on a Freescale Tower
System board using its built-in P&E OSJTAG interface; you do not need a separate ICE device. The
Sprite also supports P&E Cyclone MAX devices with Kinetis targets. For instructions on connecting
your board and installing the P&E drivers, refer to Section 7.11, “P&E Devices”.

You can also use the Sourcery G++ Debug Sprite with SEGGER J-Link devices to debug applications
on Kinetis boards. Refer to Section 7.10, “SEGGER J-Link Devices” for set-up instructions.

The Debug Sprite is fully integrated with the Sourcery G++ IDE. You can learn how to use the IDE
debugger by following the tutorial provided in Section 4.3, “Debugging Applications”. For command-
line use, see the Debug Sprite reference material in Chapter 7, “Sourcery G++ Debug Sprite”.

Peripheral register browsing is supported via the Debug Sprite on Kinetis targets. See Section 3.7,
“Peripheral Register Browsing” for more information about this feature.

The Debug Sprite disables the watchdog timer so that it won't trigger while you are debugging your
application. When you design a production application, be sure to disable or service the watchdog
timer as you see fit.

3.4.2. Using the Kinetis Example Programs

Sourcery G++ includes a set of example programs and libraries for using the peripheral devices on
Kinetis boards. These examples have been bundled so that you can import them directly into the
Sourcery G++ IDE.

Select File → Import... from the top menu, then expand Sourcery G++ and choose
Kinetis Project. This brings up the Kinetis Import wizard. To import all the example programs
for your board, select the file share/sourceryg++-arm-none-eabi-examples/Kinetis/

24

Sourcery G++ for ARM EABI

boards/board/board-examples.sgxw within your Sourcery G++ installation directory,
where board matches your board. For example, if your board is a Freescale TWR-K60N512 Devel-
opment Kit, choose boards/TWR-K60N512/TWR-K60N512-examples.sgxw. You may
also import a single example program by selecting boards/board/example/example.sgxx,
where example is the example program to import. Then click Finish.

The Import wizard copies the Kinetis example files into your workspace, creating separate projects
for each sample program as well as for the libraries and shared header files. If you import a single
example, required libraries are also imported automatically. The sample programs are pre-configured
for your selected board. You may build, run, and modify these applications from the IDE as you
would any other project.

3.5. Using Sourcery G++ with Stellaris Boards
This section covers special features of Sourcery G++ to support debugging applications on Stellaris
boards.

3.5.1. Using the Sourcery G++ Debug Sprite with Stellaris Boards

The Sourcery G++ Debug Sprite allows you to run and debug applications on a Stellaris board using
its built-in FTDI ARMUSB interface; you do not need a separate ICE device. Most Stellaris evaluation
kit boards also include an In-Circuit Debug Interface (ICDI) feature that allows them to be used to
debug production systems containing other Stellaris microcontrollers.

For instructions on connecting your board and installing ARMUSB drivers on your host system,
refer to Section 7.5.1, “ARMUSB Configuration and Drivers”.

The Debug Sprite is fully integrated with the Sourcery G++ IDE. You can learn how to use the IDE
debugger by following the tutorial provided in Section 4.3, “Debugging Applications”. For command-
line use, see the Debug Sprite reference material in Chapter 7, “Sourcery G++ Debug Sprite”.

The Debug Sprite supports peripheral register browsing on Stellaris targets. See Section 3.7, “Peri-
pheral Register Browsing” for more information about this feature.

3.5.2. Using StellarisWare with Sourcery G++

StellarisWare is a software package that includes libraries such as the Stellaris Peripheral Driver
Library along with a set of sample programs that demonstrate the use of these libraries. StellarisWare
is provided by Luminary Micro and is not part of Sourcery G++, but it is bundled in such a way that
you can import StellarisWare projects directly into the Sourcery G++ IDE.

Sourcery G++ includes a copy of StellarisWare, located in share/
sourceryg++-arm-none-eabi-examples/StellarisWare. If you need a different release
of StellarisWare, packages are also included on a CD with Stellaris development kits and available
for download from the Luminary Micro Software Updates2 web site. To use a different release of
StellarisWare, first unpack it on your local machine. The downloads are packaged as self-extracting
archives for Windows hosts; if you are using a Linux host, you can unpack the .exe file with unzip.

Then start the Sourcery G++ IDE. Select File → Import... from the top menu, then expand
Sourcery G++ and choose StellarisWare Project. This brings up the StellarisWare Import
wizard. To import all the example programs for your board, select the file boards/
board/board.sgxw within your StellarisWare installation directory, where board matches

2 http://www.luminarymicro.com/products/software_updates.html

25

Sourcery G++ for ARM EABI

http://www.luminarymicro.com/products/software_updates.html
http://www.luminarymicro.com/products/software_updates.html

your board. For example, if your board is a DK-LM3S9B96 Development Kit, choose boards/
dk-lm3s9b96/dk-lm3s9b96.sgxw. You may also import a single example program by selecting
boards/board/example/example.sgxx, where example is the example program to import.
Then click Finish.

The Import wizard copies the StellarisWare files into your workspace, creating separate projects for
each sample program as well as for the libraries and shared header files. If you import a single ex-
ample, required libraries are also imported automatically. The sample programs are pre-configured
for your selected board. Each project also includes an automatically-generated debug launch config-
uration using your board's ARMUSB debug device. You may build, run, and modify these applications
from the IDE as you would any other project.

3.6. Using Sourcery G++ with STM32 Boards
Sourcery G++ includes special features to support application development and debugging on
STMicroelectronics STM32 boards. Refer to Chapter 6, “CS3™: The CodeSourcery Common
Startup Code Sequence” for specific boards supported by CS3.

STM32 boards are supported by the Sourcery G++ Debug Sprite using third-party JTAG probes.
When used with the Sprite, CS3 provides access to peripheral registers in the debugger. See Sec-
tion 3.7, “Peripheral Register Browsing” for more information about using this feature.

Sourcery G++ also includes a set of example programs and libraries for using the peripheral devices
on STM32 boards. These examples are provided by STMicroelectronics as part of the STM32
Standard Peripheral Library3 but have been bundled so that you can import them directly into the
Sourcery G++ IDE.

Select File → Import... from the top menu, then expand Sourcery G++ and choose STM32
Project. This brings up the STM32 Import wizard. To import all the example programs for your
board, select the file share/sourceryg++-arm-none-eabi-examples/stm32/
board/board.sgxw within your Sourcery G++ installation directory, where board matches
your board. For example, if your board is a STM3210E-EVAL, choose STM3210E-EVAL/
STM3210E-EVAL.sgxw. You may also import a single example program or library by selecting
a .sgxx file within the directory for your board. Then click Finish.

The Import wizard copies the STM32 example files into your workspace, creating separate projects
for each sample program as well as for the libraries and shared header files. If you import a single
example, required libraries are also imported automatically. The sample programs are pre-configured
for your selected board. Each project also includes an automatically-generated debug launch config-
uration, pre-configured for a SEGGER J-Link debug device. You may build, run, and modify these
applications from the IDE as you would any other project.

3.7. Peripheral Register Browsing
When you use the Sourcery G++ Debug Sprite to debug a program running on a supported board,
you can browse and modify the memory-mapped registers on the board as well as the core ARM
registers. Support for this feature is provided on a per-board basis in the Sprite's board configuration
files. For example, Sourcery G++ includes register browsing data for all Stellaris boards otherwise
supported by the Sprite. You can find a complete list of boards that support this feature in Section 7.13,
“Supported Board Files”.

3 http://www.st.com/mcu/inchtml.php?fdir=pages&fnam=stm32lib

26

Sourcery G++ for ARM EABI

http://www.st.com/mcu/inchtml.php?fdir=pages&fnam=stm32lib
http://www.st.com/mcu/inchtml.php?fdir=pages&fnam=stm32lib
http://www.st.com/mcu/inchtml.php?fdir=pages&fnam=stm32lib

Enhanced register browsing functionality is available both when using the Sourcery G++ IDE, and
when using the command-line debugger. Using the IDE is the recommended method.

In the Sourcery G++ IDE, the list of registers is automatically shown in the Registers tab, typically
located at the right top of the Sourcery G++ IDE window. The register tab includes two top-level
items: Main and $io. The former contains the core ARM registers and the latter contains memory-
mapped registers. The memory-mapped registers are arranged in a tree according to the functional
unit they belong to, and register groups inside that functional unit. For example, on Stellaris boards
the UART group contains the UART0 group which in turn contains the UARTDR register. Many registers
further contain individual fields. The fields are shown as children of the containing register.

Most registers are displayed in hexadecimal format by default. To view a register in decimal format,
right click on the register, select the Format menu item, and then select Decimal.

Values of registers can be modified by right clicking on a register, and selecting the Change Value
command. For registers with fields, you can modify the values of the fields, and the register itself
cannot be modified.

Every time program execution is suspended—such as after stepping to the next statement, or stopping
on a breakpoint—the new values of all visible registers are read from the processor. Registers that
have changed value are highlighted in yellow. Reading the values of all registers can take considerable
time. To speed up debugging, close the register groups you are not interested in. For example, if you
close the $io group, no memory-mapped registers are read when you step through the program.
When you open a group again, new values are read automatically.

Several registers are read-sensitive—reads from them have side effects. For example, interrupt flags
are often cleared on read. The Sourcery G++ IDE reads such registers only by your explicit request.
Initially, no values are shown for such registers at all. To read and display the value, right click on
the register and select the Fetch Value command. The value of the register is not automatically
updated as you step though the program. You should use the Fetch Value each time you want
to read and display the current value of a read-sensitive register.

On many embedded devices, most peripherals are initially powered off. In this state, their registers
cannot be read by the debugger, and the values appear blank or zero in the registers view. Your ap-
plication should turn on the peripherals it uses, which makes the corresponding register values
available in the debugger. You may also turn peripherals on or off from the debugger by adjusting
the control registers. For example, on Stellaris boards peripherals other than SYSCTL (system control)
are initially powered off. You can turn on the UART0 peripheral by setting the corresponding bit in
the RCGC1 register in the SYSCTL group.

When debugging from the GDB command line, the values of the core registers can be listed using
the following command:

(gdb) info registers

The value of an individual register can be printed using a command of the form:

(gdb) print $register-name

A register value can be modified using a command of the form:

(gdb) set variable $register-name = new-value

The values of all memory-mapped registers can be printed using the following command:

(gdb) print $io

27

Sourcery G++ for ARM EABI

The values are printed as a C structure, where top-level fields are register groups, containing registers
and further groups.

Warning

This command reads and displays all registers, including read-sensitive registers.

Because the above command reads read-sensitive registers, and because the amount of output is
large, it usually better to print values of individual registers. First, you need to find the register you're
interested in. If you issue the command:

(gdb) ptype $io

you'll see the list of top-level register groups and registers. Each top-level register group can be ex-
amined using a command of the form:

(gdb) ptype $io.group-name

You can examine the entire hierarchy of memory-mapped registers and locate the register you're
looking for by applying the ptype command recursively. After that, the value of the register can
be printed using a command of the form:

(gdb) print $io.register-name

For example:

(gdb) print $io.UART.UART0.UARTDR

The value of a register can be modified using the following command:

(gdb) set variable $io.register-name = new-value

3.8. Using Flash Memory
Sourcery G++ supports development and debugging of applications loaded into flash memory on
ARM EABI targets. There are three steps involved:

1. You must use an appropriate linker script that identifies the ROM memory region on your target
board, and locates the program text within that region. Refer to Chapter 6, “CS3™: The Code-
Sourcery Common Startup Code Sequence” for information about the boards supported by Sourcery
G++.

2. Next, load your program into the flash memory on your target board. When you use the Sourcery
G++ Debug Sprite to debug your program, flash programming happens transparently as part of
the normal debugger operation of loading your program onto the target. However, this is not
supported if you are using some other debug stub to connect to your target board. You must instead
use third-party tools to program the flash memory.

Since the Sourcery G++ IDE normally loads the program onto the target automatically as part of
its debugger startup operations, you must disable this if you want to debug a program that you
have already flashed onto the target using an external tool. Uncheck the Automatically
download program box on the Startup subtab in the debugger dialog. See Section 4.3.3.1,
“Debugger Startup”.

3. Finally, when debugging a program in flash memory, GDB must be told about the ROM region
so that it knows where it must use hardware breakpoints to control program execution. If you are

28

Sourcery G++ for ARM EABI

using the Sourcery G++ Debug Sprite to debug your program, the Sprite does this automatically,
using the memory map provided in the board configuration file. Otherwise, you must provide this
information explicitly.

In the Sourcery G++ IDE, you can specify the read-only memory region on the Memory Map
subtab in the debugger configuration dialog. Refer to Section 4.3.3.2, “Configuring the Memory
Map” for more information.

When using GDB from the command line, you can mark the flash memory as read-only by using
the command:

(gdb) mem start end ro

where start and end define the address range of the read-only memory region.

Although GDB automatically attempts to use hardware breakpoints on code locations in the read-
only memory region, on many targets the number of available hardware breakpoints is very small.
Furthermore, GDB also uses hardware breakpoints internally to implement commands such as step,
next, and finish. Thus the number of breakpoints you can explicitly set in ROM may be fewer
than the number supported by the target system.

For example, ARM7TDMI cores support only one hardware breakpoint, which must also be used
internally by the debugger if you set any software breakpoints in RAM. On ARM9 cores, there are
two hardware breakpoints supported and one is consumed by the debugger if you set any software
breakpoints.

3.9. Using VFP Floating Point
3.9.1. Enabling Hardware Floating Point

GCC provides three basic options for compiling floating-point code:

• Software floating point emulation, which is the default. In this case, the compiler implements
floating-point arithmetic by means of library calls.

• VFP hardware floating-point support using the soft-float ABI. This is selected by the
-mfloat-abi=softfp option. When you select this variant, the compiler generates VFP
floating-point instructions, but the resulting code uses the same call and return conventions as
code compiled with software floating point.

• VFP hardware floating-point support using the VFP ABI, which is the VFP variant of the Procedure
Call Standard for the ARM® Architecture (AAPCS). This ABI uses VFP registers to pass function
arguments and return values, resulting in faster floating-point code. To use this variant, compile
with -mfloat-abi=hard.

You can freely mix code compiled with either of the first two variants in the same program, as they
both use the same soft-float ABI. However, code compiled with the VFP ABI is not link-compatible
with either of the other two options. If you use the VFP ABI, you must use this option to compile
your entire program, and link with libraries that have also been compiled with the VFP ABI. For
example, you may need to use the VFP ABI in order to link your program with other code compiled
by the ARM RealView® compiler, which uses this ABI.

Sourcery G++ for ARM EABI includes libraries built with software floating point, which are com-
patible with VFP code compiled using the soft-float ABI. VFP hard-float libraries built with both
the soft-float and VFP ABIs are available as add-ons to Sourcery G++ Standard and Professional

29

Sourcery G++ for ARM EABI

Edition subscribers. Selecting the VFP ABI for compilation is only useful if you have appropriate
runtime libraries installed. Currently, Sourcery G++ provides VFP ABI libraries for ARMv7-A targets
in little-endian mode only. Refer to Section 3.2, “Library Configurations” for a complete list of
available libraries for ARM EABI.

Note that, in addition to selecting hard/soft float and the ABI via the -mfloat-abi option, you
can also compile for a particular FPU using the -mfpu option. For example, -mfpu=neon selects
VFPv3 with NEON coprocessor extensions.

3.9.2. NEON SIMD Code

Sourcery G++ includes support for automatic generation of NEON SIMD vector code. Autovector-
ization is a compiler optimization in which loops involving normal integer or floating-point code
are transformed to use NEON SIMD instructions to process several data elements at once.

To enable generation of NEON vector code, use the command-line options -ftree-vectorize
-mfpu=neon -mfloat-abi=softfp. The -mfpu=neon option also enables generation of
VFPv3 scalar floating-point code.

Sourcery G++ also includes support for manual generation of NEON SIMD code using C intrinsic
functions. These intrinsics, the same as those supported by the ARM RealView® compiler, are
defined in the arm_neon.h header and are documented in the 'ARM NEON Intrinsics' section of
the GCC manual. The command-line options -mfpu=neon -mfloat-abi=softfp must be
specified to use these intrinsics; -ftree-vectorize is not required.

3.9.3. Half-Precision Floating Point

Sourcery G++ for ARM EABI includes support for half-precision (16-bit) floating point, including
the new __fp16 data type in C and C++, support for generating conversion instructions when
compiling for processors that support them, and library functions for use in other cases. The included
QEMU emulator also supports the hardware instructions when invoked with the any CPU specifier.

To use half-precision floating point, you must explicitly enable it via the -mfp16-format command-
line option to the compiler. For more information about __fp16 representations and usage from C
and C++, refer to the GCC manual.

3.10. ABI Compatibility
The Application Binary Interface (ABI) for the ARM Architecture is a collection of standards, pub-
lished by ARM Ltd. and other organizations. The ABI makes it possible to combine tools from dif-
ferent vendors, including Sourcery G++ and ARM RealView®.

Sourcery G++ implements the ABI as described in these documents, which are available from the
ARM Information Center4:

• BSABI - ARM IHI 0036B (28 October 2009)

• BPABI - ARM IHI 0037B (28 October 2009)

• EHABI - ARM IHI 0038A (28 October 2009)

• CLIBABI - ARM IHI 0039B (4 November 2009)

4 http://infocenter.arm.com

30

Sourcery G++ for ARM EABI

http://infocenter.arm.com
http://infocenter.arm.com
http://infocenter.arm.com

• AADWARF - ARM IHI 0040A (28 October 2009)

• CPPABI - ARM IHI 0041C (5 October 2009)

• AAPCS - ARM IHI 0042D (16 October 2009)

• RTABI - ARM IHI 0043C (19 October 2009)

• AAELF - ARM IHI 0044D (28 October 2009)

• ABI Addenda - ARM IHI 0045C (4 November 2009)

Sourcery G++ currently produces DWARF version 2, rather than DWARF version 3 as specified in
AADWARF.

3.11. ARM Profiling Implementation
Profiling is enabled by means of the -pg compiler option. In this mode, the compiler inserts a call
to __gnu_mcount_nc into every function prologue. However, no implementation of __gnu_
mcount_nc is provided (to do so would be impossible without knowledge of the execution envir-
onment).

You must provide your own implementation of __gnu_mcount_nc . Here are the requirements:

• On exit, pop the top value from the stack, and place it in the lr register. The sp register should
be adjusted accordingly. For example, this is how to write it as a stub function:

 .globl __gnu_mcount_nc
 .type __gnu_mcount_nc, %function
__gnu_mcount_nc:
 mov ip, lr
 pop { lr }
 bx ip

• Preserve all other register state except for r12 and the CPSR condition code bits. In particular all
coprocessor state and registers r0-r3 must be preserved.

• Record and count all occurrences of the function calls in the program. The caller can be determined
from the lr value stored on the top of the stack (on entry to __gnu_mcount_nc), and the callee
can be determined from the current value of the lr register (i.e. the caller of this function).

• Arrange for the data to be saved to a file named gmon.out when the program exits (via atexit).
Refer to the gprof profiler manual for more information.

3.12. Object File Portability
It is possible to create object files using Sourcery G++ for ARM EABI that are link-compatible with
the GNU C library provided with Sourcery G++ for ARM GNU/Linux as well as with the Code-
Sourcery C Library or Newlib C Library provided with ARM bare-metal toolchains. These object
files are additionally link-compatible with other ARM C Library ABI-compliant static linking envir-
onments and toolchains.

To use this feature, when compiling your files with the bare-metal ARM EABI toolchain define the
preprocessor constant _AEABI_PORTABILITY_LEVEL to 1 before including any system header

31

Sourcery G++ for ARM EABI

files. For example, pass the option -D_AEABI_PORTABILITY_LEVEL=1 on your compilation
command line. No special options are required when linking the resulting object files. When building
applications for ARM EABI, files compiled with this definition may be linked freely with those
compiled without it.

Files compiled in this manner may not use the functions fgetpos or fsetpos, or reference the
type fpos_t. This is because Newlib assumes a representation for fpos_t that is not AEABI-
compliant.

Note that object files are only portable from bare-metal toolchains to GNU/Linux, and not vice versa;
object files compiled for ARM GNU/Linux targets cannot be linked into ARM EABI executables.

32

Sourcery G++ for ARM EABI

Chapter 4
Using the Sourcery G++ IDE
This chapter explains how to use the Sourcery G++ IDE to build a C or C++ application.
This chapter assumes you have installed Sourcery G++ as described in Chapter 2, “Install-
ation and Configuration”. If you prefer to use the command line to build your applications,
you may refer to Chapter 5, “Using Sourcery G++ from the Command Line” instead.

33

4.1. Overview
This chapter explains how to create, modify, and debug a program using the Sourcery G++ IDE.
After working through the example program in this chapter, you can use the same techniques to
create your own programs.

To start the Sourcery G++ IDE, use the launcher program which can be found in the bin/ subdir-
ectory of your Sourcery G++ installation. On Windows hosts, the launcher is called
sourcerygxx-ide.exe. On Linux hosts, the launcher is called sourcerygxx-ide. Altern-
atively, if you installed Sourcery G++ with the graphical installer and specified a shortcut location,
you can run the IDE using that shortcut.

When you start the IDE for the first time, it prompts you to select a workspace directory; this is
where your program source files, compiled binaries, and other files managed by the IDE will be
stored. Next, it starts the Sourcery G++ Licensing wizard to guide you through installation of your
license key. Refer to Section 2.8, “License Keys” for more information. The IDE also displays a
welcome screen with links you can click on to get more information about using Sourcery G++.
When you are ready to begin using Sourcery G++, first close the welcome screen tab. You can return
to the welcome screen again later, if you wish, from the Help menu.

Learning More About Eclipse

The Sourcery G++ IDE is based on Eclipse. While this chapter explains how to accomplish
basic tasks using the Sourcery G++ IDE, it is not a comprehensive reference manual. If you
want to learn more about Eclipse, use the online help from the welcome screen or as described
in Chapter 8, “Next Steps with Sourcery G++”. You can also visit the Eclipse web site1 for
additional tutorials and documentation.

Note About Screen Shots

The screen shots included in this chapter are provided for illustrative purposes only. You
may see slightly different sets of menu options when you run the IDE, corresponding to the
specific features included in your version of Sourcery G++. Refer to the text for information
about the particular targets and debugging options supported by Sourcery G++ for ARM
EABI.

The remainder of this chapter is divided into three sections. The first guides you through the process
of creating and building an example program; the second section shows how to debug and run the
program once it has been built. The final section covers advanced features of the Sourcery G++ IDE.

4.2. Building Applications
In the Sourcery G++ IDE, every program is a project. The project contains all of the source files re-
quired to build the program. So, the first step is to create a project.

Normally, the IDE manages building your project for you. This is convenient if you intend to do all
of your development from within the IDE. However, if you are working with code that has previously
been built with make, you may wish to use a Makefile project instead. The following several sections
explain how to create and work with a project using the IDE's managed build support. For instructions
on creating a Makefile project, refer to Section 4.4.2, “Makefile Projects”.

1 http://www.eclipse.org

34

Using the Sourcery G++ IDE

http://www.eclipse.org
http://www.eclipse.org

4.2.1. Setting Up an Example Project

Create a new project by selecting File → New → C Project. This opens the new project wizard.
(If you want to build a C++ application, select C++ Project instead.) Then click Next.

Give the project the name factorial. From the Project types menu, expand Executable.
Select Empty Project to begin a new empty project. (Selecting Factorial C Project
creates a project pre-populated with the example used in this tutorial.) On the Toolchain menu
ensure that Sourcery G++ for ARM EABI is selected. Then click the Next button.

Creating an Executable Project. Use the C Project wizard to create a new
empty Executable project using the Sourcery G++ toolchain for your target.

The next page of the wizard allows you to customize the project build settings to match your target
board or processor. For ELF and EABI targets, you must choose a target board before you can build
your application. This is necessary to specify an appropriate memory map, system startup code, and
hosting (I/O) support for your target. Refer to Chapter 6, “CS3™: The CodeSourcery Common
Startup Code Sequence” for detailed information about the boards supported by Sourcery G++. You
can add your own CS3 support for custom boards using the Sourcery G++ Board Builder; see Sec-
tion 4.4.1, “Using the Sourcery G++ Board Builder” for details. If you have no target board, you can
choose a simulator as your target instead.

In most cases, selecting a board automatically chooses the build settings for the processor on that
board, but some boards (such as simulator targets) are “generic” and can be used with different pro-
cessors. In this case you should choose the processor you wish to target.

The following properties can be set on this page:

• Board: Select the target board. This controls the memory map and initialization code, and may
also select a processor. You must select a value for this option.

• Profile: Select the linker profile or memory region where the program will be loaded.

• Hosting: Select the hosting mode for the program.

35

Using the Sourcery G++ IDE

• Processor: Select the target processor. This controls code generation and library selection.

• Endianness: Choose little-endian or big-endian mode.

• ARM/Thumb Mode: Select whether to generate ARM or Thumb code.

• Hard/Soft Float: Select hardware or software floating-point support and ABI.

• FPU: Choose floating-point unit for code generation.

The project properties dialog also includes an option that displays the name of the multilib selected
by your other project build settings. This option is informational only; you cannot use it to explicitly
select a different multilib. This option additionally indicates when you have selected an add-on
multilib that is not installed. In this case you must either install the add-on or change your build options
to select a different set of libraries before you can link your project. Refer to Section 3.2, “Library
Configurations” for further discussion of how libraries are selected.

Setting Build Properties during Project Creation. You can choose common
build properties for your project from the new project wizard. The exact set of

properties available depends on the target system.

Select Finish to create the project. If you are asked whether to open a new perspective, click the
Yes button.

4.2.2. Writing Source Code

At this point, the project exists, but there is no associated source code. So, the next step is to create
the main program. Right-click on the factorial project, and select New → Source File. Give
the new file the name main.c and click the Finish button.

36

Using the Sourcery G++ IDE

Adding a Source File. Right-click on the project name to add a new source
file.

The Sourcery G++ IDE now displays an editing window for you to use to create the program. Type
(or cut-and-paste) the following program into the editor:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

When you are done, save the file with File → Save (Ctrl+S).

After you save the file, build your project by selecting it in the Project Explorer pane on the
left, then going to the Project menu and selecting Build Project. The output of the commands
run by the IDE is displayed in the Console tab in the lower pane. If the project build is successful,

37

Using the Sourcery G++ IDE

the IDE prints statistics about the code size of the factorial executable at the bottom of the
console.

Building the Project. Use Build Project to build the project after saving
it.

Building Automatically

If you want the IDE to build your project to automatically when you add or save files, in
addition to selecting Build Automatically from the Project menu, you also need
to enable the setting on a per-project basis. From the Project menu, select Properties,
then C/C++ Build. Open the Behaviour tab and check Build on resource
save (Auto build).

4.2.3. Using Cross-Reference Information

Whenever it rebuilds your project, the Sourcery G++ IDE also computes cross-reference information.
You can see some of this information in the Outline pane. In particular, each of the two functions
in the program (factorial and main) are shown in the Outline pane. When you click on name
of a function or variable in the Outline pane, the IDE repositions the cursor to show you that entity.

38

Using the Sourcery G++ IDE

Using the Outline. Click a function name in the Outline pane to jump to it
in the editor.

You can also use the cross-reference information to jump from a reference to a function or variable
to its definition. For example, find the line in main that calls factorial and place the cursor over
the name factorial. This pops up a small box showing the definition of the function. You can
right-click and select Open Declaration (F3) to jump to the definition of factorial in the
editor. The cross-reference functionality works even if the function call is in a different file from the
declaration of the function.

4.2.4. Dealing with Errors

If you pasted the sample application into the IDE, the program probably compiled correctly the first
time. But, of course, that rarely happens when writing a large program from scratch. To see how the
Sourcery G++ IDE deals with errors, you can intentionally introduce an error.

Change the declaration of n in main to declare m, instead of n, and save the file. This change makes
the program invalid because there are references to n in the function, but no declaration. In addition,
the new variable m is not serving any useful purpose (since there are no references to it). Sourcery
G++ informs you of both issues by flagging the problematic lines of source code.

The IDE places a circular red symbol next to lines that cause errors and a triangular yellow symbol
 on lines that cause warnings. There are several ways to get more detailed information about the

problems. One way is to click on the Problems pane at the bottom of the IDE. This pane shows
the error and/or warning messages issued by the compiler. Also, when you place the cursor over the
error indicators, the IDE displays the error message.

39

Using the Sourcery G++ IDE

Viewing Errors. Place the cursor over a warning or error indicator to see the
cause of the problem.

Correct the error by changing m back to n, and then rebuild the project. The IDE removes the error
indicators and the Problems pane is cleared, indicating a successful build.

4.2.5. Customizing Build Actions

If you wish, you can customize the actions the Sourcery G++ IDE uses to build your project. To do
this, pull up the project properties dialog by right-clicking on your project name in the Project
Explorer pane, and selecting Properties. Then expand C/C++ Build and select Settings.

You can adjust the options for invoking the compiler, assembler, and linker from the Tool
Settings tab. The project properties initially set in the C or C++ Project wizards (Section 4.2.1,
“Setting Up an Example Project”) can be adjusted by selecting the Target category. The other
categories allow you to configure other options specific to each tool. There are dialog boxes for the
most common types of options, or you can specify arbitrary command-line options by selecting the
Miscellaneous category for each tool.

For example, if you wish to build for a processor that is supported by the compiler but not listed in
the Processor option in the Target category, you can select Other as the Processor, and
then enter the appropriate command-line options directly in the Miscellaneous categories for
the compiler, assembler, and linker. Similarly, to use a custom linker script, select Other from the
Board option, then provide the appropriate -T option in the Miscellaneous panel for the linker.

Use the Objcopy tool if you want to automatically translate the output file from the linker into another
format, such as Intel HEX or S-record. You can select from several common file formats or use
Other to specify any other format known to Objcopy on ARM EABI targets. The Objcopy step in
the build process is optional, and is only run if you explicitly enable it in your project properties.

40

Using the Sourcery G++ IDE

You can also specify additional pre-build and post-build steps from the Build steps tab. For
example, to automatically produce a disassembly listing of the executable after linking, enter the
command

${cs_target}-objdump -ldr ${BuildArtifactFileName} \
 > ${BuildArtifactFileName}-asm.txt

in the Command field for Post-build steps.

In this example, cs_target and BuildArtifactFileName are predefined build macros that
expand to the name of the target prefix for Sourcery G++ commands (arm-none-eabi, in the
case of ARM EABI), and the output filename from the build process, respectively. You can browse
the list of available build macros and define new ones by selecting Variables in the left-hand
pane of the project properties dialog.

4.3. Debugging Applications
4.3.1. Starting the Debugger

After you build your application, select it in the left-hand Project Explorer pane. Then choose
Run → Debug Configurations... from the menu bar. This opens the dialog for creating
and editing debug launch configurations.

The pane on the left lists the available debug launch configuration types. Sourcery G++ for ARM
EABI provides these custom launch types:

Sourcery G++ Debug. Use this launch configuration type to run an application on the target.
This type of launch initializes the target and loads your application onto it. This is the most typical
launch type for application program debugging.

Sourcery G++ Debug (Attach). Use this launch configuration type to attach the debugger to an
application which has already been started on the target.

Select the Sourcery G++ Debug launch type in the left-hand pane. Then, click the New icon

 positioned towards the upper left of the window.

41

Using the Sourcery G++ IDE

Creating a Debug Configuration. Select Sourcery G++ Debug and click
the New icon to create to create a new debug configuration.

When you create the launch configuration, a new pane appears on the right. On the Main tab, use
the Browse... button to select your project, if it is not already selected. Then, use the Search
Project... or Browse... buttons to select your application.

Selecting a Program. Use the Search Project... button to locate your
program.

Next, switch to the Debugger tab and select the debugging mode you want to use. The different
debugging modes are discussed in detail below; the choices depend on which debug launch config-

42

Using the Sourcery G++ IDE

uration type you have selected. Some debugging modes require you to configure additional options.
When you have made any necessary adjustments, click the Debug button to start the debugger.

Selecting a Debugger. Use the drop-down menu to pick the debugger that you
want to use.

You do not need to repeat the debugger selection process the next time you launch the debugger.
Instead, you can select Run → Debug to start the debugger using the settings you have selected.

4.3.2. Debugging Modes for Embedded Targets

The following debugging modes are available for bare-metal targets. Except as otherwise noted,
these debugging modes are available in both Sourcery G++ Debug and Sourcery G++ Debug (Attach)
launch configurations.

Sourcery G++ Debug Sprite for ARM. The Sourcery G++ Debug Sprite for ARM is designed
to debug ARM hardware connected to your host system using a supported debugging device, as de-
scribed in Chapter 7, “Sourcery G++ Debug Sprite”. You can select the device you are connecting
with, the type of target board you have, and any device-specific options using the ARM Settings
subtab of the Debugger tab.

Macraigor OCDRemote. OCDRemote is a utility provided by Macraigor Systems that supports
various JTAG/BDM debugging devices. The Sourcery G++ IDE launches OCDRemote automatically
when you begin to debug, using the options you provide when you select this debugging mode.

Sourcery G++ External Embedded Server. The External Embedded Server mode is designed
for use with target systems that have no operating system support for debugging. In the External
Embedded Server mode, Sourcery G++ connects to a “GDB stub” that controls execution on the
target system. You must start the stub manually.

43

Using the Sourcery G++ IDE

Sourcery G++ QEMU CPU Emulator. The Sourcery G++ QEMU CPU Emulator debugger uses
the QEMU instruction-set simulator provided with Sourcery G++. You do not need target hardware
in order to use it. This is the easiest way to try out Sourcery G++. You can use this mode with
Sourcery G++ Debug launch configurations; it is not supported by Attach configurations.

Detailed information about using each of these debugging modes is provided below.

4.3.2.1. Sourcery G++ Debug Sprite for ARM

Settings specific to the Debug Sprite for ARM can be found on the ARM Settings subtab of the
Debugger tab. On that subtab, you can specify which device to use, which device initialization file
to use, and, depending on the device, additional options relevant to that device.

ARM Settings. Use the ARM Settings subtab to configure the Sourcery
G++ Debug Sprite for ARM EABI.

The Device field allows you to select which debug device to use. When you select the Sprite de-
bugger in the IDE, the Sprite probes for supported devices connected to your system. (This may take
a few seconds.) You can then select one of the devices found on your system. Refer to Chapter 7,
“Sourcery G++ Debug Sprite” for more information about the devices supported by this version of
Sourcery G++, and for troubleshooting help if a device you have connected is not listed by the IDE.

The Config field allows you to specify a device initialization file that is used when connecting to
the device. This initialization file should always be specified. You can either select from a list of
predefined initialization files, or specify a custom initialization file by clicking the Browse button
and selecting a file. By default, the IDE uses the initialization file for the board you previously selected
in the project properties.

44

Using the Sourcery G++ IDE

A debug device may have additional parameters that can be specified on the ARM Settings subtab.
The parameters that apply to specific debug devices are documented in Chapter 7, “Sourcery G++
Debug Sprite”. Some parameters are always necessary and others are optional. To set the value for
an optional parameter, first enable the parameter by selecting the corresponding checkbox, and then
set its value.

Refer to Section 4.3.3, “Tuning Debugger Behavior” for additional options you can set for this de-
bugging mode.

4.3.2.2. Macraigor OCDRemote

When configuring the OCDRemote debugger option, you can click on the OCDRemote Options
subtab to specify options that are passed to Macraigor OCDRemote. Refer to Macraigor's document-
ation for more information on the OCDRemote configuration parameters.

OCDRemote Options. Use the OCDRemote Options subtab to configure
OCDRemote.

4.3.2.3. Sourcery G++ External Embedded Server

When using the External Embedded Server mode, you specify how the debugger connects to the
target on the Connection subtab of the Debugger tab. The default connection is set to TCP
connection to localhost, port 10000. You can adjust the host and port number, or you can select a
serial line connection.

45

Using the Sourcery G++ IDE

Embedded Server Connection. Use the Connection subtab to configure
the External Embedded Server debugger.

Refer to Section 4.3.3, “Tuning Debugger Behavior” for additional options you can set for this de-
bugging mode.

4.3.2.4. Sourcery G++ QEMU CPU Emulator

In order to use QEMU as a debugging target, you must select QEMU as your target board in your
project properties. You must also select a processor and other options for your project C/C++ build
settings that are compatible with the emulations supported by QEMU. See Section 4.2.1, “Setting
Up an Example Project” for information about setting your project properties.

When configuring the QEMU debugger option, you can click on the QEMU Options subtab to
select a processor for QEMU to emulate. The default value, any, allows QEMU to execute code
compiled for any ARM processor.

46

Using the Sourcery G++ IDE

QEMU Options Tab. Use the QEMU Options subtab to configure the QEMU
CPU emulator.

4.3.3.Tuning Debugger Behavior

4.3.3.1. Debugger Startup

Debugger startup consists of initialization or connection to a target, optional loading of the application
(for non-native targets) and running the program. You can customize the startup process on the
Startup subtab of the debugger dialog.

47

Using the Sourcery G++ IDE

Customizing Debugger Startup. Use the Startup subtab to customize de-
bugger startup actions.

The Automatically download program checkbox controls whether the IDE loads the
program to the target during startup. For bare-metal targets such as ARM EABI, loading automatically
is the default and recommended setting, as it ensures that the binary being debugged on the target is
always up-to-date. However, you can disable this behavior if you want to debug a program that is
already loaded onto the target. For example, you may need to do this if the Sourcery G++ Debug
Sprite does not support the flash memory on your target board or you are not using the Sprite, and
instead you use a third-party tool to load your program into flash.

The Commands before connection and Commands after connection text boxes
allow you to specify debugger commands to be sent before and after connection. Each line in these
text boxes is interpreted as a single GDB command.

4.3.3.2. Configuring the Memory Map

If your target has a read-only memory region, such as flash memory, you should supply a memory
map. GDB uses this information to determine where it must use hardware breakpoints. GDB also
flags writes to memory in the read-only region as errors. Refer to Section 3.8, “Using Flash Memory”
for more details about debugging programs that reside in read-only memory.

When debugging with the Sourcery G++ Debug Sprite, the memory map for the target is typically
provided in the board configuration file passed to the Sprite, rather than in the IDE. If you choose
to set a read-only memory region in the IDE, this overrides any memory map set in the board config-
uration file.

48

Using the Sourcery G++ IDE

Setting a Read-Only Memory Region. Use the Memory Map subtab to set
a read-only memory region.

To specify a read-only memory range from the Sourcery G++ IDE, you can use the Memory Map
subtab in the Debugger dialog. The Explicitly specify read-only memory range
checkbox enables this option. The memory range is specified using the Start address and Size
input fields. Both fields accept either decimal or hexadecimal (with the 0x prefix) values. When
entering decimal values, you can use the K and M suffixes to specify values in kilobytes (1024 bytes)
and megabytes (1024 kilobytes). It is not possible to specify more than one memory range, or designate
a memory range as a specific flash chip.

Once you have identified a read-only memory region, the debugger uses hardware breakpoints in
this region automatically, and you can debug your program just as you would if it were in RAM.

4.3.3.3.Troubleshooting

When your application is large, or the debugging device is relatively slow, you may encounter timeout
errors when starting debugging. In that case, you should increase the timeout settings. Select the
Preferences item in the Window menu, and in the dialog that appears select C/C++, Debug,
GDB MI. Increase the values in the Debugger Timeout and the Launch Timeout fields until
your application starts without errors.

4.3.4. Controlling Execution

When you start the debugger, if you are asked whether to switch from the C/C++ perspective to the
debug perspective, click the Yes button. Instead of showing panes that help you to develop your
application, the IDE now shows panes that help you to debug your application.

49

Using the Sourcery G++ IDE

Debug Perspective. The debug perspective displays the stack, local variables,
and the current location.

The debugger automatically stops on the first line of main. The currently active source line is
highlighted. The pane at the upper left shows the application threads and the stack associated with
each thread. The pane at the upper right shows the values of local variables. (At this point, i and n
have not yet been initialized, so their values are indeterminate.)

Use Run → Step Over (F6) to advance by a single line. Because the program has changed the
value of i, the IDE highlights the value in the variable pane.

By looking at the code, you can see that the program calls factorial and then calls printf to
print out the resulting value. You can set a breakpoint right before the call to printf by clicking
anywhere on that line, and then using Run → Toggle Breakpoint (Ctrl+Shift+B).

50

Using the Sourcery G++ IDE

Setting a Breakpoint. Set a breakpoint by highlighting the line where you want
to stop and then using the Run menu.

After setting the breakpoint, use Run → Step Into (F5) to step into the body of factorial.

The IDE no longer displays the value of i because there is no local variable i within factorial.
If you wish to see the value of i (from main), select the stack frame for main in the pane at the
upper left. The IDE displays the variables for whichever frame is presently selected.

Now, proceed to the breakpoint by using Run → Resume (F8). The variable n now has the value
1 because the factorial of zero is one. Step over the call to printf to print the value in the console.

4.3.5. Low-Level Debugging

You may sometimes need to debug at the machine level, rather than at the source code level. For
example, if you are working with an assembly code device driver, you may wish to see the values
stored in machine registers and step through the code instruction by instruction.

To view machine registers, click on the Registers tab, and expand the General Registers
register group. When the values of registers change, the registers are highlighted in the IDE.

To see the instructions being executed, use Window → Show View → Disassembly. You can
set breakpoints on particular machine instructions in disassembly view in the same way that you can
set breakpoints on source lines in the source code editor views in the debugger.

51

Using the Sourcery G++ IDE

Low-Level Debugging. The Sourcery G++ IDE can display machine registers
and assembly code.

The Step Over and Step Into commands normally operate at the source level, advancing
program execution to the next C or C++ statement. To step by machine instructions instead, click
on the Instruction Stepping Mode button on the Debug toolbar. This is the button whose
icon has the letter "i". Click this button again to return to stepping by source lines.

4.4. Advanced IDE Features
This section covers several advanced features of the Sourcery G++ IDE, including using the Sourcery
G++ Board Builder to extend CS3's board support with custom board definitions. It also covers cre-
ating Makefile projects, building managed build projects from the command line, importing source
code and already-compiled programs into the IDE, and using other programming tools provided by
the IDE.

4.4.1. Using the Sourcery G++ Board Builder

The Sourcery G++ Board Builder is an advanced IDE feature that allows you to extend the CS3
board support library with additional definitions for custom boards. This section assumes you have
some familiarity with CS3 concepts and terminology; refer to Chapter 6, “CS3™: The CodeSourcery
Common Startup Code Sequence”.

The Board Builder creates board definition files, which contain the memory map and initialization
sequence for each board. Board definition files have a .cs3 extension. Board definitions are contained
in projects, but are not used to build the project until you explicitly select the board as the target in
the project properties. For example, this allows you to set up a project as a library containing multiple
board definitions that you can import as needed into other application projects.

52

Using the Sourcery G++ IDE

To simplify data entry and configuration for a new board, the Board Builder allows you to specify
a similar base board from those already provided by CS3 for ARM EABI targets. The processor,
interrupt scheme, memory map, reset sequence, and other properties of the base board are copied
into your new board definition, so that you need only change the properties that are different for your
new custom board. If there is no appropriate base board available, you can also create a new board
definition based on a specified processor.

To begin using the Board Builder, first create a new C or C++ project as described in Section 4.2.1,
“Setting Up an Example Project”. On the target properties page of the C/C++ Project wizard, you
can select the base board on the Board option and configure other options such as the memory
location and hosting now; those selections will remain in place after your new custom board is added
to the project. If there is no appropriate base board listed, you can also select Other on the Board
option to indicate that you will fill in your own target board and other properties later.

Right-click on your project in the Project Explorer tab, then choose New → Board
Definition from the menu. This opens the New Board Definition Wizard.

New Board Definition Wizard. You can create a board definition by copying
from a base board, or by creating a board based on a particular processor.

By default, board definitions are created in the usual source folder for the selected project, but you
can choose another source folder if you wish. Fill in the board name; this must be a valid C identifier
and so not contain spaces or other special characters. Finally, choose the base board for your new
board definition, or specify that you want to create a new board based on a particular processor instead.

Clicking Finish pops up a dialog asking whether you want to switch your project to use the new
board. Note that even if you answer Yes, you may still need to adjust your project build properties
manually to use the correct hosting and memory regions for your new board. You can do this from
the project properties dialog, as described in Section 4.2.5, “Customizing Build Actions”. Note that
your newly-created board definition is now available in the choices for the Board option in this
dialog, and you may select it as you would any other listed board.

When you click Finish in the New Board Wizard, this also opens the new board definition in the
board editor. The board editor uses tabs to group the various properties of your board definition.

53

Using the Sourcery G++ IDE

The Overview tab displays general information about the board, including its processor and interrupt
handling scheme. You can change the processor for a previously-created board definition by clicking
the link on this page. The other information displayed is not editable.

Board Definition Overview. The Overview tab shows properties of the
board.

The Memory Map tab displays a table of the memory regions on the board. You may edit any of
the fields in the table by clicking on them. Use the buttons on the right side of the pane to add or
delete memory regions from the table.

• The Name of a memory region can be an arbitrary identifier, but some names, such as ram and
rom, have special meanings to CS3, depending on the supported profiles. Refer to Section 6.3.1,
“Memory Regions and Program Sections” for details.

• The Start and Size values can be provided in decimal, hex (with a 0x prefix) or octal (with a
0 prefix). You can use a K, KB, M, MB, G or GB suffix to denote a unit of memory.

• The Type field identifies the properties of the memory region. It can have one of the following
values:

ram Memory that is both readable and writable.

rom Read-only memory with contents fixed at manufacture or writable only by external tools.

flash Read-only memory that can be flashed. There may be multiple flash types listed. The
Sourcery G++ Debug Sprite can program such regions automatically. The Sprite uses
the flash type to select the appropriate flash programming method. Refer to Section 7.14,
“Board File Syntax” for more information about flash support in the Sourcery G++
Debug Sprite.

54

Using the Sourcery G++ IDE

io Device memory which cannot be used for program storage.

Board Definition Memory Map. The Memory Map tab allows you to edit
the location, size, and type of the memory regions on your custom board.

The Reset Sequence tab allows you to define the sequence of control register and memory
writes necessary to perform the hard reset phase of CS3 initialization, as described in Section 6.2,
“Program Startup and Termination”. Consult the documentation for your board for the exact sequence
of actions that is required.

Buttons for adding, reordering, or deleting operations are listed on the right-hand side of this tab. To
add an operation to an existing reset sequence, you must first select an element of that sequence; the
new operation is added after the one selected.

The supported reset operations are:

• Write memory writes a value to memory at the given address. The Size field can be used to
specify the bit width of the operation; it defaults to 32 if omitted. The Time field is not used for
this action.

• The Delay element introduces a delay to allow a previous initialization to complete. This element
uses only the Time field.

The conventions for the numeric fields in the table are the same as those given above for the Memory
Map tab. There are also these additional rules for syntax on specific value types:

• The name of a memory region may be used as an address value, and you can also use address ex-
pressions of the form name+offset, such as mbo+0xa0680.

• Time values must include a s, ms, or us suffix.

55

Using the Sourcery G++ IDE

Board Definition Reset Sequence. The Reset Sequence tab allows you
to specify the series of operations, such as memory and control register writes, to

initialize your board.

When you have finished editing your board definition, select File → Save (Ctrl+S). Saving the
board definition causes the Board Builder to regenerate linker scripts and startup code files which
can be used when building your project. A board file for use with the Sourcery G++ Debug Sprite
is also generated. These files are installed in the same source folder in your project where the .cs3
file was created.

When you save a board definition, the Sourcery G++ Board Builder detects if you have made
manual modifications to previous versions of its generated files rather than simply overwriting them.
You can choose either to overwrite the modified files or disable automatic generation for that board.

If you copy a .cs3 file directly into your project, note that the generated files required to use the
board in your project are not created until the next time you open the project in the IDE. Alternatively,
if the project is already open, you can right-click on the source directory in the Project Explorer
pane and select Refresh. Building the project does not trigger regeneration of the files from the
board definition.

Any errors that occur when building the linker scripts and other generated files from the board
definition are noted in the Problems tab in the lower pane of the IDE. For example, you may get
errors if the memory map in your board definition does not include all the expected regions for the
memory profiles supported by CS3 on ARM EABI targets.

4.4.2. Makefile Projects

This section explains how to use the advanced Makefile project mode, instead of the simpler managed
build mode described in Section 4.2, “Building Applications”.

56

Using the Sourcery G++ IDE

Caution

Building a Makefile project requires that you manually maintain information about how
your program is built. If you use this mode, you need to be familiar with the make utility.

If you want to import an existing project for use with the Sourcery G++ IDE, and that project uses
make, or some similar command-line tool to manage the build process, you should use a Makefile
project, instead of the IDE's built-in project types. In Makefile project mode, the IDE invokes make
(or an alternative program that you specify) to build your program. If you add new files to your
project, you have to manually update the Makefile for your project.

To create a new Makefile project in the Sourcery G++ IDE, open the C or C++ Project wizard as
described in Section 4.2.1, “Setting Up an Example Project”. This time, however, expand Makefile
project under Project type:, and choose Empty Project. Under Toolchain, select
Sourcery G++ for ARM EABI. Then click Finish.

Creating a Makefile Project. Use the C or C++ Project wizard to create a new
empty Makefile project.

Before you can build your project, you must add a Makefile to it as well as your C or C++ source
files. You can create new files by right-clicking on the project name in the left-hand pane and selecting
New. To import existing files into your project, right-click on the project name and select
Import.... In the Import Wizard, expand General and select File System. Then continue
to the next page to select the files to import.

Alternatively, you can import the entire set of sources for a Makefile-based software package into
the Sourcery G++ IDE from an existing directory in one step when you create the project. To do
this, uncheck the Use default location box in the new project wizard and choose the appro-
priate Location to your files.

You may also have to adjust your Makefile to use Sourcery G++. For example, you might need
to set the CC variable in your Makefile to arm-none-eabi-gcc.

57

Using the Sourcery G++ IDE

4.4.3. Building IDE Projects from the Command Line

If you need to be able to do batch-mode builds of your project — for example, for nightly builds or
automated product packaging scripts — you can invoke the Sourcery G++ IDE builder from the
command line. This is an alternative to converting your managed build project to a Makefile project
so that it can be built outside the IDE.

The basic recipe is

> sourcerygxx-ide -data workspace -cleanBuild project

where workspace is the pathname of your workspace and project is the name of the project to
build. You can also specify the literal value all to build all the projects in the workspace.

The above command does a full rebuild of the project, the equivalent of cleaning the project and
then building it. To do an incremental build without cleaning, use -build rather than
-cleanBuild:

> sourcerygxx-ide -data workspace -build project

You can also import projects into your workspace using the -import option:

> sourcerygxx-ide -data workspace -import project-uri

Here project-uri is the pathname or URI of the project to import. The effect of this option is
similar to using the Import wizard's Existing Projects into Workspace feature.

The -importAll option is similar to -import, but imports all projects from a workspace or
other directory tree into your active workspace. This option also takes a pathname or URI argument
to specify the root of the directory tree.

The -import and -importAll options can be repeated and used in combination with -build
or -cleanBuild. For example, you can import multiple projects into a new temporary workspace
and use -cleanBuild all to build all of them with a single command.

Use the -refresh option if you have made changes to your project files outside the IDE, such as
adding or deleting files. This forces the IDE to refresh its internal workspace state before starting to
build.

Output from the command-line builder, which would be directed to a console window when building
in the interactive IDE, is sent to standard output. If there are errors in the build command itself (such
as specifying a project that doesn't exist), they are logged to standard error. The sourcerygxx-ide
command returns zero on success and non-zero if the build fails.

Note that only the active configuration of the selected projects (e.g., either the Debug or Release
configuration) is built. It is not possible to select the configuration to build on the command line.

4.4.4. Importing Code into the IDE

If you have an already-written program, you can import it into the IDE as a new managed build
project using your existing source files. This section shows you how to do this, using the Dhrystone
application program bundled with Sourcery G++ as an example.

Start by following the steps described in Section 4.2, “Building Applications” to create a new Execut-
able project. Call the new project sample.

58

Using the Sourcery G++ IDE

The next step is to import the source code. Right-click on the sample project in the Project
Explorer tab, and select Import.... This opens the import wizard. Select General → File
System, and click Next. Click on Browse... beside the From directory: edit box at the
top of the page. Navigate to the Sourcery G++ install directory and then to share/
sourceryg++-arm-none-eabi-examples/dhrystone, and click Ok. Click the checkboxes
to select all the files in this directory, then click Finish.

Importing Source Files. First choose the source directory, then select the files
to import.

Now follow the instructions in Section 4.2, “Building Applications” to build the project. Your sample
program is now ready to execute or debug. Please refer to Section 4.3, “Debugging Applications”
for instructions on how to debug the target application.

Note that if you wish to run the Dhrystone program for benchmarking purposes, you should build a
Release configuration rather than the default Debug configuration, and adjust the optimization options
in the Build Settings section of the project properties dialog. Refer to the README file included
with this example for the correct build options for benchmarking.

While this section has shown how to import an entire program into a new project, you can also use
the import wizard to import individual files rather than a complete program, or to add files to an ex-
isting project. The import wizard copies the files into the project from the file system rather than
linking to their original locations.

4.4.5. Importing an Executable into the Sourcery G++ IDE

You can use the Sourcery G++ IDE to debug an executable program you have built outside the IDE.
You may need to do this to debug a program that requires a build procedure that cannot be simply
expressed in a Makefile, a program built with a non-Sourcery G++ compiler, or a binary provided
by a third party for which you do not have complete source code.

59

Using the Sourcery G++ IDE

For best results in the debugger, you should build your application with debugging enabled (via the
-g option) if possible prior to importing it. The IDE can use the debugging information in the imported
executable to find and display the source code for the program as you debug it, even though the
source files are not part of the project.

To import a program, select File → Import.... This opens the Import Wizard. Expand
Sourcery G++ and select C/C++ Executable. Then click Next.

Import Wizard. Select C/C++ Executable.

On the next screen, use the Browse button to select the program you wish to debug. If you have
more than one Sourcery G++ toolchain installed, use the Toolchain drop-down to select the target
for your executable. Then click Next.

60

Using the Sourcery G++ IDE

Choose Executable to Import. Import the executable file you wish to debug.

Finally, choose a name for the project. If you leave the Create a Launch Configuration
box checked, the launch configuration dialog automatically pops up when you click Finish. At
this point, you can continue to set up the debugger options and launch the program as described in
Section 4.3, “Debugging Applications”.

Choose Project for Import. Give the new project a name.

61

Using the Sourcery G++ IDE

4.4.6. Using the Terminal Emulator

The Sourcery G++ IDE includes a built-in terminal emulator which supports serial, Telnet, and SSH
connections. For example, you can use the terminal to connect to a serial console or UART driver
on your target board.

To open a terminal connection, first select Window → Show View → Other... from the top
menu. Then choose Terminal → Terminal in the dialog box. This opens a new tab for the
Terminal view. Click on the new connection icon in the toolbar for this tab, and use the pop-up
dialog to configure the connection.

Opening a Terminal. Click on the new connection icon in the Terminal tab.

62

Using the Sourcery G++ IDE

Terminal Settings. Configure the terminal properties in the pop-up dialog.

4.4.7. Using External Tools

The Sourcery G++ IDE includes some predefined External Tool launches to run common informa-
tional queries using the GNU Binary Utilities. To use these tools, first select the object file or execut-
able in the Project Explorer tab. Then, choose Run → External Tools from the top
menu. The list of available tools includes Disassemble (which runs the objdump -d command),
Display ELF Data (readelf), and View Symbols (nm).

External Tools. The Sourcery G++ IDE provides built-in tools for displaying
properties of compiled files.

63

Using the Sourcery G++ IDE

You can modify the command-line arguments passed to these tools or add your own custom External
Tool launches by selecting External Tools Configurations... from this submenu. To
create a new launch, select Program in the left-hand pane of the dialog and click the New icon.
Use the predefined External Tool launches as a guide to filling in the properties of your new launch.

4.4.8. Using Run Launches

On ARM EABI targets, the Sourcery G++ IDE supports loading and running a program on the target
board without debugger control. In this mode, the IDE initializes the target and loads the program
(including programming flash, if necessary) using the Sourcery G++ Debug Sprite. However, instead
of passing control over the application to the interactive debugger, the Sprite detaches after starting
the program from reset, leaving the target running freely.

To run programs in this way, use the Run → Run Configurations... menu item. Create a
new Sourcery G++ Debug launch, or select one that you have previously created for debugging,
as described in Section 4.3.1, “Starting the Debugger”. Click the Run button in the launch configur-
ation dialog to start your program. You can re-launch the same configuration again, without going
through the configuration dialog, by selecting Run → Run from the top menu.

Because your application runs outside the control of the debugger when launched in this way, it
cannot make use of semihosted I/O features, which depend on debugger support. You should link
your application with an unhosted CS3 profile. For further discussion of CS3 semihosting, see Sec-
tion 6.1.2, “Hosting and Semihosting”.

4.4.9. Using Eclipse Plugins in the Sourcery G++ IDE

Eclipse plugins provide many additional tools and utilities to extend the functionality of the Sourcery
G++ IDE. Plugins that are bundled with the IDE include:

CVS. This plugin provides direct integration with the CVS version control system. You can check
out a project from a CVS repository into your workspace by choosing File → Import... from
the top menu and then CVS → Projects from CVS in the Import Wizard. Additional CVS op-
erations are available by right-clicking on the project in the Project Explorer tab and selecting
the Team submenu. For additional documentation, visit the CVS plugin web site2.

Mylyn. This plugin provides task management features for Eclipse, including integration with
external bug trackers as well as personal to-do lists. Mylyn also provides a task-focused way to or-
ganize your workspace, so that you can easily switch an entire set of active views and resources
when you switch tasks. Visit the Mylyn project web site3 for tutorials and documentation.

In addition to these pre-installed plugins, there are many others available that you can install into
the Sourcery G++ IDE yourself. You can find a directory of available plugins, sorted by category,
on the Eclipse Plugin Central4 web site.

2 http://www.eclipse.org/eclipse/platform-cvs/
3 http://www.eclipse.org/mylyn/
4 http://www.eclipseplugincentral.com/

64

Using the Sourcery G++ IDE

http://www.eclipse.org/eclipse/platform-cvs/
http://www.eclipse.org/mylyn/
http://www.eclipseplugincentral.com/
http://www.eclipse.org/eclipse/platform-cvs/
http://www.eclipse.org/mylyn/
http://www.eclipseplugincentral.com/

Chapter 5
Using Sourcery G++ from the
Command Line
This chapter demonstrates the use of Sourcery G++ from the command line. If you prefer
to use an integrated development environment to build your applications, you may refer to
Chapter 4, “Using the Sourcery G++ IDE” instead.

65

5.1. Building an Application
This chapter explains how to build an application with Sourcery G++ using the command line. As
elsewhere in this manual, this section assumes that your target system is arm-none-eabi, as indicated
by the arm-none-eabi command prefix.

Using an editor (such as notepad on Microsoft Windows or vi on UNIX-like systems), create a
file named main.c containing the following simple factorial program:

#include <stdio.h>

int factorial(int n) {
 if (n == 0)
 return 1;
 return n * factorial (n - 1);
}

int main () {
 int i;
 int n;
 for (i = 0; i < 10; ++i) {
 n = factorial (i);
 printf ("factorial(%d) = %d\n", i, n);
 }
 return 0;
}

Compile and link this program using the command:

> arm-none-eabi-gcc -o factorial main.c -T script

Sourcery G++ requires that you specify a linker script with the -T option to build applications for
bare-board targets. Linker errors like undefined reference to `read' are a symptom of
failing to use an appropriate linker script. Default linker scripts are provided in arm-none-eabi/
lib. Refer to Chapter 6, “CS3™: The CodeSourcery Common Startup Code Sequence” for inform-
ation about the boards and linker scripts supported by Sourcery G++. You must also add the processor
options for your board, as documented in that chapter, to your compile and link command lines.

There should be no output from the compiler. (If you are building a C++ application, instead of a C
application, replace arm-none-eabi-gcc with arm-none-eabi-g++.)

5.2. Running Applications on the Target System
Consult your target board documentation for instructions on loading programs onto the target, and
running them. Alternatively, you can use the Sourcery G++ Debug Sprite from within GDB to
download and run programs on the target via a supported hardware debugging device.

5.3. Running Applications from GDB
You can run GDB, the GNU Debugger, on your host system to debug programs running remotely
on a target board or system. GDB can also be used to run and debug programs with QEMU, a simu-
lator that runs on your host system.

66

Using Sourcery G++ from the Command Line

When starting GDB, give it the pathname to the program you want to debug as a command-line ar-
gument. For example, if you have built the factorial program as described in Section 5.1, “Building
an Application”, enter:

> arm-none-eabi-gdb factorial

While this section explains the alternatives for using GDB to run and debug application programs,
explaining the use of the GDB command-line interface is beyond the scope of this document. Please
refer to the GDB manual for further instructions.

5.3.1. Connecting to the QEMU Emulator

Sourcery G++ includes the QEMU emulator. This is a program which runs on your host computer
and allows you to run and debug ARM EABI applications without target hardware.

To start and connect to the emulator from within GDB, use this command:

(gdb) target qemu

This starts QEMU with the appropriate options to emulate a bare-board target and accept the connec-
tion from GDB.

You can optionally pass an argument to specify the CPU that QEMU should emulate:

(gdb) target qemu cpu

The default value, any, allows QEMU to execute code compiled for any ARM processor. Additional
supported CPU emulations include arm926, cortex-a8, and cortex-m3.

In order to use QEMU as a debugging target, you must build your program with a QEMU linker
script. Refer to Section 6.5, “Supported Boards for ARM EABI” for details. You must also compile
your code with options that are consistent with the processor you specify when invoking QEMU.

The version of QEMU included with Sourcery G++ for ARM EABI is configured to run in system
emulation mode only, and other QEMU features not documented here are not supported in Sourcery
G++. For additional information about QEMU, visit the QEMU web site1.

5.3.2. Connecting to the Sourcery G++ Debug Sprite

The Sourcery G++ Debug Sprite is a program that runs on the host system to support hardware de-
bugging devices. You can use the Debug Sprite to run and debug programs on a target board without
an operating system, or to debug an operating system kernel. See Chapter 7, “Sourcery G++ Debug
Sprite” for detailed information about the supported devices.

You can start the Sprite directly from within GDB:

(gdb) target remote | arm-none-eabi-sprite arguments

Refer to Section 7.3, “Invoking Sourcery G++ Debug Sprite” for a full description of the Sprite ar-
guments.

1 http://fabrice.bellard.free.fr/qemu

67

Using Sourcery G++ from the Command Line

http://fabrice.bellard.free.fr/qemu
http://fabrice.bellard.free.fr/qemu

5.3.3. Connecting to an External GDB Server

From within GDB, you can connect to a running gdbserver or other debugging stub that uses the
GDB remote protocol using:

(gdb) target remote host:port

where host is the host name or IP address of the machine the stub is running on, and port is the
port number it is listening on for TCP connections.

5.3.4. Loading and Running Applications

Connecting to a bare-metal target or simulator from GDB does not cause your program to be loaded
into target memory. You must do this explicitly from GDB after you connect:

(gdb) load

If you are using the Sourcery G++ Debug Sprite and have built your application to run from flash
memory, flash programming is performed transparently by the Sprite when you issue the load
command from GDB. Alternatively, you can use third-party tools to load your application into flash
memory before starting GDB.

To begin execution of your application, you should generally use the continue command:

(gdb) continue

68

Using Sourcery G++ from the Command Line

Chapter 6
CS3™:The CodeSourcery
Common Startup Code Sequence
CS3 is CodeSourcery's low-level board support library.This chapter documents the boards
supported by Sourcery G++ and the compiler and linker options you need to use with them.
It also explains how you can use and modify CS3-provided definitions for memory maps,
system startup code and interrupt vectors in your own code.

69

Many developers turn to the GNU toolchain for its cross-platform consistency: having a single system
support so many different processors and boards helps to limit risk and keep learning curves gentle.
Historically, however, the GNU toolchain has lacked a consistent set of conventions for processor-
and board-level initialization, language run-time setup, and interrupt and trap handler definition.

The CodeSourcery Common Startup Code Sequence (CS3) addresses this problem. For each supported
system, CS3 provides a set of linker scripts describing the system's memory map, and a board support
library providing generic reset, startup, and interrupt handlers. These scripts and libraries all follow
a standard set of conventions across a range of processors and boards.

In addition to providing linker support, CS3's functionality is fully integrated with the Sourcery G++
Debug Sprite. For each supported board, CS3 provides the board file containing the memory map
and initialization sequence required for debugging applications on the board via the Sprite, as docu-
mented in Section 7.13, “Supported Board Files”.

CS3 is also the foundation of the Sourcery G++ Board Builder. This feature of the Sourcery G++
IDE allows you to use the power of CS3 to extend the board library included with Sourcery G++ to
include your own custom board definitions. You can find more information about using the Board
Builder in Section 4.4.1, “Using the Sourcery G++ Board Builder”.

This chapter is organized in two parts. The first part explains CS3 concepts:

• Section 6.1, “Linker Scripts” provides basic information you need to know in order to select an
appropriate CS3-provided linker script for your ARM EABI board.

• CS3's program startup and termination model is discussed in Section 6.2, “Program Startup and
Termination”.

• Section 6.3, “Memory Layout” discusses the mapping from program sections to memory regions.
It also explains how you can refer to memory regions using CS3-provided symbolic names from
C, assembly language, or the linker script, and customize placement of code or data in your program.

• Section 6.4, “Interrupt Vectors and Handlers” covers CS3's interrupt handling model, and discusses
how you can customize the CS3-provided interrupt vector tables.

The second part provides details about the CS3 implementation for ARM EABI:

• Section 6.5, “Supported Boards for ARM EABI” lists the boards supported by CS3 for ARM
EABI, and the available linker scripts for them.

• Section 6.6, “Interrupt Vector Tables” documents the details of the provided interrupt vectors for
CS3-supported devices.

6.1. Linker Scripts
When you build programs for ARM EABI targets, you must use a linker script. The linker script
serves several purposes:

• It determines the memory addresses for placement of code and data sections.

• It defines symbolic names for memory regions present on the board, which you can use program-
matically within your code.

• It provides appropriate program startup and termination code, and causes the linker to pull in any
low-level board support libraries that are required to run code on the target.

70

CS3™: The CodeSourcery Common Startup Code Sequence

• It optionally provides a hosting library for basic I/O functionality.

• It provides a default interrupt vector appropriate for the target processor.

When you use the Sourcery G++ IDE to build your program, the appropriate linker script is used
automatically based on your settings for the board and other attributes on the Project →
Properties dialog. When invoking the Sourcery G++ linker from the command line, you must
explicitly supply a linker script using the -T option; otherwise a link error results.

CS3 may provide multiple linker scripts for different configurations using the same board. For ex-
ample, on some boards CS3 may support running the program from either RAM or ROM (flash).
Some CS3 link configurations are also designed to co-exist with, or be run from, a boot monitor on
the target board. Simulator targets typically require different startup code configurations than hardware
targets. In CS3 terminology, each of these different configurations is referred to as a profile.

The remainder of this section discusses profile and hosting selection considerations in more detail.
You can find the full list of supported boards and linker scripts included in this release of Sourcery
G++ in Section 6.5, “Supported Boards for ARM EABI”.

6.1.1. Program and Data Placement

Many boards have both RAM and ROM (flash) memory devices. CS3 provides distinct linker scripts
to place the application either entirely in RAM, or to place code and read-only data in ROM.

Some boards have very small amounts of RAM memory. If you use large library functions (such as
printf and malloc), you may overflow the available memory. You may need to use the ROM-
based profile for such programs, so that the program itself is stored in ROM. You may be able to
reduce the total amount of memory used by your program by replacing portions of the Sourcery G++
runtime library and/or startup code.

Flash programming for ROM-based profiles is integrated with the Sourcery G++ Debug Sprite. When
you debug a program on a supported board using the Sprite, flash programming is performed auto-
matically as part of loading your program onto the target.

6.1.2. Hosting and Semihosting

CS3 is designed to support boards without an operating system. To allow functions like open and
write to work without operating system support, a semihosting feature is supported, in conjunction
with the debugger.

With semihosting enabled, these system calls are translated into equivalent function calls on your
host system. You can only use these function calls while connected to the debugger; if you try to use
them when disconnected from the debugger, you will get a hardware exception.

Semihosting requires support from the remote GDB debugging stub or agent, as well as the debugger
itself. The Sourcery G++ Debug Sprite implements semihosting for all supported devices. Semihosting
is also supported by the QEMU Emulator included with Sourcery G++. However, semihosting may
not be supported by debugging stubs provided by third parties. If you are using a debug device that
communicates with GDB using the GDB remote protocol, check the documentation for your device
to see whether semihosting is supported.

A good use of semihosting is to display debugging messages. For example, this program prints a
message on the debugger console on the host:

71

CS3™: The CodeSourcery Common Startup Code Sequence

#include <unistd.h>

int main () {
 write (STDERR_FILENO, "Hello, world!\n", 14);
 return 0;
}

The hosted CS3 linker scripts provide the semihosting support, and as such programs linked with
them may only be run with the debugger. For production code, or programs where memory usage
is tightly constrained, use the unhosted CS3 linker scripts instead. These scripts provide stub versions
of the system calls, which return an appropriate error value in errno. If such a stub system call is
required in the executable, the linker also produces a warning. Such a warning may indicate that you
have left debugging code active, or that your program contains unused code.

As an alternative to semihosting via the debugger, some targets supported by CS3 can run a boot
monitor that provides console I/O services and other basic system calls. CS3 can also provide hosting
via these facilities; where a boot monitor is supported, this is noted in the board tables below. Unlike
semihosting, hosting via the boot monitor can be used when running programs outside of the debugger.

6.1.3. Specifying a Linker Script

The Sourcery G++ IDE chooses an appropriate linker script for managed build projects based on the
board and other settings you have selected for your project properties. These are set in the C/C++
Project wizard when you create your project, and can also be adjusted from the project properties
dialog. For instructions, refer to Section 4.2.5, “Customizing Build Actions”.

When using Sourcery G++ from the command line or from a Makefile, you must add -T script
to your linking command, where script is the appropriate linker script. For example, to target
Actel CoreMP7 Cortex-M1 boards, you could link with -T coremp7-cm1-ram-hosted.ld.

6.2. Program Startup and Termination
This section documents CS3's model for target initialization prior to invoking the main function of
your program, and aspects of program termination that are left unspecified in the C and C++ standards.
It explains how you can customize or override the default behavior for your application.

CS3 divides the startup sequence into three phases:

• The hard reset phase (__cs3_reset) includes actions such as initializing the memory controller
and setting up the memory map.

• The assembly initialization phase (__cs3_start_asm) prepares the stack to run C code, and
jumps to the C initialization function.

• The C initialization phase (__cs3_start_c) is responsible for initializing the data areas, running
constructors for statically-allocated objects, and calling main.

The hard reset and assembly initialization phases are necessarily written in assembly language; at
reset, there may not yet be stack to hold compiler temporaries, or perhaps even any RAM accessible
to hold the stack. These phases do the minimum necessary to prepare the environment for running
simple C code. Then, the code for the final phase may be written in C; CS3 leaves as much as possible
to be done at this point.

72

CS3™: The CodeSourcery Common Startup Code Sequence

The CodeSourcery board support library provides default code for all three phases. The hard reset
phase is implemented by board- and profile-specific code. The assembly initialization phase is im-
plemented by profile-specific code. The C initialization phase is implemented by generic code.

6.2.1.The Hard Reset Phase

This phase, which begins at __cs3_reset, is responsible for initializing board-specific registers,
such as memory base registers and DRAM controllers, or scanning memory to check the available
size. It is written in assembler and ends with a jump to __cs3_start_asm, which is where the
assembly initialization phase begins.

The hard reset code is in a section named .cs3.reset. CS3 linker scripts define __cs3_reset
as an alias for a board- and profile-specific entry point. You may override the CS3-provided reset
code by defining your own __cs3_reset entry point in the .cs3.reset section.

Program execution always begins at __cs3_reset, whether the program is started from the reset
vector, the debugger, or a boot monitor. However, the __cs3_reset code linked into the application
is typically non-empty only for ROM-based profiles. For example, in a RAM-based profile, resetting
the memory controllers would overwrite the code being executed.

When using the Sourcery G++ Debug Sprite, the Sprite is responsible for carrying out the hard reset
actions before the program is loaded onto the target. This is performed prior to execution of both
RAM- and ROM-profile applications from the debugger. Thus, when debugging a ROM-profile ap-
plication, hard reset is actually performed twice — once by the Sprite, and once by the application
itself.

6.2.2.The Assembly Initialization Phase

This phase is responsible for initializing the stack pointer and creating an initial stack frame. The
symbol __cs3_start_asm marks the entry point of the assembly initialization code. The assembly
initialization phase ends with a call or jump to __cs3_start_c.

The assembly initialization phase is profile-specific. For example, while bare-board applications
typically must initialize the stack themselves, CS3 also supports boot-monitor profiles where the
stack is initialized by the boot monitor before it launches the application. Likewise, some simulators
automatically initialize the stack pointer and initial stack frame on startup, while others require a
supervisory operation on startup to determine the amount of available memory. Each of these scen-
arios requires different assembly initialization behavior.

Note that on bare-board targets setting the stack pointer explicitly in the assembly initialization phase
is required even if the processor itself initializes the stack pointer automatically on reset. This is to
support running programs from the debugger as well as from processor reset.

For backwards compatibility with previous versions of CS3, on RAM and ROM profiles the symbol
__cs3_start_asm is actually an alias for a symbol named _start. However, referencing or
defining _start directly is now deprecated.

The value of the symbol __cs3_stack provides the initial value of the stack pointer for profiles
that must set it explicitly. The CodeSourcery linker scripts provide a default value for this symbol,
which you may override by defining __cs3_stack yourself.

The initial stack frame is created for the use of ordinary C and C++ calling conventions. The stack
should be initialized so that backtraces stop cleanly at this point; this might entail zeroing a dynamic
link pointer, or providing hand-written DWARF call frame information.

73

CS3™: The CodeSourcery Common Startup Code Sequence

The last action of the assembly initialization phase is to call the C function __cs3_start_c. This
function never returns, and __cs3_start_asm need not be prepared to handle a return from it.

As with the hard reset code, the CodeSourcery board support library provides reasonable default
assembly initialization code. However, you may provide your own code by providing a definition
for __cs3_start_asm, either in an object file or a library.

6.2.3.The C Initialization Phase

Finally, C code can be executed. The C startup function is declared as follows:

void __cs3_start_c (void) __attribute__ ((noreturn));

This function performs the following steps:

• Initialize all .data-like sections by copying their contents. For example, ROM-profile linker
scripts use this mechanism to initialize writable data in RAM from the read-only data program
image.

• Clear all .bss-like sections.

• Run constructors for statically-allocated objects, recorded using whatever conventions are usual
for C++ on the target architecture.

CS3 reserves priorities from 0 to 100 for use by initialization code. You can handle tasks like en-
abling interrupts, initializing coprocessors, pointing control registers at interrupt vectors, and so
on by defining constructors with appropriate priorities.

• Call main as appropriate.

• Call exit, if it is available.

As with the hard reset and assembly initialization code, the CodeSourcery board support library
provides a reasonable definition for the __cs3_start_c function. You may override this by
providing a definition for __cs3_start_c, either in an object file or in a library.

6.2.4. Arguments to main

The CodeSourcery-provided definition of __cs3_start_c can pass command-line arguments to
main using the normal C argc and argv mechanism if the board support package provides corres-
ponding definitions for __cs3_argc and __cs3_argv. For example:

int __cs3_argc;
char **__cs3_argv;

These variables should be initialized using a constructor function, which is run by __cs3_start_
c after it initializes the data segment. Use the constructor attribute on the function definition:

__attribute__((constructor))
static void __cs3_init_args (void) {
 __cs3_argc = ...;
 __cs3_argv = ...;
}

The constructor function may have an arbitrary name; __cs3_init_args is used only for illus-
trative purposes here.

74

CS3™: The CodeSourcery Common Startup Code Sequence

If definitions of __cs3_argc and __cs3_argv are not provided, then the default __cs3_
start_c function invokes main with zero as the argc argument and a null pointer as argv.

6.2.5. Program Termination

A program running on an embedded system is usually designed never to exit — it runs until the
system is powered down. The C and C++ standards leave it unspecified as to whether exit is called
at program termination. If the program never exits, then there is no reason to include exit, facilities
to run functions registered with atexit, or global destructors. This code would never be run and
would therefore just waste space in the application.

The CS3 startup code, by itself, does not cause exit to be present in the application. It dynamically
checks whether exit is present, and only calls it if it is. If you require exit to be present, either
refer to it within your application, or add -Wl,-u,exit to the linking command line.

Similarly, code to register global destructors is only invoked when atexit is already in the execut-
able; CS3, by itself, does not cause atexit to be present. If you require atexit, either refer to it
within your application, or add -Wl,-u,atexit to the linking command line.

6.3. Memory Layout
Boards supported by CS3 can have multiple banks or regions of memory with different characteristics.
This section describes how program sections are mapped onto memory regions, and how you can
use these CS3 features to customize placement of your program's code or data in memory. CS3 also
provides a uniform set of symbolic names for each region, allowing you to programmatically refer
to each region's address range from C or assembly language as well as from the linker script.

6.3.1. Memory Regions and Program Sections

The regions that are available on a particular board are listed in the table for that board in Section 6.5,
“Supported Boards for ARM EABI”, below. There are two kinds of regions: those documented as
"Memory regions", which are general-purpose memory banks that can be used for program or data
storage; and those documented as "Other regions", which typically correspond to memory-mapped
control registers or other special-purpose storage.

CS3 supports boards that include both ram and rom memory regions. The ram region holds the
.data and .bss sections, and the .text section in RAM profiles. In ROM profiles, the rom region
holds the .text section and initialization values for the writable data sections.

In addition, all regions documented as "Memory regions" correspond to similarly-named program
sections. For example, the linker script assigns the .ram section to the ram region.

More generally, for a memory region named R, CS3 linker scripts define a section named .R, which
may contain initialized data or code. There is also a section named .bss.R for zero-initialized data
(BSS), which is placed after the initialized data section for this region. When you use the Sourcery
G++ Board Builder to create a custom board definition, the generated linker script provides exactly
the same mapping from program sections to memory regions for regions you create yourself using
the Memory Map editor, as for the memory regions in CS3's predefined linker scripts.

You can explicitly locate data or code in a section corresponding to a particular memory region using
section attributes in your source C or C++ code. Section attributes are especially useful on code
compiled for boards that include special memory banks, such as a fast on-chip cache memory, in
addition to the default ram and/or rom regions. CS3's start-up code arranges for additional data-like
sections to be initialized in the same way as the default .data section.

75

CS3™: The CodeSourcery Common Startup Code Sequence

As an example to illustrate the attribute syntax, you can put a variable v in the .ram section using:

int v __attribute__ ((section (".ram")));

To declare a function f in this section, use:

int f (void) __attribute__ ((section (".ram"))) {...}

For more information about attribute syntax, see the GCC manual.

In addition to the .R and .bss.R sections, CS3 places a .cs3.region-head.R section at the
beginning of each region R. Explicitly placing data in .cs3.region-head.R sections is discour-
aged, because CS3 itself may want to place items (like interrupt vector tables) at these locations. If
there is a conflict, CS3 raises an error at link time.

Regions documented as "Other regions" in the tables in Section 6.5, “Supported Boards for ARM
EABI” do not have corresponding program sections. Typically, these regions contain memory-mapped
control and I/O registers and cannot be used for general data or program storage. If your program
needs to manipulate data in these regions, you can use the CS3 memory map access interface declared
in cs3.h, as described in Section 6.3.2, “Programmatic Access to the CS3 Memory Map”.

Memory maps for boards supported by Sourcery G++ for ARM EABI are documented in XML files
in the arm-none-eabi/lib/boards/ subdirectory of your Sourcery G++ installation directory.

6.3.2. Programmatic Access to the CS3 Memory Map

CS3 makes C declarations describing the memory regions on the target board available to your program
via the header file cs3.h, which you can find in the arm-none-eabi/include directory
within your install.

For each region named R, cs3.h declares a byte array variable __cs3_region_start_R at the
region's start address, and a size_t variable __cs3_region_size_R to represent the total size
of the region. These symbols are defined by the linker script and so may also be referenced from
assembly language. Note that all regions are aligned on eight-byte boundaries and sizes are also
multiples of eight bytes.

For memory regions that can correspond to program sections (as described in Section 6.3.1, “Memory
Regions and Program Sections”), there are additional symbols __cs3_region_init_R and
__cs3_region_init_size_R that describe constant data used to initialize the region. During
the C initialization phase (Section 6.2, “Program Startup and Termination”), this data is copied into
the lower part of the memory region. The symbol __cs3_region_zero_size_R represents the
size of the zero-initialized .bss.R section following the initialized data. Any of these identifiers
may actually be defined as a preprocessor macro that expands to an expression of the appropriate
type and value.

To perform the memory region initializations during startup, CS3 internally uses the array variable
__cs3_regions, which contains descriptors for all of the writable (RAM) memory regions. These
descriptors are also exposed in cs3.h; refer to the header file for details.

6.3.3. Heap and Stack Placement

CS3 linker scripts provide default placement of the heap and stack in the RAM region. However,
you can override the defaults by providing your own definitions of the associated CS3 variables. For
example, you may put the heap and/or stack in some other memory region.

76

CS3™: The CodeSourcery Common Startup Code Sequence

Heap placement is controlled by defining the symbol __cs3_heap_start at the beginning of
the heap, and either the symbol __cs3_heap_end or the pointer variable __cs3_heap_limit
to mark the end of the heap. For example, this fragment of C code places the heap in a region named
extsram:

#define HEAPSIZE ... /* However big you want to make it. */
unsigned char __cs3_heap_start[HEAPSIZE]
 __attribute__ ((section (".bss.extsram"), aligned(8)));
unsigned char *__cs3_heap_limit = __cs3_heap_start + HEAPSIZE;

The default initial stack pointer for bare-metal profiles is given by the symbol __cs3_stack. Stack
initialization is discussed in more detail in Section 6.2.2, “The Assembly Initialization Phase”.

You can find C declarations for the CS3 heap and stack symbols in the header file cs3.h.

6.4. Interrupt Vectors and Handlers
CS3 provides standard handlers for interrupts, exceptions and traps, but also allows you to define
your own handlers as needed. In this section, we use the term interrupt as a generic term for this
entire class of events.

Different processors handle interrupts in various ways, but there are two general approaches:

• Some processors fetch an address from an array indexed by the interrupt number, and jump to that
address. We call these address vector processors.

• Others multiply the interrupt number by some constant factor, add a base address, and jump directly
to that address. Here, the interrupt vector consists of blocks of code, so we call these code vector
processors.

• Still other processors use a more complicated descriptor mechanism for the interrupt table.

M-profile processors like the Cortex-M3 use the address vector model. Classic ARM processors
(including ARM7/ARM9 as well as Cortex-A/R series processors) are technically code vector pro-
cessors. However, each vector slot only holds a single instruction. CS3 emulates the address vector
model on these processors by placing an indirect branch instruction in each slot of the real exception
vector. The remainder of this section assumes that you have some understanding of the specific re-
quirements for your target; refer to the architecture manuals if necessary.

6.4.1. ARM EABI Interrupt Vector Implementation

On address vector processors, the CS3 library provides an array of pointers to interrupt handlers
named __cs3_interrupt_vector_form, where form identifies the particular processor
variant the vector is appropriate for. Each entry in the vector holds a reference to a symbol named
__cs3_isr_name, where name is the customary name of that interrupt on the processor, or a
number if there is no consistently used name. You can find the interrupt vector details in Section 6.6,
“Interrupt Vector Tables”. The particular vector used by a given CS3-supported board is documented
in the tables in Section 6.5, “Supported Boards for ARM EABI”.

CS3 provides a reasonable default definition for each __cs3_isr_name handler. Many of these
symbols are aliased to a common handler routine. If your program stops at a default interrupt handler,
its name as shown in backtraces may therefore not correctly reflect which interrupt occurred.

To override an individual handler, provide your own definition for the appropriate __cs3_isr_
name symbol. The definition need not be placed in any particular object file section.

77

CS3™: The CodeSourcery Common Startup Code Sequence

To override the entire interrupt vector, you can define __cs3_interrupt_vector_form. You
must place this definition in a section named .cs3.interrupt_vector. The linker script reports
an error if the .cs3.interrupt_vector section is empty, to ensure that the definition of
__cs3_interrupt_vector_form occupies the proper section.

You may define the vector in C with an array of pointers using the section attribute to place it in
the appropriate section. For example, to override the interrupt vector on Actel CoreMP7 Cortex-M1
boards, make the following definition:

typedef void handler(void);
handler *__attribute__((section (".cs3.interrupt_vector")))
 __cs3_interrupt_vector_micro[] =
{ ... };

6.4.2. Writing Interrupt Handlers

Interrupt handlers typically require special call/return and register usage conventions that are target-
specific and beyond the scope of this document. In many cases, normal C functions cannot be used
as interrupt handlers. For example, the EABI requires that the stack be 8-byte aligned, but on some
ARMv7-M processors, only 4-byte stack alignment is guaranteed when calling an interrupt vector.
This can cause subtle runtime failures, usually when 8-byte types are used.

As an alternative to writing interrupt handlers in assembly language, on ARM targets they may be
written in C using the interrupt attribute. This tells the compiler to generate appropriate function
entry and exit sequences for an interrupt handler. For example, to override the __cs3_isr_nmi
handler, use the following definition:

void __attribute__ ((interrupt)) __cs3_isr_nmi (void)
{
 ... custom handler code ...
}

On ARM targets, the interrupt attribute also takes an optional parameter to specify the type of
interrupt. Refer to the GCC manual for more details about attribute syntax and usage.

6.5. Supported Boards for ARM EABI
CS3 provides support for the following boards on ARM EABI targets. Note that you can use the
Board Builder in the Sourcery G++ IDE to define additional custom boards using CS3. See Sec-
tion 4.4.1, “Using the Sourcery G++ Board Builder” for additional information.

Actel CoreMP7 Cortex-M1

Cortex-M1Processor name:

-mcpu=cortex-m1 -mthumbProcessor options:

ram (SRAM),
rom (Flash)

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

coremp7-cm1-ram-hosted.ldRAM HostedLinker scripts:

coremp7-cm1-ram.ldRAM Unhosted

coremp7-cm1-rom-hosted.ldROM Hosted

coremp7-cm1-rom.ldROM Unhosted

78

CS3™: The CodeSourcery Common Startup Code Sequence

Altera Cyclone III Cortex-M1

Cortex-M1Processor name:

-mcpu=cortex-m1 -mthumbProcessor options:

itcm,
ram (SRAM),
rom (Flash)

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

cycloneiii-cm1-ram-hosted.ldRAM HostedLinker scripts:

cycloneiii-cm1-ram.ldRAM Unhosted

cycloneiii-cm1-rom-hosted.ldROM Hosted

cycloneiii-cm1-rom.ldROM Unhosted

ARM M-profile Simulator

Cortex-M3Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ramMemory regions:

__cs3_interrupt_vector_microInterrupt vector:

generic-m-hosted.ldSimulator HostedLinker scripts:

generic-m.ldSimulator Unhosted

ARM Simulator

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

generic-hosted.ldSimulator HostedLinker scripts:

generic.ldSimulator Unhosted

ARM Simulator (VFP)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

generic-vfp-hosted.ldSimulator HostedLinker scripts:

generic-vfp.ldSimulator Unhosted

79

CS3™: The CodeSourcery Common Startup Code Sequence

ARMulator (RDI)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

armulator-ram-hosted.ldRAM HostedLinker scripts:

armulator-ram.ldRAM Unhosted

Atmel AT91SAM7S

ARM7TDMIProcessor name:

-mcpu=arm7tdmiProcessor options:

rom (Flash),
ram (SRAM)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

at91sam7s-ek-ram-hosted.ldRAM HostedLinker scripts:

at91sam7s-ek-ram.ldRAM Unhosted

at91sam7s-ek-rom-hosted.ldROM Hosted

at91sam7s-ek-rom.ldROM Unhosted

Energy Micro EFM32-G2XX-DK

EFM32G290F128Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

rom (128K Flash ROM),
ram (16K RAM)

Memory regions:

__cs3_interrupt_vector_efm32gInterrupt vector:

efm32-g2xx-dk-ram-hosted.ldRAM HostedLinker scripts:

efm32-g2xx-dk-ram.ldRAM Unhosted

efm32-g2xx-dk-rom-hosted.ldROM Hosted

efm32-g2xx-dk-rom.ldROM Unhosted

Energy Micro EFM32-G8XX-DK

EFM32G890F128Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

rom (128K Flash ROM),
ram (16K RAM)

Memory regions:

__cs3_interrupt_vector_efm32gInterrupt vector:

efm32-g8xx-dk-ram-hosted.ldRAM HostedLinker scripts:

efm32-g8xx-dk-ram.ldRAM Unhosted

efm32-g8xx-dk-rom-hosted.ldROM Hosted

efm32-g8xx-dk-rom.ldROM Unhosted

80

CS3™: The CodeSourcery Common Startup Code Sequence

Energy Micro EFM32-G8XX-STK

EFM32G890F128Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

rom (128K Flash ROM),
ram (16K RAM)

Memory regions:

__cs3_interrupt_vector_efm32gInterrupt vector:

efm32-g8xx-stk-ram-hosted.ldRAM HostedLinker scripts:

efm32-g8xx-stk-ram.ldRAM Unhosted

efm32-g8xx-stk-rom-hosted.ldROM Hosted

efm32-g8xx-stk-rom.ldROM Unhosted

Freescale i.MX233 (with Mobile DDR)

Freescale i.MX23Processor name:

-mcpu=arm926ej-sProcessor options:

ram (128MB SDRAM (Mobile DDR)),
ocram (On-Chip RAM)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

imx233mddr-ram-hosted.ldRAM HostedLinker scripts:

imx233mddr-ram.ldRAM Unhosted

imx233mddr-ocram-hosted.ldOn-Chip RAM Hos-
ted

imx233mddr-ocram.ldOn-Chip RAM Un-
hosted

Freescale i.MX233 EVK

Freescale i.MX23Processor name:

-mcpu=arm926ej-sProcessor options:

ram (128MB SDRAM (DDR1)),
ocram (On-Chip RAM)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

imx233evk-ram-hosted.ldRAM HostedLinker scripts:

imx233evk-ram.ldRAM Unhosted

imx233evk-ocram-hosted.ldOn-Chip RAM Hos-
ted

imx233evk-ocram.ldOn-Chip RAM Un-
hosted

81

CS3™: The CodeSourcery Common Startup Code Sequence

Freescale i.MX31 ADS

ARM1136JF-SProcessor name:

-mcpu=arm1136jf-sProcessor options:

ram (128MB SDRAM),
rom (32MB NOR Flash),
internalram (16K Internal RAM)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

imx31-ram-hosted.ldRAM HostedLinker scripts:

imx31-ram.ldRAM Unhosted

imx31-rom-hosted.ldROM Hosted

imx31-rom.ldROM Unhosted

Freescale TWR-K40X256

Freescale MK40X256Vxx100Processor name:

-mcpu=cortex-m4 -mthumbProcessor options:

rom (256 KBytes Program Flash),
flexnvm (256 KBytes FlexNVM),
flexram (4 KBytes FlexRAM),
sram_l (32 KBytes Internal SRAM_L),
ram (32 KBytes Internal SRAM_U)

Memory regions:

__cs3_interrupt_vector_kinetisInterrupt vector:

twr-k40x256-ram-hosted.ldRAM HostedLinker scripts:

twr-k40x256-ram.ldRAM Unhosted

twr-k40x256-rom-hosted.ldROM Hosted

twr-k40x256-rom.ldROM Unhosted

Freescale TWR-K60N512

Freescale MK60N512Vxx100Processor name:

-mcpu=cortex-m4 -mthumbProcessor options:

rom (512 KBytes Program Flash),
sram_l (64 KBytes Internal SRAM_L),
ram (64 KBytes Internal SRAM_U)

Memory regions:

__cs3_interrupt_vector_kinetisInterrupt vector:

twr-k60n512-ram-hosted.ldRAM HostedLinker scripts:

twr-k60n512-ram.ldRAM Unhosted

twr-k60n512-rom-hosted.ldROM Hosted

twr-k60n512-rom.ldROM Unhosted

82

CS3™: The CodeSourcery Common Startup Code Sequence

Keil MCB1760

NXP LPC1768Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

rom (512 KBytes Internal Flash),
ram (32 KBytes Internal SRAM),
ahbsram0 (16 KBytes Internal SRAM),
ahbsram1 (16 KBytes Internal SRAM)

Memory regions:

__cs3_interrupt_vector_lpc17xxInterrupt vector:

mcb1760-ram-hosted.ldRAM HostedLinker scripts:

mcb1760-ram.ldRAM Unhosted

mcb1760-rom-hosted.ldROM Hosted

mcb1760-rom.ldROM Unhosted

Keil MCB2100

NXP LPC21xxProcessor name:

-mcpu=arm7tdmi-sProcessor options:

rom (256 KBytes Internal Flash),
ram (16 KBytes Internal SRAM)

Memory regions:

__cs3_interrupt_vector_lpc21xxInterrupt vector:

mcb2100-ram-hosted.ldRAM HostedLinker scripts:

mcb2100-ram.ldRAM Unhosted

mcb2100-rom-hosted.ldROM Hosted

mcb2100-rom.ldROM Unhosted

Keil MCB2130

NXP LPC21xxProcessor name:

-mcpu=arm7tdmi-sProcessor options:

rom (512 KBytes Internal Flash),
ram (32 KBytes Internal SRAM)

Memory regions:

__cs3_interrupt_vector_lpc21xxInterrupt vector:

mcb2130-ram-hosted.ldRAM HostedLinker scripts:

mcb2130-ram.ldRAM Unhosted

mcb2130-rom-hosted.ldROM Hosted

mcb2130-rom.ldROM Unhosted

83

CS3™: The CodeSourcery Common Startup Code Sequence

Keil MCB2140

NXP LPC21xxProcessor name:

-mcpu=arm7tdmi-sProcessor options:

rom (512 KBytes Internal Flash),
ram (32 KBytes Internal SRAM)

Memory regions:

__cs3_interrupt_vector_lpc21xxInterrupt vector:

mcb2140-ram-hosted.ldRAM HostedLinker scripts:

mcb2140-ram.ldRAM Unhosted

mcb2140-rom-hosted.ldROM Hosted

mcb2140-rom.ldROM Unhosted

Keil MCB2470

NXP LPC21xxProcessor name:

-mcpu=arm7tdmi-sProcessor options:

rom (512 KBytes Internal Flash),
ram (64 KBytes Internal SRAM),
extnor (External NOR Flash),
extsdram (32 MBytes External SDRAM)

Memory regions:

extnand (External NAND Flash)Other regions:

__cs3_interrupt_vector_lpc21xxInterrupt vector:

mcb2470-ram-hosted.ldRAM HostedLinker scripts:

mcb2470-ram.ldRAM Unhosted

mcb2470-rom-hosted.ldROM Hosted

mcb2470-rom.ldROM Unhosted

Keil MCBSTM32

STM32F103RBProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (Internal SRAM),
rom (Internal Flash),
option_bytes_rom (Option Bytes)

Memory regions:

__cs3_interrupt_vector_stm32f10Interrupt vector:

mcbstm32-ram-hosted.ldRAM HostedLinker scripts:

mcbstm32-ram.ldRAM Unhosted

mcbstm32-rom-hosted.ldROM Hosted

mcbstm32-rom.ldROM Unhosted

84

CS3™: The CodeSourcery Common Startup Code Sequence

Keil MCBSTR7 (flash boot)

ARM7TDMIProcessor name:

-mcpu=arm7tdmiProcessor options:

ram (64 kBytes Internal SRAM),
rom (256 kBytes Internal Flash),
datarom (16 kBytes Internal Flash)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

str710-flashboot-ram-hosted.ldRAM HostedLinker scripts:

str710-flashboot-ram.ldRAM Unhosted

str710-flashboot-rom-hosted.ldROM Hosted

str710-flashboot-rom.ldROM Unhosted

Keil MCBSTR7 (ram boot)

ARM7TDMIProcessor name:

-mcpu=arm7tdmiProcessor options:

ram (64 kBytes Internal SRAM),
rom (256 kBytes Internal Flash),
datarom (16 kBytes Internal Flash)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

str710-ramboot-ram-hosted.ldRAM HostedLinker scripts:

str710-ramboot-ram.ldRAM Unhosted

str710-ramboot-rom-hosted.ldROM Hosted

str710-ramboot-rom.ldROM Unhosted

Keil MCBSTR9

ARM966E-SProcessor name:

-mcpu=arm966e-sProcessor options:

ram (96 kBytes Internal SRAM),
rom (512 kBytes Internal Flash),
nbrom (32 kBytes Internal Flash)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

str91x-ram-hosted.ldRAM HostedLinker scripts:

str91x-ram.ldRAM Unhosted

str91x-rom-hosted.ldROM Hosted

str91x-rom.ldROM Unhosted

85

CS3™: The CodeSourcery Common Startup Code Sequence

Keil Microcontroller Prototyping System (Cortex-M0)

Cortex-M0Processor name:

-mcpu=cortex-m0 -mthumbProcessor options:

rom (64MB NOR Flash),
ssram1 (4MB SRAM (SSRAM1)),
ram (4MB SRAM (SSRAM0))

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

mps-cm0-rom-hosted.ldROM HostedLinker scripts:

mps-cm0-rom.ldROM Unhosted

mps-cm0-ram-hosted.ldRAM Hosted

mps-cm0-ram.ldRAM Unhosted

mps-cm0-ssram1-hosted.ldSSRAM1 Hosted

mps-cm0-ssram1.ldSSRAM1 Unhosted

Keil Microcontroller Prototyping System (Cortex-M1)

Cortex-M1Processor name:

-mcpu=cortex-m1 -mthumbProcessor options:

rom (64MB NOR Flash),
ssram1 (4MB SRAM (SSRAM1)),
ram (4MB SRAM (SSRAM0))

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

mps-cm1-rom-hosted.ldROM HostedLinker scripts:

mps-cm1-rom.ldROM Unhosted

mps-cm1-ram-hosted.ldRAM Hosted

mps-cm1-ram.ldRAM Unhosted

mps-cm1-ssram1-hosted.ldSSRAM1 Hosted

mps-cm1-ssram1.ldSSRAM1 Unhosted

Keil Microcontroller Prototyping System (Cortex-M3)

Cortex-M3Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

rom (64MB NOR Flash),
ssram1 (4MB SRAM (SSRAM1)),
ram (4MB SRAM (SSRAM0))

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

mps-cm3-rom-hosted.ldROM HostedLinker scripts:

mps-cm3-rom.ldROM Unhosted

mps-cm3-ram-hosted.ldRAM Hosted

mps-cm3-ram.ldRAM Unhosted

mps-cm3-ssram1-hosted.ldSSRAM1 Hosted

mps-cm3-ssram1.ldSSRAM1 Unhosted

86

CS3™: The CodeSourcery Common Startup Code Sequence

Keil Microcontroller Prototyping System (Cortex-M4)

Cortex-M4Processor name:

-mcpu=cortex-m4 -mthumbProcessor options:

rom (64MB NOR Flash),
ssram1 (4MB SRAM (SSRAM1)),
ram (4MB SRAM (SSRAM0))

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

mps-cm4-rom-hosted.ldROM HostedLinker scripts:

mps-cm4-rom.ldROM Unhosted

mps-cm4-ram-hosted.ldRAM Hosted

mps-cm4-ram.ldRAM Unhosted

mps-cm4-ssram1-hosted.ldSSRAM1 Hosted

mps-cm4-ssram1.ldSSRAM1 Unhosted

PHYTEC phyCore-LPC3250

ARM926EJ-S with VFPProcessor name:

-mcpu=arm926ej-sProcessor options:

extram (64MB external SDRAM),
extrom (2MB external NOR Flash),
ram (256K Internal RAM at reset with default Boot Map control register
settings),
remappedram (256K Internal RAM after remapping by setting bit0 = 1 in
the Boot Map control register @ 0x40004014)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

phycore-lpc3250-ram-hosted.ldRAM HostedLinker scripts:

phycore-lpc3250-ram.ldRAM Unhosted

QEMU ARM M-profile Simulator

Cortex-M3Processor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ramMemory regions:

__cs3_interrupt_vector_microInterrupt vector:

qemu-micro-hosted.ldSimulator HostedLinker scripts:

qemu-micro.ldSimulator Unhosted

QEMU ARM Simulator (VFP)

unspecifiedProcessor name:

noneProcessor options:

ramMemory regions:

__cs3_interrupt_vector_armInterrupt vector:

qemu-arm-hosted.ldSimulator HostedLinker scripts:

qemu-arm.ldSimulator Unhosted

87

CS3™: The CodeSourcery Common Startup Code Sequence

QEMU Stellaris Simulator

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ramMemory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

qemu-luminary-hosted.ldSimulator HostedLinker scripts:

qemu-luminary.ldSimulator Unhosted

RealView EB Cortex-M1

Cortex-M1Processor name:

-mcpu=cortex-m1 -mthumbProcessor options:

ram (2Mb RAM),
rom (2Mb ROM)

Memory regions:

__cs3_interrupt_vector_microInterrupt vector:

realview-cm1-ram-hosted.ldRAM HostedLinker scripts:

realview-cm1-ram.ldRAM Unhosted

realview-cm1-rom-hosted.ldROM Hosted

realview-cm1-rom.ldROM Unhosted

Stellaris LM3S101

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (2K RAM),
rom (8K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s101-ram-hosted.ldRAM HostedLinker scripts:

lm3s101-ram.ldRAM Unhosted

lm3s101-rom-hosted.ldROM Hosted

lm3s101-rom.ldROM Unhosted

Stellaris LM3S102

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (2K RAM),
rom (8K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s102-ram-hosted.ldRAM HostedLinker scripts:

lm3s102-ram.ldRAM Unhosted

lm3s102-rom-hosted.ldROM Hosted

lm3s102-rom.ldROM Unhosted

88

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1110

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1110-ram-hosted.ldRAM HostedLinker scripts:

lm3s1110-ram.ldRAM Unhosted

lm3s1110-rom-hosted.ldROM Hosted

lm3s1110-rom.ldROM Unhosted

Stellaris LM3S1133

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1133-ram-hosted.ldRAM HostedLinker scripts:

lm3s1133-ram.ldRAM Unhosted

lm3s1133-rom-hosted.ldROM Hosted

lm3s1133-rom.ldROM Unhosted

Stellaris LM3S1138

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1138-ram-hosted.ldRAM HostedLinker scripts:

lm3s1138-ram.ldRAM Unhosted

lm3s1138-rom-hosted.ldROM Hosted

lm3s1138-rom.ldROM Unhosted

89

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1150

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1150-ram-hosted.ldRAM HostedLinker scripts:

lm3s1150-ram.ldRAM Unhosted

lm3s1150-rom-hosted.ldROM Hosted

lm3s1150-rom.ldROM Unhosted

Stellaris LM3S1162

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1162-ram-hosted.ldRAM HostedLinker scripts:

lm3s1162-ram.ldRAM Unhosted

lm3s1162-rom-hosted.ldROM Hosted

lm3s1162-rom.ldROM Unhosted

Stellaris LM3S1165

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1165-ram-hosted.ldRAM HostedLinker scripts:

lm3s1165-ram.ldRAM Unhosted

lm3s1165-rom-hosted.ldROM Hosted

lm3s1165-rom.ldROM Unhosted

90

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1332

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1332-ram-hosted.ldRAM HostedLinker scripts:

lm3s1332-ram.ldRAM Unhosted

lm3s1332-rom-hosted.ldROM Hosted

lm3s1332-rom.ldROM Unhosted

Stellaris LM3S1435

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1435-ram-hosted.ldRAM HostedLinker scripts:

lm3s1435-ram.ldRAM Unhosted

lm3s1435-rom-hosted.ldROM Hosted

lm3s1435-rom.ldROM Unhosted

Stellaris LM3S1439

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1439-ram-hosted.ldRAM HostedLinker scripts:

lm3s1439-ram.ldRAM Unhosted

lm3s1439-rom-hosted.ldROM Hosted

lm3s1439-rom.ldROM Unhosted

91

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1512

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1512-ram-hosted.ldRAM HostedLinker scripts:

lm3s1512-ram.ldRAM Unhosted

lm3s1512-rom-hosted.ldROM Hosted

lm3s1512-rom.ldROM Unhosted

Stellaris LM3S1538

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1538-ram-hosted.ldRAM HostedLinker scripts:

lm3s1538-ram.ldRAM Unhosted

lm3s1538-rom-hosted.ldROM Hosted

lm3s1538-rom.ldROM Unhosted

Stellaris LM3S1601

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1601-ram-hosted.ldRAM HostedLinker scripts:

lm3s1601-ram.ldRAM Unhosted

lm3s1601-rom-hosted.ldROM Hosted

lm3s1601-rom.ldROM Unhosted

92

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1607

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s1607-ram-hosted.ldRAM HostedLinker scripts:

lm3s1607-ram.ldRAM Unhosted

lm3s1607-rom-hosted.ldROM Hosted

lm3s1607-rom.ldROM Unhosted

Stellaris LM3S1608

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1608-ram-hosted.ldRAM HostedLinker scripts:

lm3s1608-ram.ldRAM Unhosted

lm3s1608-rom-hosted.ldROM Hosted

lm3s1608-rom.ldROM Unhosted

Stellaris LM3S1620

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1620-ram-hosted.ldRAM HostedLinker scripts:

lm3s1620-ram.ldRAM Unhosted

lm3s1620-rom-hosted.ldROM Hosted

lm3s1620-rom.ldROM Unhosted

93

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1621

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1621-ram-hosted.ldRAM HostedLinker scripts:

lm3s1621-ram.ldRAM Unhosted

lm3s1621-rom-hosted.ldROM Hosted

lm3s1621-rom.ldROM Unhosted

Stellaris LM3S1625

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s1625-ram-hosted.ldRAM HostedLinker scripts:

lm3s1625-ram.ldRAM Unhosted

lm3s1625-rom-hosted.ldROM Hosted

lm3s1625-rom.ldROM Unhosted

Stellaris LM3S1626

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s1626-ram-hosted.ldRAM HostedLinker scripts:

lm3s1626-ram.ldRAM Unhosted

lm3s1626-rom-hosted.ldROM Hosted

lm3s1626-rom.ldROM Unhosted

94

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1627

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s1627-ram-hosted.ldRAM HostedLinker scripts:

lm3s1627-ram.ldRAM Unhosted

lm3s1627-rom-hosted.ldROM Hosted

lm3s1627-rom.ldROM Unhosted

Stellaris LM3S1635

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1635-ram-hosted.ldRAM HostedLinker scripts:

lm3s1635-ram.ldRAM Unhosted

lm3s1635-rom-hosted.ldROM Hosted

lm3s1635-rom.ldROM Unhosted

Stellaris LM3S1637

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1637-ram-hosted.ldRAM HostedLinker scripts:

lm3s1637-ram.ldRAM Unhosted

lm3s1637-rom-hosted.ldROM Hosted

lm3s1637-rom.ldROM Unhosted

95

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1651

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1651-ram-hosted.ldRAM HostedLinker scripts:

lm3s1651-ram.ldRAM Unhosted

lm3s1651-rom-hosted.ldROM Hosted

lm3s1651-rom.ldROM Unhosted

Stellaris LM3S1751

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1751-ram-hosted.ldRAM HostedLinker scripts:

lm3s1751-ram.ldRAM Unhosted

lm3s1751-rom-hosted.ldROM Hosted

lm3s1751-rom.ldROM Unhosted

Stellaris LM3S1776

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s1776-ram-hosted.ldRAM HostedLinker scripts:

lm3s1776-ram.ldRAM Unhosted

lm3s1776-rom-hosted.ldROM Hosted

lm3s1776-rom.ldROM Unhosted

96

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1811

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1811-ram-hosted.ldRAM HostedLinker scripts:

lm3s1811-ram.ldRAM Unhosted

lm3s1811-rom-hosted.ldROM Hosted

lm3s1811-rom.ldROM Unhosted

Stellaris LM3S1816

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1816-ram-hosted.ldRAM HostedLinker scripts:

lm3s1816-ram.ldRAM Unhosted

lm3s1816-rom-hosted.ldROM Hosted

lm3s1816-rom.ldROM Unhosted

Stellaris LM3S1850

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1850-ram-hosted.ldRAM HostedLinker scripts:

lm3s1850-ram.ldRAM Unhosted

lm3s1850-rom-hosted.ldROM Hosted

lm3s1850-rom.ldROM Unhosted

97

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1911

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1911-ram-hosted.ldRAM HostedLinker scripts:

lm3s1911-ram.ldRAM Unhosted

lm3s1911-rom-hosted.ldROM Hosted

lm3s1911-rom.ldROM Unhosted

Stellaris LM3S1918

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1918-ram-hosted.ldRAM HostedLinker scripts:

lm3s1918-ram.ldRAM Unhosted

lm3s1918-rom-hosted.ldROM Hosted

lm3s1918-rom.ldROM Unhosted

Stellaris LM3S1937

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1937-ram-hosted.ldRAM HostedLinker scripts:

lm3s1937-ram.ldRAM Unhosted

lm3s1937-rom-hosted.ldROM Hosted

lm3s1937-rom.ldROM Unhosted

98

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1958

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1958-ram-hosted.ldRAM HostedLinker scripts:

lm3s1958-ram.ldRAM Unhosted

lm3s1958-rom-hosted.ldROM Hosted

lm3s1958-rom.ldROM Unhosted

Stellaris LM3S1960

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1960-ram-hosted.ldRAM HostedLinker scripts:

lm3s1960-ram.ldRAM Unhosted

lm3s1960-rom-hosted.ldROM Hosted

lm3s1960-rom.ldROM Unhosted

Stellaris LM3S1968

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s1968-ram-hosted.ldRAM HostedLinker scripts:

lm3s1968-ram.ldRAM Unhosted

lm3s1968-rom-hosted.ldROM Hosted

lm3s1968-rom.ldROM Unhosted

99

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1B21

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1b21-ram-hosted.ldRAM HostedLinker scripts:

lm3s1b21-ram.ldRAM Unhosted

lm3s1b21-rom-hosted.ldROM Hosted

lm3s1b21-rom.ldROM Unhosted

Stellaris LM3S1J11

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (20K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1j11-ram-hosted.ldRAM HostedLinker scripts:

lm3s1j11-ram.ldRAM Unhosted

lm3s1j11-rom-hosted.ldROM Hosted

lm3s1j11-rom.ldROM Unhosted

Stellaris LM3S1J16

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (20K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1j16-ram-hosted.ldRAM HostedLinker scripts:

lm3s1j16-ram.ldRAM Unhosted

lm3s1j16-rom-hosted.ldROM Hosted

lm3s1j16-rom.ldROM Unhosted

100

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1N11

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (12K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1n11-ram-hosted.ldRAM HostedLinker scripts:

lm3s1n11-ram.ldRAM Unhosted

lm3s1n11-rom-hosted.ldROM Hosted

lm3s1n11-rom.ldROM Unhosted

Stellaris LM3S1N16

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (12K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1n16-ram-hosted.ldRAM HostedLinker scripts:

lm3s1n16-ram.ldRAM Unhosted

lm3s1n16-rom-hosted.ldROM Hosted

lm3s1n16-rom.ldROM Unhosted

Stellaris LM3S1P51

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1p51-ram-hosted.ldRAM HostedLinker scripts:

lm3s1p51-ram.ldRAM Unhosted

lm3s1p51-rom-hosted.ldROM Hosted

lm3s1p51-rom.ldROM Unhosted

101

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1R21

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (48K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1r21-ram-hosted.ldRAM HostedLinker scripts:

lm3s1r21-ram.ldRAM Unhosted

lm3s1r21-rom-hosted.ldROM Hosted

lm3s1r21-rom.ldROM Unhosted

Stellaris LM3S1R26

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (48K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1r26-ram-hosted.ldRAM HostedLinker scripts:

lm3s1r26-ram.ldRAM Unhosted

lm3s1r26-rom-hosted.ldROM Hosted

lm3s1r26-rom.ldROM Unhosted

Stellaris LM3S1W16

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1w16-ram-hosted.ldRAM HostedLinker scripts:

lm3s1w16-ram.ldRAM Unhosted

lm3s1w16-rom-hosted.ldROM Hosted

lm3s1w16-rom.ldROM Unhosted

102

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S1Z16

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (6K RAM),
rom (16K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s1z16-ram-hosted.ldRAM HostedLinker scripts:

lm3s1z16-ram.ldRAM Unhosted

lm3s1z16-rom-hosted.ldROM Hosted

lm3s1z16-rom.ldROM Unhosted

Stellaris LM3S2110

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2110-ram-hosted.ldRAM HostedLinker scripts:

lm3s2110-ram.ldRAM Unhosted

lm3s2110-rom-hosted.ldROM Hosted

lm3s2110-rom.ldROM Unhosted

Stellaris LM3S2139

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2139-ram-hosted.ldRAM HostedLinker scripts:

lm3s2139-ram.ldRAM Unhosted

lm3s2139-rom-hosted.ldROM Hosted

lm3s2139-rom.ldROM Unhosted

103

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2276

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (64K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s2276-ram-hosted.ldRAM HostedLinker scripts:

lm3s2276-ram.ldRAM Unhosted

lm3s2276-rom-hosted.ldROM Hosted

lm3s2276-rom.ldROM Unhosted

Stellaris LM3S2410

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2410-ram-hosted.ldRAM HostedLinker scripts:

lm3s2410-ram.ldRAM Unhosted

lm3s2410-rom-hosted.ldROM Hosted

lm3s2410-rom.ldROM Unhosted

Stellaris LM3S2412

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2412-ram-hosted.ldRAM HostedLinker scripts:

lm3s2412-ram.ldRAM Unhosted

lm3s2412-rom-hosted.ldROM Hosted

lm3s2412-rom.ldROM Unhosted

104

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2432

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2432-ram-hosted.ldRAM HostedLinker scripts:

lm3s2432-ram.ldRAM Unhosted

lm3s2432-rom-hosted.ldROM Hosted

lm3s2432-rom.ldROM Unhosted

Stellaris LM3S2533

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2533-ram-hosted.ldRAM HostedLinker scripts:

lm3s2533-ram.ldRAM Unhosted

lm3s2533-rom-hosted.ldROM Hosted

lm3s2533-rom.ldROM Unhosted

Stellaris LM3S2601

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2601-ram-hosted.ldRAM HostedLinker scripts:

lm3s2601-ram.ldRAM Unhosted

lm3s2601-rom-hosted.ldROM Hosted

lm3s2601-rom.ldROM Unhosted

105

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2608

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2608-ram-hosted.ldRAM HostedLinker scripts:

lm3s2608-ram.ldRAM Unhosted

lm3s2608-rom-hosted.ldROM Hosted

lm3s2608-rom.ldROM Unhosted

Stellaris LM3S2616

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s2616-ram-hosted.ldRAM HostedLinker scripts:

lm3s2616-ram.ldRAM Unhosted

lm3s2616-rom-hosted.ldROM Hosted

lm3s2616-rom.ldROM Unhosted

Stellaris LM3S2620

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2620-ram-hosted.ldRAM HostedLinker scripts:

lm3s2620-ram.ldRAM Unhosted

lm3s2620-rom-hosted.ldROM Hosted

lm3s2620-rom.ldROM Unhosted

106

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2637

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2637-ram-hosted.ldRAM HostedLinker scripts:

lm3s2637-ram.ldRAM Unhosted

lm3s2637-rom-hosted.ldROM Hosted

lm3s2637-rom.ldROM Unhosted

Stellaris LM3S2651

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2651-ram-hosted.ldRAM HostedLinker scripts:

lm3s2651-ram.ldRAM Unhosted

lm3s2651-rom-hosted.ldROM Hosted

lm3s2651-rom.ldROM Unhosted

Stellaris LM3S2671

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s2671-ram-hosted.ldRAM HostedLinker scripts:

lm3s2671-ram.ldRAM Unhosted

lm3s2671-rom-hosted.ldROM Hosted

lm3s2671-rom.ldROM Unhosted

107

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2678

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s2678-ram-hosted.ldRAM HostedLinker scripts:

lm3s2678-ram.ldRAM Unhosted

lm3s2678-rom-hosted.ldROM Hosted

lm3s2678-rom.ldROM Unhosted

Stellaris LM3S2730

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2730-ram-hosted.ldRAM HostedLinker scripts:

lm3s2730-ram.ldRAM Unhosted

lm3s2730-rom-hosted.ldROM Hosted

lm3s2730-rom.ldROM Unhosted

Stellaris LM3S2739

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2739-ram-hosted.ldRAM HostedLinker scripts:

lm3s2739-ram.ldRAM Unhosted

lm3s2739-rom-hosted.ldROM Hosted

lm3s2739-rom.ldROM Unhosted

108

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2776

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s2776-ram-hosted.ldRAM HostedLinker scripts:

lm3s2776-ram.ldRAM Unhosted

lm3s2776-rom-hosted.ldROM Hosted

lm3s2776-rom.ldROM Unhosted

Stellaris LM3S2793

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s2793-ram-hosted.ldRAM HostedLinker scripts:

lm3s2793-ram.ldRAM Unhosted

lm3s2793-rom-hosted.ldROM Hosted

lm3s2793-rom.ldROM Unhosted

Stellaris LM3S2911

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2911-ram-hosted.ldRAM HostedLinker scripts:

lm3s2911-ram.ldRAM Unhosted

lm3s2911-rom-hosted.ldROM Hosted

lm3s2911-rom.ldROM Unhosted

109

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2918

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2918-ram-hosted.ldRAM HostedLinker scripts:

lm3s2918-ram.ldRAM Unhosted

lm3s2918-rom-hosted.ldROM Hosted

lm3s2918-rom.ldROM Unhosted

Stellaris LM3S2939

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2939-ram-hosted.ldRAM HostedLinker scripts:

lm3s2939-ram.ldRAM Unhosted

lm3s2939-rom-hosted.ldROM Hosted

lm3s2939-rom.ldROM Unhosted

Stellaris LM3S2948

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2948-ram-hosted.ldRAM HostedLinker scripts:

lm3s2948-ram.ldRAM Unhosted

lm3s2948-rom-hosted.ldROM Hosted

lm3s2948-rom.ldROM Unhosted

110

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S2950

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2950-ram-hosted.ldRAM HostedLinker scripts:

lm3s2950-ram.ldRAM Unhosted

lm3s2950-rom-hosted.ldROM Hosted

lm3s2950-rom.ldROM Unhosted

Stellaris LM3S2965

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s2965-ram-hosted.ldRAM HostedLinker scripts:

lm3s2965-ram.ldRAM Unhosted

lm3s2965-rom-hosted.ldROM Hosted

lm3s2965-rom.ldROM Unhosted

Stellaris LM3S2B93

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s2b93-ram-hosted.ldRAM HostedLinker scripts:

lm3s2b93-ram.ldRAM Unhosted

lm3s2b93-rom-hosted.ldROM Hosted

lm3s2b93-rom.ldROM Unhosted

111

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S300

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s300-ram-hosted.ldRAM HostedLinker scripts:

lm3s300-ram.ldRAM Unhosted

lm3s300-rom-hosted.ldROM Hosted

lm3s300-rom.ldROM Unhosted

Stellaris LM3S301

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (2K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s301-ram-hosted.ldRAM HostedLinker scripts:

lm3s301-ram.ldRAM Unhosted

lm3s301-rom-hosted.ldROM Hosted

lm3s301-rom.ldROM Unhosted

Stellaris LM3S308

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s308-ram-hosted.ldRAM HostedLinker scripts:

lm3s308-ram.ldRAM Unhosted

lm3s308-rom-hosted.ldROM Hosted

lm3s308-rom.ldROM Unhosted

112

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S310

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s310-ram-hosted.ldRAM HostedLinker scripts:

lm3s310-ram.ldRAM Unhosted

lm3s310-rom-hosted.ldROM Hosted

lm3s310-rom.ldROM Unhosted

Stellaris LM3S315

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s315-ram-hosted.ldRAM HostedLinker scripts:

lm3s315-ram.ldRAM Unhosted

lm3s315-rom-hosted.ldROM Hosted

lm3s315-rom.ldROM Unhosted

Stellaris LM3S316

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s316-ram-hosted.ldRAM HostedLinker scripts:

lm3s316-ram.ldRAM Unhosted

lm3s316-rom-hosted.ldROM Hosted

lm3s316-rom.ldROM Unhosted

113

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S317

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s317-ram-hosted.ldRAM HostedLinker scripts:

lm3s317-ram.ldRAM Unhosted

lm3s317-rom-hosted.ldROM Hosted

lm3s317-rom.ldROM Unhosted

Stellaris LM3S328

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (4K RAM),
rom (16K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s328-ram-hosted.ldRAM HostedLinker scripts:

lm3s328-ram.ldRAM Unhosted

lm3s328-rom-hosted.ldROM Hosted

lm3s328-rom.ldROM Unhosted

Stellaris LM3S3634

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s3634-ram-hosted.ldRAM HostedLinker scripts:

lm3s3634-ram.ldRAM Unhosted

lm3s3634-rom-hosted.ldROM Hosted

lm3s3634-rom.ldROM Unhosted

114

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S3651

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s3651-ram-hosted.ldRAM HostedLinker scripts:

lm3s3651-ram.ldRAM Unhosted

lm3s3651-rom-hosted.ldROM Hosted

lm3s3651-rom.ldROM Unhosted

Stellaris LM3S3739

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s3739-ram-hosted.ldRAM HostedLinker scripts:

lm3s3739-ram.ldRAM Unhosted

lm3s3739-rom-hosted.ldROM Hosted

lm3s3739-rom.ldROM Unhosted

Stellaris LM3S3748

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s3748-ram-hosted.ldRAM HostedLinker scripts:

lm3s3748-ram.ldRAM Unhosted

lm3s3748-rom-hosted.ldROM Hosted

lm3s3748-rom.ldROM Unhosted

115

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S3749

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s3749-ram-hosted.ldRAM HostedLinker scripts:

lm3s3749-ram.ldRAM Unhosted

lm3s3749-rom-hosted.ldROM Hosted

lm3s3749-rom.ldROM Unhosted

Stellaris LM3S3826

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s3826-ram-hosted.ldRAM HostedLinker scripts:

lm3s3826-ram.ldRAM Unhosted

lm3s3826-rom-hosted.ldROM Hosted

lm3s3826-rom.ldROM Unhosted

Stellaris LM3S3J26

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (20K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s3j26-ram-hosted.ldRAM HostedLinker scripts:

lm3s3j26-ram.ldRAM Unhosted

lm3s3j26-rom-hosted.ldROM Hosted

lm3s3j26-rom.ldROM Unhosted

116

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S3N26

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (12K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s3n26-ram-hosted.ldRAM HostedLinker scripts:

lm3s3n26-ram.ldRAM Unhosted

lm3s3n26-rom-hosted.ldROM Hosted

lm3s3n26-rom.ldROM Unhosted

Stellaris LM3S3W26

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s3w26-ram-hosted.ldRAM HostedLinker scripts:

lm3s3w26-ram.ldRAM Unhosted

lm3s3w26-rom-hosted.ldROM Hosted

lm3s3w26-rom.ldROM Unhosted

Stellaris LM3S3Z26

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (6K RAM),
rom (16K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s3z26-ram-hosted.ldRAM HostedLinker scripts:

lm3s3z26-ram.ldRAM Unhosted

lm3s3z26-rom-hosted.ldROM Hosted

lm3s3z26-rom.ldROM Unhosted

117

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5632

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5632-ram-hosted.ldRAM HostedLinker scripts:

lm3s5632-ram.ldRAM Unhosted

lm3s5632-rom-hosted.ldROM Hosted

lm3s5632-rom.ldROM Unhosted

Stellaris LM3S5651

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5651-ram-hosted.ldRAM HostedLinker scripts:

lm3s5651-ram.ldRAM Unhosted

lm3s5651-rom-hosted.ldROM Hosted

lm3s5651-rom.ldROM Unhosted

Stellaris LM3S5652

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5652-ram-hosted.ldRAM HostedLinker scripts:

lm3s5652-ram.ldRAM Unhosted

lm3s5652-rom-hosted.ldROM Hosted

lm3s5652-rom.ldROM Unhosted

118

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5656

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5656-ram-hosted.ldRAM HostedLinker scripts:

lm3s5656-ram.ldRAM Unhosted

lm3s5656-rom-hosted.ldROM Hosted

lm3s5656-rom.ldROM Unhosted

Stellaris LM3S5662

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5662-ram-hosted.ldRAM HostedLinker scripts:

lm3s5662-ram.ldRAM Unhosted

lm3s5662-rom-hosted.ldROM Hosted

lm3s5662-rom.ldROM Unhosted

Stellaris LM3S5732

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5732-ram-hosted.ldRAM HostedLinker scripts:

lm3s5732-ram.ldRAM Unhosted

lm3s5732-rom-hosted.ldROM Hosted

lm3s5732-rom.ldROM Unhosted

119

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5737

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5737-ram-hosted.ldRAM HostedLinker scripts:

lm3s5737-ram.ldRAM Unhosted

lm3s5737-rom-hosted.ldROM Hosted

lm3s5737-rom.ldROM Unhosted

Stellaris LM3S5739

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5739-ram-hosted.ldRAM HostedLinker scripts:

lm3s5739-ram.ldRAM Unhosted

lm3s5739-rom-hosted.ldROM Hosted

lm3s5739-rom.ldROM Unhosted

Stellaris LM3S5747

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5747-ram-hosted.ldRAM HostedLinker scripts:

lm3s5747-ram.ldRAM Unhosted

lm3s5747-rom-hosted.ldROM Hosted

lm3s5747-rom.ldROM Unhosted

120

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5749

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5749-ram-hosted.ldRAM HostedLinker scripts:

lm3s5749-ram.ldRAM Unhosted

lm3s5749-rom-hosted.ldROM Hosted

lm3s5749-rom.ldROM Unhosted

Stellaris LM3S5752

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5752-ram-hosted.ldRAM HostedLinker scripts:

lm3s5752-ram.ldRAM Unhosted

lm3s5752-rom-hosted.ldROM Hosted

lm3s5752-rom.ldROM Unhosted

Stellaris LM3S5762

Stellaris DustDevilProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (16K Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellarisInterrupt vector:

lm3s5762-ram-hosted.ldRAM HostedLinker scripts:

lm3s5762-ram.ldRAM Unhosted

lm3s5762-rom-hosted.ldROM Hosted

lm3s5762-rom.ldROM Unhosted

121

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5791

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5791-ram-hosted.ldRAM HostedLinker scripts:

lm3s5791-ram.ldRAM Unhosted

lm3s5791-rom-hosted.ldROM Hosted

lm3s5791-rom.ldROM Unhosted

Stellaris LM3S5951

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5951-ram-hosted.ldRAM HostedLinker scripts:

lm3s5951-ram.ldRAM Unhosted

lm3s5951-rom-hosted.ldROM Hosted

lm3s5951-rom.ldROM Unhosted

Stellaris LM3S5956

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5956-ram-hosted.ldRAM HostedLinker scripts:

lm3s5956-ram.ldRAM Unhosted

lm3s5956-rom-hosted.ldROM Hosted

lm3s5956-rom.ldROM Unhosted

122

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5B91

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5b91-ram-hosted.ldRAM HostedLinker scripts:

lm3s5b91-ram.ldRAM Unhosted

lm3s5b91-rom-hosted.ldROM Hosted

lm3s5b91-rom.ldROM Unhosted

Stellaris LM3S5K31

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5k31-ram-hosted.ldRAM HostedLinker scripts:

lm3s5k31-ram.ldRAM Unhosted

lm3s5k31-rom-hosted.ldROM Hosted

lm3s5k31-rom.ldROM Unhosted

Stellaris LM3S5K36

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5k36-ram-hosted.ldRAM HostedLinker scripts:

lm3s5k36-ram.ldRAM Unhosted

lm3s5k36-rom-hosted.ldROM Hosted

lm3s5k36-rom.ldROM Unhosted

123

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5P31

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5p31-ram-hosted.ldRAM HostedLinker scripts:

lm3s5p31-ram.ldRAM Unhosted

lm3s5p31-rom-hosted.ldROM Hosted

lm3s5p31-rom.ldROM Unhosted

Stellaris LM3S5P36

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5p36-ram-hosted.ldRAM HostedLinker scripts:

lm3s5p36-ram.ldRAM Unhosted

lm3s5p36-rom-hosted.ldROM Hosted

lm3s5p36-rom.ldROM Unhosted

Stellaris LM3S5P51

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5p51-ram-hosted.ldRAM HostedLinker scripts:

lm3s5p51-ram.ldRAM Unhosted

lm3s5p51-rom-hosted.ldROM Hosted

lm3s5p51-rom.ldROM Unhosted

124

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5P56

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (24K RAM),
rom (64K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5p56-ram-hosted.ldRAM HostedLinker scripts:

lm3s5p56-ram.ldRAM Unhosted

lm3s5p56-rom-hosted.ldROM Hosted

lm3s5p56-rom.ldROM Unhosted

Stellaris LM3S5R31

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (48K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5r31-ram-hosted.ldRAM HostedLinker scripts:

lm3s5r31-ram.ldRAM Unhosted

lm3s5r31-rom-hosted.ldROM Hosted

lm3s5r31-rom.ldROM Unhosted

Stellaris LM3S5R36

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (48K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5r36-ram-hosted.ldRAM HostedLinker scripts:

lm3s5r36-ram.ldRAM Unhosted

lm3s5r36-rom-hosted.ldROM Hosted

lm3s5r36-rom.ldROM Unhosted

125

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S5T36

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (12K RAM),
rom (32K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5t36-ram-hosted.ldRAM HostedLinker scripts:

lm3s5t36-ram.ldRAM Unhosted

lm3s5t36-rom-hosted.ldROM Hosted

lm3s5t36-rom.ldROM Unhosted

Stellaris LM3S5Y36

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (16K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s5y36-ram-hosted.ldRAM HostedLinker scripts:

lm3s5y36-ram.ldRAM Unhosted

lm3s5y36-rom-hosted.ldROM Hosted

lm3s5y36-rom.ldROM Unhosted

Stellaris LM3S600

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s600-ram-hosted.ldRAM HostedLinker scripts:

lm3s600-ram.ldRAM Unhosted

lm3s600-rom-hosted.ldROM Hosted

lm3s600-rom.ldROM Unhosted

126

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S601

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s601-ram-hosted.ldRAM HostedLinker scripts:

lm3s601-ram.ldRAM Unhosted

lm3s601-rom-hosted.ldROM Hosted

lm3s601-rom.ldROM Unhosted

Stellaris LM3S608

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s608-ram-hosted.ldRAM HostedLinker scripts:

lm3s608-ram.ldRAM Unhosted

lm3s608-rom-hosted.ldROM Hosted

lm3s608-rom.ldROM Unhosted

Stellaris LM3S610

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s610-ram-hosted.ldRAM HostedLinker scripts:

lm3s610-ram.ldRAM Unhosted

lm3s610-rom-hosted.ldROM Hosted

lm3s610-rom.ldROM Unhosted

127

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6100

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6100-ram-hosted.ldRAM HostedLinker scripts:

lm3s6100-ram.ldRAM Unhosted

lm3s6100-rom-hosted.ldROM Hosted

lm3s6100-rom.ldROM Unhosted

Stellaris LM3S611

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s611-ram-hosted.ldRAM HostedLinker scripts:

lm3s611-ram.ldRAM Unhosted

lm3s611-rom-hosted.ldROM Hosted

lm3s611-rom.ldROM Unhosted

Stellaris LM3S6110

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (16K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6110-ram-hosted.ldRAM HostedLinker scripts:

lm3s6110-ram.ldRAM Unhosted

lm3s6110-rom-hosted.ldROM Hosted

lm3s6110-rom.ldROM Unhosted

128

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S612

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s612-ram-hosted.ldRAM HostedLinker scripts:

lm3s612-ram.ldRAM Unhosted

lm3s612-rom-hosted.ldROM Hosted

lm3s612-rom.ldROM Unhosted

Stellaris LM3S613

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s613-ram-hosted.ldRAM HostedLinker scripts:

lm3s613-ram.ldRAM Unhosted

lm3s613-rom-hosted.ldROM Hosted

lm3s613-rom.ldROM Unhosted

Stellaris LM3S615

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s615-ram-hosted.ldRAM HostedLinker scripts:

lm3s615-ram.ldRAM Unhosted

lm3s615-rom-hosted.ldROM Hosted

lm3s615-rom.ldROM Unhosted

129

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S617

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s617-ram-hosted.ldRAM HostedLinker scripts:

lm3s617-ram.ldRAM Unhosted

lm3s617-rom-hosted.ldROM Hosted

lm3s617-rom.ldROM Unhosted

Stellaris LM3S618

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s618-ram-hosted.ldRAM HostedLinker scripts:

lm3s618-ram.ldRAM Unhosted

lm3s618-rom-hosted.ldROM Hosted

lm3s618-rom.ldROM Unhosted

Stellaris LM3S628

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (32K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s628-ram-hosted.ldRAM HostedLinker scripts:

lm3s628-ram.ldRAM Unhosted

lm3s628-rom-hosted.ldROM Hosted

lm3s628-rom.ldROM Unhosted

130

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6420

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6420-ram-hosted.ldRAM HostedLinker scripts:

lm3s6420-ram.ldRAM Unhosted

lm3s6420-rom-hosted.ldROM Hosted

lm3s6420-rom.ldROM Unhosted

Stellaris LM3S6422

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6422-ram-hosted.ldRAM HostedLinker scripts:

lm3s6422-ram.ldRAM Unhosted

lm3s6422-rom-hosted.ldROM Hosted

lm3s6422-rom.ldROM Unhosted

Stellaris LM3S6432

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6432-ram-hosted.ldRAM HostedLinker scripts:

lm3s6432-ram.ldRAM Unhosted

lm3s6432-rom-hosted.ldROM Hosted

lm3s6432-rom.ldROM Unhosted

131

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6537

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6537-ram-hosted.ldRAM HostedLinker scripts:

lm3s6537-ram.ldRAM Unhosted

lm3s6537-rom-hosted.ldROM Hosted

lm3s6537-rom.ldROM Unhosted

Stellaris LM3S6610

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6610-ram-hosted.ldRAM HostedLinker scripts:

lm3s6610-ram.ldRAM Unhosted

lm3s6610-rom-hosted.ldROM Hosted

lm3s6610-rom.ldROM Unhosted

Stellaris LM3S6611

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6611-ram-hosted.ldRAM HostedLinker scripts:

lm3s6611-ram.ldRAM Unhosted

lm3s6611-rom-hosted.ldROM Hosted

lm3s6611-rom.ldROM Unhosted

132

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6618

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6618-ram-hosted.ldRAM HostedLinker scripts:

lm3s6618-ram.ldRAM Unhosted

lm3s6618-rom-hosted.ldROM Hosted

lm3s6618-rom.ldROM Unhosted

Stellaris LM3S6633

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6633-ram-hosted.ldRAM HostedLinker scripts:

lm3s6633-ram.ldRAM Unhosted

lm3s6633-rom-hosted.ldROM Hosted

lm3s6633-rom.ldROM Unhosted

Stellaris LM3S6637

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6637-ram-hosted.ldRAM HostedLinker scripts:

lm3s6637-ram.ldRAM Unhosted

lm3s6637-rom-hosted.ldROM Hosted

lm3s6637-rom.ldROM Unhosted

133

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6730

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6730-ram-hosted.ldRAM HostedLinker scripts:

lm3s6730-ram.ldRAM Unhosted

lm3s6730-rom-hosted.ldROM Hosted

lm3s6730-rom.ldROM Unhosted

Stellaris LM3S6753

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6753-ram-hosted.ldRAM HostedLinker scripts:

lm3s6753-ram.ldRAM Unhosted

lm3s6753-rom-hosted.ldROM Hosted

lm3s6753-rom.ldROM Unhosted

Stellaris LM3S6911

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6911-ram-hosted.ldRAM HostedLinker scripts:

lm3s6911-ram.ldRAM Unhosted

lm3s6911-rom-hosted.ldROM Hosted

lm3s6911-rom.ldROM Unhosted

134

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6918

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6918-ram-hosted.ldRAM HostedLinker scripts:

lm3s6918-ram.ldRAM Unhosted

lm3s6918-rom-hosted.ldROM Hosted

lm3s6918-rom.ldROM Unhosted

Stellaris LM3S6938

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6938-ram-hosted.ldRAM HostedLinker scripts:

lm3s6938-ram.ldRAM Unhosted

lm3s6938-rom-hosted.ldROM Hosted

lm3s6938-rom.ldROM Unhosted

Stellaris LM3S6950

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6950-ram-hosted.ldRAM HostedLinker scripts:

lm3s6950-ram.ldRAM Unhosted

lm3s6950-rom-hosted.ldROM Hosted

lm3s6950-rom.ldROM Unhosted

135

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S6952

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6952-ram-hosted.ldRAM HostedLinker scripts:

lm3s6952-ram.ldRAM Unhosted

lm3s6952-rom-hosted.ldROM Hosted

lm3s6952-rom.ldROM Unhosted

Stellaris LM3S6965

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s6965-ram-hosted.ldRAM HostedLinker scripts:

lm3s6965-ram.ldRAM Unhosted

lm3s6965-rom-hosted.ldROM Hosted

lm3s6965-rom.ldROM Unhosted

Stellaris LM3S800

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s800-ram-hosted.ldRAM HostedLinker scripts:

lm3s800-ram.ldRAM Unhosted

lm3s800-rom-hosted.ldROM Hosted

lm3s800-rom.ldROM Unhosted

136

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S801

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s801-ram-hosted.ldRAM HostedLinker scripts:

lm3s801-ram.ldRAM Unhosted

lm3s801-rom-hosted.ldROM Hosted

lm3s801-rom.ldROM Unhosted

Stellaris LM3S808

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s808-ram-hosted.ldRAM HostedLinker scripts:

lm3s808-ram.ldRAM Unhosted

lm3s808-rom-hosted.ldROM Hosted

lm3s808-rom.ldROM Unhosted

Stellaris LM3S811

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s811-ram-hosted.ldRAM HostedLinker scripts:

lm3s811-ram.ldRAM Unhosted

lm3s811-rom-hosted.ldROM Hosted

lm3s811-rom.ldROM Unhosted

137

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S812

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s812-ram-hosted.ldRAM HostedLinker scripts:

lm3s812-ram.ldRAM Unhosted

lm3s812-rom-hosted.ldROM Hosted

lm3s812-rom.ldROM Unhosted

Stellaris LM3S815

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s815-ram-hosted.ldRAM HostedLinker scripts:

lm3s815-ram.ldRAM Unhosted

lm3s815-rom-hosted.ldROM Hosted

lm3s815-rom.ldROM Unhosted

Stellaris LM3S817

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s817-ram-hosted.ldRAM HostedLinker scripts:

lm3s817-ram.ldRAM Unhosted

lm3s817-rom-hosted.ldROM Hosted

lm3s817-rom.ldROM Unhosted

138

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S818

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s818-ram-hosted.ldRAM HostedLinker scripts:

lm3s818-ram.ldRAM Unhosted

lm3s818-rom-hosted.ldROM Hosted

lm3s818-rom.ldROM Unhosted

Stellaris LM3S828

Stellaris SandstormProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (8K RAM),
rom (64K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_sandstormInterrupt vector:

lm3s828-ram-hosted.ldRAM HostedLinker scripts:

lm3s828-ram.ldRAM Unhosted

lm3s828-rom-hosted.ldROM Hosted

lm3s828-rom.ldROM Unhosted

Stellaris LM3S8530

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8530-ram-hosted.ldRAM HostedLinker scripts:

lm3s8530-ram.ldRAM Unhosted

lm3s8530-rom-hosted.ldROM Hosted

lm3s8530-rom.ldROM Unhosted

139

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S8538

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (96K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8538-ram-hosted.ldRAM HostedLinker scripts:

lm3s8538-ram.ldRAM Unhosted

lm3s8538-rom-hosted.ldROM Hosted

lm3s8538-rom.ldROM Unhosted

Stellaris LM3S8630

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (32K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8630-ram-hosted.ldRAM HostedLinker scripts:

lm3s8630-ram.ldRAM Unhosted

lm3s8630-rom-hosted.ldROM Hosted

lm3s8630-rom.ldROM Unhosted

Stellaris LM3S8730

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8730-ram-hosted.ldRAM HostedLinker scripts:

lm3s8730-ram.ldRAM Unhosted

lm3s8730-rom-hosted.ldROM Hosted

lm3s8730-rom.ldROM Unhosted

140

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S8733

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8733-ram-hosted.ldRAM HostedLinker scripts:

lm3s8733-ram.ldRAM Unhosted

lm3s8733-rom-hosted.ldROM Hosted

lm3s8733-rom.ldROM Unhosted

Stellaris LM3S8738

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8738-ram-hosted.ldRAM HostedLinker scripts:

lm3s8738-ram.ldRAM Unhosted

lm3s8738-rom-hosted.ldROM Hosted

lm3s8738-rom.ldROM Unhosted

Stellaris LM3S8930

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8930-ram-hosted.ldRAM HostedLinker scripts:

lm3s8930-ram.ldRAM Unhosted

lm3s8930-rom-hosted.ldROM Hosted

lm3s8930-rom.ldROM Unhosted

141

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S8933

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8933-ram-hosted.ldRAM HostedLinker scripts:

lm3s8933-ram.ldRAM Unhosted

lm3s8933-rom-hosted.ldROM Hosted

lm3s8933-rom.ldROM Unhosted

Stellaris LM3S8938

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8938-ram-hosted.ldRAM HostedLinker scripts:

lm3s8938-ram.ldRAM Unhosted

lm3s8938-rom-hosted.ldROM Hosted

lm3s8938-rom.ldROM Unhosted

Stellaris LM3S8962

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8962-ram-hosted.ldRAM HostedLinker scripts:

lm3s8962-ram.ldRAM Unhosted

lm3s8962-rom-hosted.ldROM Hosted

lm3s8962-rom.ldROM Unhosted

142

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S8970

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8970-ram-hosted.ldRAM HostedLinker scripts:

lm3s8970-ram.ldRAM Unhosted

lm3s8970-rom-hosted.ldROM Hosted

lm3s8970-rom.ldROM Unhosted

Stellaris LM3S8971

Stellaris FuryProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_furyInterrupt vector:

lm3s8971-ram-hosted.ldRAM HostedLinker scripts:

lm3s8971-ram.ldRAM Unhosted

lm3s8971-rom-hosted.ldROM Hosted

lm3s8971-rom.ldROM Unhosted

Stellaris LM3S9781

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9781-ram-hosted.ldRAM HostedLinker scripts:

lm3s9781-ram.ldRAM Unhosted

lm3s9781-rom-hosted.ldROM Hosted

lm3s9781-rom.ldROM Unhosted

143

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S9790

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9790-ram-hosted.ldRAM HostedLinker scripts:

lm3s9790-ram.ldRAM Unhosted

lm3s9790-rom-hosted.ldROM Hosted

lm3s9790-rom.ldROM Unhosted

Stellaris LM3S9792

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9792-ram-hosted.ldRAM HostedLinker scripts:

lm3s9792-ram.ldRAM Unhosted

lm3s9792-rom-hosted.ldROM Hosted

lm3s9792-rom.ldROM Unhosted

Stellaris LM3S9997

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (64K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9997-ram-hosted.ldRAM HostedLinker scripts:

lm3s9997-ram.ldRAM Unhosted

lm3s9997-rom-hosted.ldROM Hosted

lm3s9997-rom.ldROM Unhosted

144

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S9B81

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9b81-ram-hosted.ldRAM HostedLinker scripts:

lm3s9b81-ram.ldRAM Unhosted

lm3s9b81-rom-hosted.ldROM Hosted

lm3s9b81-rom.ldROM Unhosted

Stellaris LM3S9B90

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9b90-ram-hosted.ldRAM HostedLinker scripts:

lm3s9b90-ram.ldRAM Unhosted

lm3s9b90-rom-hosted.ldROM Hosted

lm3s9b90-rom.ldROM Unhosted

Stellaris LM3S9B92

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9b92-ram-hosted.ldRAM HostedLinker scripts:

lm3s9b92-ram.ldRAM Unhosted

lm3s9b92-rom-hosted.ldROM Hosted

lm3s9b92-rom.ldROM Unhosted

145

CS3™: The CodeSourcery Common Startup Code Sequence

Stellaris LM3S9B95

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9b95-ram-hosted.ldRAM HostedLinker scripts:

lm3s9b95-ram.ldRAM Unhosted

lm3s9b95-rom-hosted.ldROM Hosted

lm3s9b95-rom.ldROM Unhosted

Stellaris LM3S9B96

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (96K RAM),
rom (256K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9b96-ram-hosted.ldRAM HostedLinker scripts:

lm3s9b96-ram.ldRAM Unhosted

lm3s9b96-rom-hosted.ldROM Hosted

lm3s9b96-rom.ldROM Unhosted

Stellaris LM3S9L97

Stellaris TempestProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (48K RAM),
rom (128K Flash ROM),
boot (Boot ROM)

Memory regions:

__cs3_interrupt_vector_stellaris_tempestInterrupt vector:

lm3s9l97-ram-hosted.ldRAM HostedLinker scripts:

lm3s9l97-ram.ldRAM Unhosted

lm3s9l97-rom-hosted.ldROM Hosted

lm3s9l97-rom.ldROM Unhosted

146

CS3™: The CodeSourcery Common Startup Code Sequence

STMicroelectronics STM3210B-EVAL

STM32F103RBProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (Internal SRAM),
rom (Internal Flash),
option_bytes_rom (Option Bytes)

Memory regions:

__cs3_interrupt_vector_stm32f10Interrupt vector:

stm3210b-eval-ram-hosted.ldRAM HostedLinker scripts:

stm3210b-eval-ram.ldRAM Unhosted

stm3210b-eval-rom-hosted.ldROM Hosted

stm3210b-eval-rom.ldROM Unhosted

STMicroelectronics STM3210C-EVAL

STM32F107VCProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (Internal SRAM),
rom (Internal Flash),
option_bytes_rom (Option Bytes)

Memory regions:

__cs3_interrupt_vector_stm32f10clInterrupt vector:

stm3210c-eval-ram-hosted.ldRAM HostedLinker scripts:

stm3210c-eval-ram.ldRAM Unhosted

stm3210c-eval-rom-hosted.ldROM Hosted

stm3210c-eval-rom.ldROM Unhosted

STMicroelectronics STM3210E-EVAL

STM32F103ZEProcessor name:

-mcpu=cortex-m3 -mthumbProcessor options:

ram (Internal SRAM),
rom (Internal Flash),
option_bytes_rom (Option Bytes),
extnor (External NOR Flash),
extsram (External SRAM),
extnand (External NAND Flash)

Memory regions:

__cs3_interrupt_vector_stm32f10Interrupt vector:

stm3210e-eval-ram-hosted.ldRAM HostedLinker scripts:

stm3210e-eval-ram.ldRAM Unhosted

stm3210e-eval-rom-hosted.ldROM Hosted

stm3210e-eval-rom.ldROM Unhosted

147

CS3™: The CodeSourcery Common Startup Code Sequence

Xilinx Cortex-A9

Cortex-A9Processor name:

-mcpu=cortex-a9Processor options:

ram (256MB DDR SDRAM),
rom (64MB NOR Flash Memory)

Memory regions:

__cs3_interrupt_vector_armInterrupt vector:

xilinxa9-ram-hosted.ldRAM HostedLinker scripts:

xilinxa9-ram.ldRAM Unhosted

xilinxa9-rom-hosted.ldROM Hosted

xilinxa9-rom.ldROM Unhosted

6.6. Interrupt Vector Tables
6.6.1. __cs3_interrupt_vector_arm

The ARM interrupt vector table (__cs3_interrupt_vector_arm) contents are:

MeaningNameNumber

Reset entry point__cs3_reset0

Undefined Instruction__cs3_isr_undef1

Software Interrupt/Supervisor Call__cs3_isr_swi2

Prefetch Abort__cs3_isr_pabort3

Data Abort__cs3_isr_dabort4

__cs3_isr_reserved5

External Interrupt (IRQ)__cs3_isr_irq6

Fast Interrupt (FIQ)__cs3_isr_fiq7

6.6.2. __cs3_interrupt_vector_efm32g

The efm32g interrupt vector table (__cs3_interrupt_vector_efm32g) contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

148

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

DMA interrupt__cs3_isr_dma16

GPIO_EVEN interrupt__cs3_isr_GPIO_EVEN17

TIMER0 interrupt__cs3_isr_TIMER018

USART0_RX interrupt__cs3_isr_USART0_RX19

USART0_TX interrupt__cs3_isr_USART0_TX20

ACMP0/ACMP1 interrupt__cs3_isr_ACMP021

ADC0 interrupt__cs3_isr_ADC022

DAC0 interrupt__cs3_isr_DAC023

I2C0 interrupt__cs3_isr_I2C024

GPIO_ODD interrupt__cs3_isr_GPIO_ODD25

TIMER1 interrupt__cs3_isr_TIMER1..TIMER226..27

USART1_RX interrupt__cs3_isr_USART1_RX28

USART1_TX interrupt__cs3_isr_USART1_TX29

USART2_RX interrupt__cs3_isr_USART2_RX30

USART2_TX interrupt__cs3_isr_USART2_TX31

UART0_RX interrupt__cs3_isr_UART0_RX32

UART0_TX interrupt__cs3_isr_UART0_TX33

LEUART0 interrupt__cs3_isr_LEUART0..LEUART134..35

LETIMER0 interrupt__cs3_isr_LETIMER036

PCNT0 interrupt__cs3_isr_PCNT0..PCNT237..39

RTC interrupt__cs3_isr_RTC40

CMU interrupt__cs3_isr_CMU41

VCMP interrupt__cs3_isr_VCMP42

LCD interrupt__cs3_isr_LCD43

MSC interrupt__cs3_isr_MSC44

AES interrupt__cs3_isr_AES45

6.6.3. __cs3_interrupt_vector_kinetis

The kinetis interrupt vector table (__cs3_interrupt_vector_kinetis) contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

149

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

DMA Channel 0 transfer complete__cs3_isr_dma0..dma1516..31

DMA Error Interrupt__cs3_isr_dma_error32

MCM__cs3_isr_mcm33

Flash Command Complete__cs3_isr_flash_command_complete34

Flash Read Collision__cs3_isr_flash_read_collision35

Mode Controller__cs3_isr_mode_controller36

Low Leakage Wakeup__cs3_isr_llwu37

WDOG__cs3_isr_wdog38

Random Number Generator__cs3_isr_rngb39

I2C0__cs3_isr_i2c0..i2c140..41

SPI0__cs3_isr_spi0..spi242..44

CAN0 ORed Message Buffer__cs3_isr_can0_ored_message_buffer45

CAN0 Bus Off__cs3_isr_can0_buf_off46

CAN0 Error__cs3_isr_can0_error47

CAN0 Transmit Warning__cs3_isr_can0_transmit_warning48

CAN0 Receive Warning__cs3_isr_can0_receive_warning49

CAN0 Wake Up__cs3_isr_can0_wake_up50

CAN0 IMEU__cs3_isr_can0_imeu51

CAN0 Lost Receive__cs3_isr_can0_lost_receive52

CAN1 ORed Message Buffer__cs3_isr_can1_ored_message_buffer53

CAN1 Bus Off__cs3_isr_can1_buf_off54

CAN1 Error__cs3_isr_can1_error55

CAN1 Transmit Warning__cs3_isr_can1_transmit_warning56

CAN1 Receive Warning__cs3_isr_can1_receive_warning57

CAN1 Wake Up__cs3_isr_can1_wake_up58

CAN1 IMEU__cs3_isr_can1_imeu59

CAN1 Lost Receive__cs3_isr_can1_lost_receive60

UART0 Status Sources__cs3_isr_uart0_status_sources61

UART0 Error Sources__cs3_isr_uart0_error_sources62

UART1 Status Sources__cs3_isr_uart1_status_sources63

UART1 Error Sources__cs3_isr_uart1_error_sources64

150

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

UART2 Status Sources__cs3_isr_uart2_status_sources65

UART2 Error Sources__cs3_isr_uart2_error_sources66

UART3 Status Sources__cs3_isr_uart3_status_sources67

UART3 Error Sources__cs3_isr_uart3_error_sources68

UART4 Status Sources__cs3_isr_uart4_status_sources69

UART4 Error Sources__cs3_isr_uart4_error_sources70

UART5 Status Sources__cs3_isr_uart5_status_sources71

UART5 Error Sources__cs3_isr_uart5_error_sources72

ADC0__cs3_isr_adc0..adc173..74

CMP0__cs3_isr_cmp0..cmp275..77

FTM0__cs3_isr_ftm0..ftm278..80

CMT__cs3_isr_cmt81

RTC__cs3_isr_rtc82

Reserved for future use__cs3_isr_reserved_8383

PIT Channel 0__cs3_isr_pit0..pit384..87

PDB__cs3_isr_pdb88

USB OTG__cs3_isr_usb_otg89

USB Charger Detect__cs3_isr_usb_charger_detect90

Ethernet MAC Timer__cs3_isr_ethernet_mac_timer91

Ethernet MAC Transmit__cs3_isr_ethernet_mac_transmit92

Ethernet MAC Receive__cs3_isr_ethernet_mac_receive93

Ethernet MAC Error__cs3_isr_ethernet_mac_error94

I2S__cs3_isr_i2s95

SDHC__cs3_isr_sdhc96

DAC0__cs3_isr_dac0..dac197..98

TSI__cs3_isr_tsi99

MCG__cs3_isr_mcg100

Low Power Timer__cs3_isr_low_power_timer101

Reserved for future use__cs3_isr_reserved_102102

Port Control Module a__cs3_isr_port_control_module_a103

Port Control Module b__cs3_isr_port_control_module_b104

Port Control Module c__cs3_isr_port_control_module_c105

Port Control Module d__cs3_isr_port_control_module_d106

Port Control Module e__cs3_isr_port_control_module_e107

6.6.4. __cs3_interrupt_vector_lpc17xx

The NXP LPC17xx interrupt vector table (__cs3_interrupt_vector_lpc17xx) contents
are:

151

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Interrupt vector checksum__cs3_lpc17xx_checksum7

Reserved for future use__cs3_isr_reserved_8..108..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

Watchdog interrupt__cs3_isr_watchdog16

Timer 0 interrupt__cs3_isr_timer0..timer317..20

UART0 interrupt__cs3_isr_uart0..uart321..24

PWM1 interrupt__cs3_isr_pwm125

I2C0 interrupt__cs3_isr_i2c0..i2c226..28

SPI interrupt__cs3_isr_spi29

SSP0 interrupt__cs3_isr_ssp0..ssp130..31

PLL0 interrupt__cs3_isr_pll032

RTC interrupt__cs3_isr_rtc33

External interrupt 0__cs3_isr_external0..external334..37

ADC interrupt__cs3_isr_adc38

Brown out detect interrupt__cs3_isr_bod39

USB interrupt__cs3_isr_usb40

CAN interrupt__cs3_isr_can41

GPDMA interrupt__cs3_isr_gpdma42

I2S interrupt__cs3_isr_i2s43

Ethernet interrupt__cs3_isr_ethernet44

RIT interrupt__cs3_isr_ritint45

Motor control PWM interrupt__cs3_isr_motor_control_pwm46

Quadrature encoder interrupt__cs3_isr_quadrature_encoder47

PLL1__cs3_isr_pll148

USB activity interrupt__cs3_isr_usb_activity49

CAN activity interrupt__cs3_isr_can_activity50

152

CS3™: The CodeSourcery Common Startup Code Sequence

6.6.5. __cs3_interrupt_vector_lpc21xx

The NXP LPC21xx interrupt vector table (__cs3_interrupt_vector_lpc21xx) contents
are:

MeaningNameNumber

Reset entry point__cs3_reset0

Undefined Instruction__cs3_isr_undef1

Software Interrupt/Supervisor Call__cs3_isr_swi2

Prefetch Abort__cs3_isr_pabort3

Data Abort__cs3_isr_dabort4

__cs3_isr_reserved5

External Interrupt (IRQ)__cs3_isr_irq6

Fast Interrupt (FIQ)__cs3_isr_fiq7

6.6.6. __cs3_interrupt_vector_micro

The Microcontroller Profile interrupt vector table (__cs3_interrupt_vector_micro) contents
are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

External interrupt__cs3_isr_external_0..3116..47

6.6.7. __cs3_interrupt_vector_stellaris

The Stellaris DustDevil interrupt vector table (__cs3_interrupt_vector_stellaris)
contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

153

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

General Purpose IO__cs3_isr_gpio_a16

General Purpose IO__cs3_isr_gpio_b17

General Purpose IO__cs3_isr_gpio_c18

General Purpose IO__cs3_isr_gpio_d19

General Purpose IO__cs3_isr_gpio_e20

UART__cs3_isr_uart0..uart121..22

SSI__cs3_isr_ssi023

I2C__cs3_isr_i2c024

Pulse Width Modulation__cs3_isr_pwm_fault25

Pulse Width Modulation__cs3_isr_pwm0..pwm226..28

QEI__cs3_isr_qei029

Analog to Digital__cs3_isr_adc0..adc330..33

Watchdog Timeout__cs3_isr_watchdog34

Timer__cs3_isr_timer0a35

Timer__cs3_isr_timer0b36

Timer__cs3_isr_timer1a37

Timer__cs3_isr_timer1b38

Timer__cs3_isr_timer2a39

Timer__cs3_isr_timer2b40

Comparator__cs3_isr_comp0..comp241..43

System Control__cs3_isr_sysctl44

Flash Control__cs3_isr_flashctl45

General Purpose IO__cs3_isr_gpio_f46

General Purpose IO__cs3_isr_gpio_g47

General Purpose IO__cs3_isr_gpio_h48

UART__cs3_isr_uart249

SSI__cs3_isr_ssi150

154

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Timer__cs3_isr_timer3a51

Timer__cs3_isr_timer3b52

I2C__cs3_isr_i2c153

QEI__cs3_isr_qei154

CAN__cs3_isr_can0..can255..57

Ethernet__cs3_isr_ethernet058

Hibernate__cs3_isr_hibernate59

USB Controller__cs3_isr_usb060

Pulse Width Modulation__cs3_isr_pwm361

uDMA Controller__cs3_isr_udma62

uDMA Error__cs3_isr_udmaerr63

6.6.8. __cs3_interrupt_vector_stellaris_fury

The Stellaris Fury interrupt vector table (__cs3_interrupt_vector_stellaris_fury)
contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

General Purpose IO__cs3_isr_gpio_a16

General Purpose IO__cs3_isr_gpio_b17

General Purpose IO__cs3_isr_gpio_c18

General Purpose IO__cs3_isr_gpio_d19

General Purpose IO__cs3_isr_gpio_e20

UART__cs3_isr_uart0..uart121..22

SSI__cs3_isr_ssi023

I2C__cs3_isr_i2c024

Pulse Width Modulation__cs3_isr_pwm_fault25

155

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Pulse Width Modulation__cs3_isr_pwm0..pwm226..28

QEI__cs3_isr_qei029

Analog to Digital__cs3_isr_adc0..adc330..33

Watchdog Timeout__cs3_isr_watchdog34

Timer__cs3_isr_timer0a35

Timer__cs3_isr_timer0b36

Timer__cs3_isr_timer1a37

Timer__cs3_isr_timer1b38

Timer__cs3_isr_timer2a39

Timer__cs3_isr_timer2b40

Comparator__cs3_isr_comp0..comp241..43

System Control__cs3_isr_sysctl44

Flash Control__cs3_isr_flashctl45

General Purpose IO__cs3_isr_gpio_f46

General Purpose IO__cs3_isr_gpio_g47

General Purpose IO__cs3_isr_gpio_h48

UART__cs3_isr_uart249

SSI__cs3_isr_ssi150

Timer__cs3_isr_timer3a51

Timer__cs3_isr_timer3b52

I2C__cs3_isr_i2c153

QEI__cs3_isr_qei154

CAN__cs3_isr_can0..can255..57

Ethernet__cs3_isr_ethernet058

Hibernate__cs3_isr_hibernate59

6.6.9. __cs3_interrupt_vector_stellaris_sandstorm

The Stellaris Sandstorm interrupt vector table (__cs3_interrupt_vector_stellaris_
sandstorm) contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

156

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

General Purpose IO__cs3_isr_gpio_a16

General Purpose IO__cs3_isr_gpio_b17

General Purpose IO__cs3_isr_gpio_c18

General Purpose IO__cs3_isr_gpio_d19

General Purpose IO__cs3_isr_gpio_e20

UART__cs3_isr_uart0..uart121..22

SSI__cs3_isr_ssi023

I2C__cs3_isr_i2c024

Pulse Width Modulation__cs3_isr_pwm_fault25

Pulse Width Modulation__cs3_isr_pwm0..pwm226..28

QEI__cs3_isr_qei029

Analog to Digital__cs3_isr_adc0..adc330..33

Watchdog Timeout__cs3_isr_watchdog34

Timer__cs3_isr_timer0a35

Timer__cs3_isr_timer0b36

Timer__cs3_isr_timer1a37

Timer__cs3_isr_timer1b38

Timer__cs3_isr_timer2a39

Timer__cs3_isr_timer2b40

Comparator__cs3_isr_comp0..comp241..43

System Control__cs3_isr_sysctl44

Flash Control__cs3_isr_flashctl45

6.6.10. __cs3_interrupt_vector_stellaris_tempest

The Stellaris Tempest interrupt vector table (__cs3_interrupt_vector_stellaris_
tempest) contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

157

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

General Purpose IO__cs3_isr_gpio_a16

General Purpose IO__cs3_isr_gpio_b17

General Purpose IO__cs3_isr_gpio_c18

General Purpose IO__cs3_isr_gpio_d19

General Purpose IO__cs3_isr_gpio_e20

UART__cs3_isr_uart0..uart121..22

SSI__cs3_isr_ssi023

I2C__cs3_isr_i2c024

Pulse Width Modulation__cs3_isr_pwm_fault25

Pulse Width Modulation__cs3_isr_pwm0..pwm226..28

QEI__cs3_isr_qei029

Analog to Digital__cs3_isr_adc0..adc330..33

Watchdog Timeout__cs3_isr_watchdog34

Timer__cs3_isr_timer0a35

Timer__cs3_isr_timer0b36

Timer__cs3_isr_timer1a37

Timer__cs3_isr_timer1b38

Timer__cs3_isr_timer2a39

Timer__cs3_isr_timer2b40

Comparator__cs3_isr_comp0..comp241..43

System Control__cs3_isr_sysctl44

Flash Control__cs3_isr_flashctl45

General Purpose IO__cs3_isr_gpio_f46

General Purpose IO__cs3_isr_gpio_g47

General Purpose IO__cs3_isr_gpio_h48

UART__cs3_isr_uart249

SSI__cs3_isr_ssi150

Timer__cs3_isr_timer3a51

Timer__cs3_isr_timer3b52

I2C__cs3_isr_i2c153

QEI__cs3_isr_qei154

158

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

CAN__cs3_isr_can0..can255..57

Ethernet__cs3_isr_ethernet058

Hibernate__cs3_isr_hibernate59

USB Controller__cs3_isr_usb060

Pulse Width Modulation__cs3_isr_pwm361

uDMA Controller__cs3_isr_udma62

uDMA Error__cs3_isr_udmaerr63

Analog-to-Digital Sample Sequence__cs3_isr_adc1ss0..adc1ss364..67

Inter-Integrated Circuit Sound__cs3_isr_i2s068

External Peripheral Interface__cs3_isr_epi069

General Purpose IO__cs3_isr_gpio_j70

6.6.11. __cs3_interrupt_vector_stm32f10

The STM32F10xxx interrupt vector table (__cs3_interrupt_vector_stm32f10) contents
are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

Window watchdog interrupt__cs3_isr_wwdg16

PVD through EXTI Line detection interrupt__cs3_isr_pvd17

Tamper interrupt__cs3_isr_tamper18

RTC global interrupt__cs3_isr_rtc19

Flash global interrupt__cs3_isr_flash20

RCC global interrupt__cs3_isr_rcc21

EXTI Line0 interrupt__cs3_isr_exti0..exti422..26

DMA1 Channel1 global interrupt__cs3_isr_dma1_
channel1..channel7

27..33

159

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

ADC1 and ADC2 global interrupt__cs3_isr_adc1_234

USB High Priority or CAN TX interrupts__cs3_isr_usb_hp_can_tx35

USB Low Priority or CAN RX0 interrupts__cs3_isr_usb_lp_can_rx036

CAN RX1 interrupt__cs3_isr_can_rx137

CAN SCE interrupt__cs3_isr_can_sce38

EXTI Line[9:5] interrupts__cs3_isr_exti9_539

TIM1 Break interrupt__cs3_isr_tim1_brk40

TIM1 Update interrupt__cs3_isr_tim1_up41

TIM1 Trigger and Commutation interrupts__cs3_isr_tim1_trg_com42

TIM1 Capture Compare interrupt__cs3_isr_tim1_cc43

TIM2 global interrupt__cs3_isr_tim2..tim444..46

I2C1 event interrupt__cs3_isr_i2c1_ev47

I2C1 error interrupt__cs3_isr_i2c1_er48

I2C2 event interrupt__cs3_isr_i2c2_ev49

I2C2 error interrupt__cs3_isr_i2c2_er50

SPI1 global interrupt__cs3_isr_spi1..spi251..52

USART1 global interrupt__cs3_isr_usart1..usart353..55

EXTI Line[15:10] interrupts__cs3_isr_exti15_1056

RTC alarm through EXTI line interrupt__cs3_isr_rtcalarm57

USB wakeup from suspend through EXTI
line interrupt

__cs3_isr_usbwakeup58

TIM8 Break interrupt__cs3_isr_tim8_brk59

TIM8 Update interrupt__cs3_isr_tim8_up60

TIM8 Trigger and Commutation interrupts__cs3_isr_tim8_trg_com61

TIM8 Capture Compare interrupt__cs3_isr_tim8_cc62

ADC3 global interrupt__cs3_isr_adc363

FSMC global interrupt__cs3_isr_fsmc64

SDIO global interrupt__cs3_isr_sdio65

TIM5 global interrupt__cs3_isr_tim566

SPI3 global interrupt__cs3_isr_spi367

UART4 global interrupt__cs3_isr_uart4..uart568..69

TIM6 global interrupt__cs3_isr_tim6..tim770..71

DMA2 Channel1 global interrupt__cs3_isr_dma2_
channel1..channel3

72..74

DMA2 Channel4 and DMA2 Channel5
global interrupts

__cs3_isr_dma2_channel4_575

160

CS3™: The CodeSourcery Common Startup Code Sequence

6.6.12. __cs3_interrupt_vector_stm32f10cl

The STM32F10xxx connectivity line interrupt vector table (__cs3_interrupt_vector_
stm32f10cl) contents are:

MeaningNameNumber

Initial stack pointer__cs3_stack0

Reset entry point__cs3_reset1

Non Maskable Interrupt__cs3_isr_nmi2

Hardware fault__cs3_isr_hard_fault3

MPU fault__cs3_isr_mpu_fault4

Bus fault__cs3_isr_bus_fault5

Usage fault__cs3_isr_usage_fault6

Reserved for future use__cs3_isr_reserved_7..107..10

System Vector Call__cs3_isr_svcall11

Debug interrupt__cs3_isr_debug12

Reserved for future use__cs3_isr_reserved_1313

__cs3_isr_pendsv14

System Ticker__cs3_isr_systick15

Window Watchdog interrupt__cs3_isr_wwdg16

PVD through EXTI Line detection interrupt__cs3_isr_pvd17

Tamper interrupt__cs3_isr_tamper18

RTC global interrupt__cs3_isr_rtc19

Flash global interrupt__cs3_isr_flash20

RCC global interrupt__cs3_isr_rcc21

EXTI Line0 interrupt__cs3_isr_exti0..exti422..26

DMA1 Channel1 global interrupt__cs3_isr_dma1_
channel1..channel7

27..33

ADC1 and ADC2 global interrupt__cs3_isr_adc1_234

CAN1 TX interrupts__cs3_isr_can1_tx35

CAN1 RX0 interrupts__cs3_isr_can1_rx0..rx136..37

CAN1 SCE interrupt__cs3_isr_can1_sce38

EXTI Line[9:5] interrupts__cs3_isr_exti9_539

TIM1 Break interrupt__cs3_isr_tim1_brk40

TIM1 Update interrupt__cs3_isr_tim1_up41

TIM1 Trigger and Commutation interrupts__cs3_isr_tim1_trg_com42

TIM1 Capture Compare interrupt__cs3_isr_tim1_cc43

TIM2 global interrupt__cs3_isr_tim2..tim444..46

I2C1 event interrupt__cs3_isr_i2c1_ev47

I2C1 error interrupt__cs3_isr_i2c1_er48

I2C2 event interrupt__cs3_isr_i2c2_ev49

161

CS3™: The CodeSourcery Common Startup Code Sequence

MeaningNameNumber

I2C2 error interrupt__cs3_isr_i2c2_er50

SPI1 global interrupt__cs3_isr_spi1..spi251..52

USART1 global interrupt__cs3_isr_usart1..usart353..55

EXTI Line[15:10] interrupts__cs3_isr_exti15_1056

RTC alarm through EXTI line interrupt__cs3_isr_rtcalarm57

USB On-The-Go FS Wakeup through EXTI
line interrupt

__cs3_isr_otg_fs_wkup58

Reserved for future use__cs3_isr_reserved_59..6559..65

TIM5 global interrupt__cs3_isr_tim566

SPI3 global interrupt__cs3_isr_spi367

UART4 global interrupt__cs3_isr_uart4..uart568..69

TIM6 global interrupt__cs3_isr_tim6..tim770..71

DMA2 Channel1 global interrupt__cs3_isr_dma2_
channel1..channel5

72..76

Ethernet global interrupt__cs3_isr_eth77

Ethernet Wakeup through EXTI line inter-
rupt

__cs3_isr_eth_wkup78

CAN2 TX interrupts__cs3_isr_can2_tx79

CAN2 RX0 interrupts__cs3_isr_can2_rx0..rx180..81

CAN2 SCE interrupt__cs3_isr_can2_sce82

USB On The Go FS global interrupt__cs3_isr_otg_fs83

162

CS3™: The CodeSourcery Common Startup Code Sequence

Chapter 7
Sourcery G++ Debug Sprite
This chapter describes the use of the Sourcery G++ Debug Sprite for remote debugging.
The Sprite allows you to debug programs running on a bare board without an operating
system.This chapter includes information about the debugging devices and boards supported
by the Sprite for ARM EABI.

163

Sourcery G++ contains the Sourcery G++ Debug Sprite for ARM EABI. This Sprite is provided to
allow debugging of programs running on a bare board. You can use the Sprite to debug a program
when there is no operating system on the board, or for debugging the operating system itself. If the
board is running an operating system, and you wish to debug a program running on that OS, you
should use the facilities provided by the OS itself (for instance, using gdbserver).

The Sprite acts as an interface between GDB and external debug devices and libraries. Refer to
Section 7.3, “Invoking Sourcery G++ Debug Sprite” for information about the specific devices sup-
ported by this version of Sourcery G++.

The Sourcery G++ Debug Sprite also supports programming of flash memory on the target. When
used with an appropriate linker script and board configuration, flash programming is automatic when
you load your program in the debugger.

Important

The Sourcery G++ Debug Sprite is not part of the GNU Debugger and is not free or open-
source software. You may use the Sourcery G++ Debug Sprite only with the GNU Debugger.
You may not distribute the Sourcery G++ Debug Sprite to any third party.

7.1. Probing for Debug Devices
Before running the Sourcery G++ Debug Sprite for the first time, or when attaching new debug
devices to your host system, it is helpful to verify that the Sourcery G++ Debug Sprite recognizes
your debug hardware. From the command line, invoke the Sprite with the -i option:

> arm-none-eabi-sprite -i

This prints out a list of supported device types. For devices that can be autodetected, it additionally
probes for and prints out a list of attached devices. For instance:

CodeSourcery ARM Debug Sprite
 (Sourcery G++ 2011.02-2)
armusb: [speed=<n:0-7>] ARMUSB (Stellaris) device
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
rdi: (rdi-library=<file>&rdi-config=<file>) RDI Device
 rdi:/// - RDI Device

This shows that ARMUSB and RDI devices are supported. The exact set of supported devices depends
on your host system and the version of Sourcery G++ you have installed; refer to Section 7.3, “In-
voking Sourcery G++ Debug Sprite” for complete information.

Note that it may take several seconds for the Debug Sprite to probe for all types of supported devices.

7.2. Debug Sprite Example
If you are using the Sourcery G++ IDE, refer to Section 4.3, “Debugging Applications” for basic
instructions on how to build and debug your program. This section explains how to use the Sourcery
G++ Debug Sprite from the command line, or as a remote debug agent.

Start by compiling and linking a simple test program for your target board, following the instructions
in Chapter 5, “Using Sourcery G++ from the Command Line”. Use the -g option to tell the compiler
to generate debugging information.

164

Sourcery G++ Debug Sprite

For example, use this command to build the factorial program to run from RAM on a Stellaris
LM3S2965 board:

> arm-none-eabi-gcc -g -mcpu=cortex-m3 -mthumb \
 -Tlm3s2965-ram-hosted.ld main.c -o factorial

To build the factorial program to run on the ARMulator simulator, which can communicate
with the Sprite via the RDI protocol, use:

> arm-none-eabi-gcc -g -Tarmulator-ram-hosted.ld main.c \
 -o factorial

Next start the debugger on your host system:

> arm-none-eabi-gdb factorial

The command for connecting GDB to the board depends on the debug device you are using; this is
described in more detail in Section 7.3, “Invoking Sourcery G++ Debug Sprite”. If you are using an
ARMUSB debug device to connect to a Stellaris LM3S2965 board, use:

(gdb) target remote | arm-none-eabi-sprite \
 armusb:///?speed=2 lm3s2965

If you are connecting via RDI, you must specify the full path to the RDI library file and configuration
file for that library. Use quotes to escape the Sprite argument syntax from the shell. For example,
use a command like this to connect to the ARMulator:

(gdb) target remote | arm-none-eabi-sprite \
 "rdi:///?rdi-library=library&rdi-config=config" armulator

The Sprite prints some status messages as it connects to your debug device and target board. If the
connection is successful, you should see output similar to:

arm-none-eabi-sprite:Target reset
0x00008936 in ?? ()
(gdb)

Next, use GDB to load your program onto the target board. If your target board includes a flash
memory region and you have linked your program to reside in flash by providing an appropriate
linker script, flash programming happens automatically when you issue the GDB load command.

(gdb) load

At this point you can use GDB to control the execution of your program as required. For example:

(gdb) break main
(gdb) continue

7.3. Invoking Sourcery G++ Debug Sprite
The Debug Sprite is invoked as follows:

> arm-none-eabi-sprite [options] device-url board-file

The device-url specifies the debug device to use to communicate with the board. It follows the
standard format:

165

Sourcery G++ Debug Sprite

scheme:scheme-specific-part[?device-options]

Most device URL schemes also follow the regular format:

scheme:[//hostname:[port]]/path[?device-options]

The meanings of hostname, port, path and device-options parts depend on the scheme
and are described below. The following schemes are supported in Sourcery G++ for ARM EABI:

armusb Use an ARMUSB (Stellaris) debugging device. Refer to Section 7.5, “ARMUSB
(Stellaris) Devices”.

rdi Use an RDI debugging device. Refer to Section 7.6, “Remote Debug Interface
Devices”.

flashpro Use a FlashPro debugging device. Refer to Section 7.7, “Actel FlashPro Devices”.

ulink Use a Keil ULINK2 debugging device. Refer to Section 7.8, “Keil ULINK2 Devices”.

altera Use an Altera FPGA. Refer to Section 7.9, “Altera Devices”.

jlink Use a SEGGER J-Link. Refer to Section 7.10, “SEGGER J-Link Devices”.

The optional ?device-options portion is allowed in all schemes. These allow additional device-
specific options of the form name=value. Multiple options are concatenated using &.

The board-file specifies an XML file that describes how to initialize the target board, as well
as other properties of the board used by the debugger. If board-file refers to a file (via a relative
or absolute pathname), it is read. Otherwise, board-file can be a board name, and the toolchain's
board directory is searched for a matching file. See Section 7.13, “Supported Board Files” for the
list of supported boards, or invoke the Sprite with the -b option to list the available board files. If
you are using the Sourcery G++ Board Builder to generate a board definition for your board, it pro-
duces an XML file for use as a Sprite board-file. You can also write a custom board file; see
Section 7.14, “Board File Syntax” for more information about the file format.

Both the device-url and board-file command-line arguments are required to correctly
connect the Sprite to a target board.

7.4. Sourcery G++ Debug Sprite Options
The following command-line options are supported by the Sourcery G++ Debug Sprite:

-b Print a list of board-file files in the board config directory.

-h Print a list of options and their meanings. A list of device-url syntaxes
is also shown.

-i Print a list of the accessible devices. If a device-url is also specified,
only devices for that device type are scanned. Each supported device type is
listed along with the options that can be appended to the device-url. For
each discovered device, the device-url is printed along with a description
of that device.

-l [host]:port Specify the host address and port number to listen for a GDB connection. If
this option is not given, the Debug Sprite communicates with GDB using
stdin and stdout. If you start the Sprite from within GDB using the target

166

Sourcery G++ Debug Sprite

remote | arm-none-eabi-sprite ... command, you do not need
this option.

-m Listen for multiple sequential connections. Normally the Debug Sprite ter-
minates after the first connection from GDB terminates. This option instead
makes it listen for a subsequent connection. To terminate the Sprite, open a
connection and send the string END\n.

-q Do not print any messages.

-v Print additional messages.

If any of -b, -i or -h are given, the Debug Sprite terminates after providing the information rather
than waiting for a debugger connection.

7.5. ARMUSB (Stellaris) Devices
The Sourcery G++ Debug Sprite supports Stellaris devices equipped with an FTDI ARMUSB debug
interface.

The Debug Sprite accepts two forms of the device-url for ARMUSB devices. For the common
case where you have only one ARMUSB device connected, you can use simply:

armusb:///

The full form of the device-url is:

armusb:///[path][?device-options]

The path values are serial numbers reported by the connected boards. These numbers may not be
unique; for example, some early-model Stellaris boards all report the same serial number. In this
case, it is not possible to use the device-url to select among them.

The Debug Sprite can autodetect connected ARMUSB devices. Invoking the Sprite with the -i option,
as described in Section 7.1, “Probing for Debug Devices”, displays the device-url for each de-
tected device:

> arm-none-eabi-sprite -i
...
armusb: [speed=<n:0-7>] ARMUSB (Stellaris) device
 armusb:///0B01000C - Stellaris Evaluation Board (0B01000C)
 armusb:///051100E2 - Stellaris Evaluation Board (051100E2)

The following device-options are permitted:

speed=speed Specify the speed of the connection, from 0 (fastest, default) to 7 (slowest). De-
pending on the CPU speed of the target board, lower values may lead to unreliable
communication with the target. It is recommended to use slower speeds in that
case.

7.5.1. ARMUSB Configuration and Drivers

This section explains how to set up your host computer so that the debugger can connect to the
Stellaris board.

167

Sourcery G++ Debug Sprite

7.5.1.1. Configuration on Microsoft Windows Hosts

To communicate with your Stellaris board, you must install the Luminary Micro FTDI drivers.

If you installed Sourcery G++ from a CD distributed with your Stellaris board, the drivers are located
in the directory Tools\FTDI on the CD. You can also download the latest Luminary Micro FTDI
drivers from the Luminary Micro Software Updates1 page on the internet.

To install the drivers, first unpack them on your local machine. Then, plug in your Stellaris board
using the USB connector. Windows should detect the device automatically and start the Found New
Hardware Wizard to guide you through the driver install. Tell the wizard to install the drivers from
the folder where you unpacked them, rather than by searching the internet. You must go through the
wizard twice to install the complete set of drivers.

7.5.1.2. Configuration on GNU/Linux Hosts

The Sourcery G++ Debug Sprite includes an open-source USB driver for GNU/Linux systems. You
do not need to install a separate driver.

On some Linux systems, it may be necessary only to connect the USB cable from the target board
to your computer in order to run the Sourcery G++ Debug Sprite. On other systems, you may need
to perform either or both of the following actions to configure the USB device:

1. If the ftdi_sio kernel module is being loaded automatically when the device is connected, you
must unload it again. As root, do rmmod ftdi_sio.

2. Make sure that you have privilege to access the USB device. Rather than running the Sourcery
G++ Debug Sprite as root, the preferred solution on modern Linux distributions is to add a udev
configuration file for the device. As root, create a file named /etc/udev/rules.d/
stellaris.rules that contains the following line:

SUBSYSTEM=="usb", ATTR{manufacturer}=="LMI", OWNER="name"

where name is your normal login name. Then reconnect the device to cause udev to read the new
configuration file.

If you have multiple Stellaris USB devices attached to the same host that need to be managed
with different permissions, consult the udev documentation supplied with your Linux distribution
for information on how to match on the serial number, product identifier, or other fields.

7.5.2. Using a Stellaris Board to Debug Production Systems

The In-Circuit Debug Interface (ICDI) provided on most Stellaris evaluation kit boards allows them
to be used in a pass-through mode to debug production systems containing Stellaris microcontrollers.
You do not need to purchase a separate ICE unit or any additional software to debug a production
system.

To use the Stellaris evaluation kit board in this way, you must provide a standard 20-pin JTAG
header connected to the Stellaris microcontroller on your production system. Then, use the 20-pin
JTAG cable provided with the evaluation kit to connect your production system to the evaluation
kit board. Finally, connect the evaluation board to the USB port on your workstation, just as you
would to debug applications running on the evaluation board itself.

1 http://www.luminarymicro.com/products/software_updates.html

168

Sourcery G++ Debug Sprite

http://www.luminarymicro.com/products/software_updates.html
http://www.luminarymicro.com/products/software_updates.html

The Stellaris chip on the evaluation board is automatically disabled when the JTAG header on the
evaluation board is connected to a production system. In this pass-through configuration, the Sourcery
G++ Debug Sprite automatically connects directly to the production system instead. Since the pro-
duction system may require a different initialization sequence than the evaluation kit, when invoking
the Debug Sprite you should specify a configuration file that matches the production system rather
than the evaluation board.

7.5.3.Troubleshooting

Some Stellaris boards have a USB_OFF jumper. You must remove this jumper so that the Debug
Sprite can connect to the board via USB.

If you power-cycle the Stellaris board, unplug it from your computer, or use the reset button on the
board while you are debugging, the debugger will not notice the reset, and debugging operations
will stop working. At this point, you should exit and re-start from the debugger. If you are using the
Eclipse IDE, choose Terminate from the Run menu.

7.6. Remote Debug Interface Devices
Remote Debug Interface (RDI) devices are supported. The RDI device URL accepts no hostname,
port or path components, so the device-url is specified as follows:

rdi:[///][?device-options]

The following device-options are required:

rdi-library=library Specify the library (DLL or shared object) implementing the RDI
target you wish to use.

rdi-config=configfile Specify a file containing configuration information for library.
The format of this file is specific to the RDI library you are using,
but tends to constitute a list of key=value pairs. Consult the
documentation of your RDI library for details.

7.7. Actel FlashPro Devices
On Windows hosts, Sourcery G++ supports FlashPro devices used with Actel Cortex-M1 development
kits.

For FlashPro devices, the device-url has the following form:

flashpro:[//usb12345/][?jtagclock=rate]

The optional usb12345 part indicates the ID of the FlashPro device to connect to, which is useful
if you have more than one such device attached to your computer. If the ID is omitted, the Debug
Sprite connects automatically to the first detected FlashPro device. You can enumerate the connected
FlashPro devices by invoking the Sprite with the -i switch, as follows:

> arm-none-eabi-sprite -i flashpro:

The jtagclock option allows the communication speed with the target board to be altered. The
rate is specified in Hz and may range between 93750 and 4000000. The default is 93750, the
slowest speed supported by the FlashPro device. Depending on your target board, you may be able
to increase this rate, but beware that communication errors may occur above a certain threshold. If

169

Sourcery G++ Debug Sprite

you encounter communication errors with a higher-than-default speed selected, try reducing the
speed.

7.7.1. Installing FlashPro Windows drivers

Windows drivers for the FlashPro device are included with the FlashPro software provided by Actel.
Refer to Actel's documentation for details on installing this software. You must use the Actel FlashPro
software to configure the FPGA on your Cortex-M1 board, but it does not need to be running when
using the Debug Sprite.

Once you have set up your board using the FlashPro software, you can check that it is recognized
by the Sourcery G++ Debug Sprite by running the following command:

> arm-none-eabi-sprite -i
flashpro: [jtagclock=<n:93750-4000000>] FlashPro device
 flashpro://usb12345/ - FlashPro Device
 ...

If output similar to the above does not appear, your FlashPro device is not working correctly. Contact
CodeSourcery for further guidance in that case.

7.8. Keil ULINK2 Devices
Keil ULINK2 devices are supported on Windows hosts. For Cortex-M targets (e.g. Cortex-M1,
Cortex-M3) the ULINK2 device partitions the device-url as follows:

ulink://cm/?opts=file

For older ARM targets (e.g. ARM7TDMI, ARM9), use the following instead:

ulink://arm/?opts=file[?device-options]

The opts option is mandatory, and is used to specify an options file. See Section 7.8.1, “Configuring
ULINK2 Options” for instructions on creating this file.

The following device-options are permitted:

semihosting=setting This option is for ARM7 and ARM9 targets. On these targets, the
Debug Sprite implements semihosting using the SWI (also known as
SVC) instruction. If your application uses the SWI instruction for
other purposes and does not use semihosting, you can improve the
performance of your application by disabling the semihosting support
in the Sprite.

Specify semihosting=0 to disable semihosting support in the
Debug Sprite. The default is to enable semihosting, equivalent to
semihosting=1.

If you choose to disable semihosting support in the Debug Sprite, you
should link your application with an unhosted linker script. Refer to
Chapter 6, “CS3™: The CodeSourcery Common Startup Code Se-
quence” for details.

170

Sourcery G++ Debug Sprite

7.8.1. Configuring ULINK2 Options

Before you can use the ULINK2 device for debugging, you must configure various JTAG and flash
properties for your board. A graphical user interface is provided to assist you with this configuration.

When invoking the Debug Sprite from the command line, you must perform this configuration step
first, and save the settings in an options file that you pass to the Sprite for debugging.

If you are using the Sourcery G++ IDE, there are buttons on the ARM Settings subtab that bring
up the configuration dialogs described in this section. You do not need to run the Debug Sprite from
the command line to create an options file, or specify an options file explicitly in the IDE.

Start by setting the JTAG properties. In the Sourcery G++ IDE, click on the corresponding button.
From the command line, this dialog is opened by invoking the Sourcery G++ Debug Sprite with a
config option. For Cortex-M targets, use:

> arm-none-eabi-sprite "ulink://cm/?opts=file&config=debug"

For older ARM targets, use:

> arm-none-eabi-sprite "ulink://arm/?opts=file&config=debug"

Replace file with the name of the options file to create. Note that you need the double quotes to
prevent the shell from treating & as a special character.

This opens a dialog box on your desktop, which allows you to configure various debugging options.

• You can change the communication speed with your target board. Beware that rates above 1MHz
may not work reliably.

• The Cache Code and Cache Memory options in the Cache Options group may speed up
successive memory read operations from your board. It is safe to leave these two options checked.

• The Verify Code Download and Download to Flash options in the Download
Options group should be left checked.

• The Use Reset at Startup option should be left checked.

• The JTAG Device Chain group can be used to override the default processor core detected
by ULINK2. Leaving it set to Automatic Detection is usually the right thing to do, unless
you have special requirements.

Clicking OK saves the configured options and closes the dialog.

The Sprite provides transparent support for programming CFI flash devices. To program other types
of flash devices with ULINK2, you must configure a separate set of options for this. In the Sourcery
G++ IDE, use the ULINK Flash properties button. From the command line, invoke the Sprite
again with the appropriate config option. For Cortex-M targets, use:

> arm-none-eabi-sprite "ulink://cm/?opts=file&config=flash"

For older ARM targets, use:

> arm-none-eabi-sprite "ulink://arm/?opts=file&config=flash"

Use the same file that you previously used to store the JTAG debug configuration information.

171

Sourcery G++ Debug Sprite

This opens another dialog box on your desktop. There are several options which you can configure:

• In the Download Function group, leave the radio buttons for erase behavior set to Erase
Sectors. Check the Program and Verify options, but leave the Reset and Run option
unchecked.

• Add the flash device suitable for your target board by clicking Add, then choosing your device
from the pop-up list.

• In the RAM for Algorithm group, choose a suitable RAM area for use as scratch space during
flash programming.

Click OK to save your flash programming options.

7.8.2. ULINK2 Target Boards

ULINK2 supports many target boards and processors; refer to Keil documentation for a full list. The
Sourcery G++ Debug Sprite can be used with any target supported by the ULINK2 drivers as long
as an appropriate board-file is used. See Section 7.13, “Supported Board Files” for a list of
boards supported out-of-the-box by Sourcery G++. You can use the Board Builder in the Sourcery
G++ IDE to generate a board-file for other targets. For instructions, refer to Section 4.4.1,
“Using the Sourcery G++ Board Builder”.

7.8.3. Installing ULINK2 Windows Drivers

No special driver is needed for ULINK2 devices.

7.9. Altera Devices
The Debug Sprite can be used to debug applications running on a Cortex-M1 core embedded in an
Altera FPGA supporting the System-Level Debug (SLD) architecture. Currently, the Sprite supports
the Cyclone III FPGA Starter board on Microsoft Windows hosts.

The Debug Sprite accepts two forms of the device-url for Altera devices. For the common case
where you have only one Altera Cortex-M1 device configured, you can use simply:

altera://

The full form of the device-url is:

altera://usbX/hubY/nodeZ

where X, Y, and Z are non-negative integers. The SLD architecture forms a hierarchy; there may be
multiple USB Blaster devices (numbered by X), multiple Altera FPGAs (numbered by Y) per USB
Blaster, and multiple nodes (numbered by Z) per FPGA.

The Debug Sprite can autodetect connected Altera Cortex-M1 devices. Invoking the Sprite with the
-i option, as described in Section 7.1, “Probing for Debug Devices”, displays the device-url
for each detected device:

> arm-none-eabi-sprite -i
...
altera: Altera SLD Hub device
 altera://usb0/hub0/node1 - Altera Cortex-M Device

172

Sourcery G++ Debug Sprite

7.9.1. Setting Up the Altera Device

Follow these steps for initial installation and set up of the Altera device.

1. Install Quartus II Web Edition (or any equivalent), available from Altera.

2. Install drivers for USB Blaster, also available from Altera.

3. Install Sourcery G++ for ARM EABI. See Chapter 2, “Installation and Configuration”.

4. Connect the board and the host computer with a USB cable.

5. Turn on the board.

6. Use Quartus II to download a .sof file including a Cortex-M1 core to the FPGA.

7. Use arm-none-eabi-sprite -i to verify that the Sprite can detect the installed Cortex-
M1 core.

7.9.2. Hardware Breakpoints

The Cortex-M1 core only permits hardware breakpoints to be set in the first 512MB of its address
space. Because both external SRAM and flash memory are located at higher addresses, you cannot
set hardware breakpoints in these memory regions.

7.10. SEGGER J-Link Devices
The Debug Sprite supports ARM7TDMI, ARM9, Cortex-M3, Cortex-M4, Cortex-R4, Cortex-A5,
and Cortex-A8 cores via SEGGER J-Link on both Microsoft Windows and GNU/Linux hosts.

There are several forms of the device-url for J-Link devices. If you have only one J-Link device
connected, you can use:

jlink:///

The full form of the device-url is:

jlink://[address]/[serial][?device-options]

To connect multiple J-Link devices to one host system, each J-Link must be configured with a dif-
ferent USB address. To configure the USB address, see "Connecting multiple J-Links / J-Traces to
your PC" in the J-Link User Guide.

The optional address is the configured USB address of the J-Link device, e.g. usb1. The optional
serial is the serial number of the device. You may identify a device by either address or serial
number.

The following device-options are permitted:

settings-file=file This option allows you to specify a file to save J-Link settings. You
can use the J-Link control panel to modify additional J-Link settings,
including the JTAG speed and a target-specific script. Your changes
will be saved in the settings file.

semihosting=setting Semihosting is implemented using the SVC (also known as SWI) in-
struction on classic ARM targets (including ARM7, ARM9, Cortex-

173

Sourcery G++ Debug Sprite

A, and Cortex-R). If your application uses the SWI instruction for
other purposes and does not use semihosting, you can improve the
performance of your application by disabling the semihosting support
in the Sprite.

Specify semihosting=0 to disable SVC semihosting support in
the Debug Sprite. The default is to enable semihosting, equivalent to
semihosting=1.

If you choose to disable semihosting support in the Debug Sprite, you
should link your application with an unhosted linker script. Refer to
Chapter 6, “CS3™: The CodeSourcery Common Startup Code Se-
quence” for details.

Semihosting on Thumb-only devices (including Cortex-M3 and
Cortex-M4) uses the BKPT instruction which is not affected by this
option.

Flash programming is supported on CFI-compliant devices and those devices listed in Section 6.3
of J-Link ARM User Guide as of J-Link ARM V4.20.

The Debug Sprite does not require or utilize additional software components from SEGGER, such
as J-Link ARM FlashBP or J-Link GDB Server.

Connecting to a Cortex-A8 device may require an additional script to configure or reset the target.
Sample scripts are installed by the J-Link driver installer. Some devices also require a hardware ad-
aptor. Contact CodeSourcery or SEGGER for more information about particular devices.

7.10.1. Configuration on Microsoft Windows Hosts

You must install drivers for the SEGGER J-Link device before you can use it to debug your program.
These drivers are bundled with Sourcery G++ for your convenience. You can find them at libexec/
arm-none-eabi-post-install/sprite-drivers/Setup_JLinkARM_version.exe
in your Sourcery G++ installation directory. Simply execute the file and follow instructions from
the installer.

7.10.2. Configuration on GNU/Linux Hosts

On GNU/Linux systems, no additional drivers are necessary to use J-Link devices. The Sourcery
G++ Debug Sprite is bundled with an open-source USB driver as well as the proprietary SEGGER
shared library.

Make sure that you have privilege to access the USB device. Rather than running the Sourcery G++
Debug Sprite as root, the preferred solution on modern Linux distributions is to copy libexec/
arm-none-eabi-post-install/sprite-drivers/45-jlink.rules to /etc/udev/
rules.d/. You need to reboot your system for the changes to go into effect.

7.11. P&E Devices
The Sourcery G++ Debug Sprite supports Freescale Kinetis evaluation boards with debug devices
from P&E Microcomputer Systems. The Tower microcontroller modules, such as the TWR-K40X256
and TWR-K60N512, include an on-board OSJTAG device which uses the P&E USB Multilink
drivers. Sourcery G++ for ARM EABI also supports P&E Cyclone MAX devices with Kinetis targets.

The device-url for P&E devices takes the following form:

174

Sourcery G++ Debug Sprite

pe:[//type[/number]]

The type specifies the device type. The interpretation of number depends on the device type.

The following type keywords are supported in Sourcery G++ for ARM EABI:

USBMultilink The number is used to distinguish between multiple connected
devices; it ranges between 0 and 8, with 0 being the first detected
device.

CycloneProMaxUSB number ranges between 0 and 18, with 0 being the first detected
device.

CycloneProMaxSerial On Linux hosts, number ranges between 0 and 7, with 0 corres-
ponding to /dev/ttyS0. On Windows hosts, number ranges
between 1 and 8, with 1 corresponding to COM1.

CycloneProMaxEthernet number specifies the IP address or host name of the P&E device.

The abbreviated device-url form pe: is equivalent to pe://USBMultilink/0.

7.11.1. Configuration on Microsoft Windows Hosts

You must install drivers for the P&E device before you can use it to debug your program. These
drivers are bundled with Sourcery G++ for your convenience. You can find them at libexec/
arm-none-eabi-post-install/sprite-drivers/drivers_osbdm_install.exe
in your Sourcery G++ installation directory. Simply execute the file and follow instructions from
the installer.

7.11.2. Configuration on GNU/Linux Hosts

On GNU/Linux systems, no additional drivers are necessary to use P&E devices. The Sourcery G++
Debug Sprite is bundled with the proprietary P&E shared library.

Make sure that you have privilege to access the USB device. Rather than running the Sourcery G++
Debug Sprite as root, the preferred solution on modern Linux distributions is to copy libexec/
arm-none-eabi-post-install/sprite-drivers/45-pe.rules to /etc/udev/
rules.d/. You need to reboot your system for the changes to go into effect.

7.12. Debugging a Remote Board
You can run the Sourcery G++ Debug Sprite on a different machine from the one on which GDB is
running. For example, if your board is connected to a machine in your lab, you can run the debugger
on your laptop and connect to the remote board. The Sourcery G++ Debug Sprite must run on the
machine that is connected to the target board. You must have Sourcery G++ and a valid license in-
stalled on both machines.

To use this mode, you must start the Sprite with the -l option and specify the port on which you
want it to listen. For example:

> arm-none-eabi-sprite -l :10000 device-url board-file

starts the Sprite listening on port 10000.

175

Sourcery G++ Debug Sprite

If you are using the Sourcery G++ IDE, you can use the External Embedded Server debugger to
connect to the remote Sprite; Section 4.3.2.3, “Sourcery G++ External Embedded Server”. When
running GDB from the command line, use the following command to connect GDB to the remote
Sprite:

(gdb) target remote host:10000

where host is the name of the remote machine. After this, debugging is just as if you are debugging
a target board connected to your host machine.

For more detailed instructions on using the Sourcery G++ Debug Sprite in this way, please refer to
the Sourcery G++ Knowledge Base2.

7.13. Supported Board Files
The Sourcery G++ Debug Sprite for ARM EABI includes support for the following target boards.
Specify the appropriate board-file as an argument when invoking the Sprite from the command
line.

Register BrowsingConfigBoard

coremp7-cm1Actel CoreMP7 Cortex-M1

cycloneiii-cm1Altera Cyclone III Cortex-M1

armulatorARMulator (RDI)

at91sam7s-ekAtmel AT91SAM7S

yesefm32-g2xx-dkEnergy Micro EFM32-G2XX-DK

yesefm32-g8xx-dkEnergy Micro EFM32-G8XX-DK

yesefm32-g8xx-stkEnergy Micro EFM32-G8XX-STK

yesimx233mddrFreescale i.MX233 (with Mobile DDR)

yesimx233evkFreescale i.MX233 EVK

imx31Freescale i.MX31 ADS

twr-k40x256Freescale TWR-K40X256

yestwr-k60n512Freescale TWR-K60N512

mcb1760Keil MCB1760

mcb2100Keil MCB2100

mcb2130Keil MCB2130

mcb2140Keil MCB2140

mcb2470Keil MCB2470

yesmcbstm32Keil MCBSTM32

str710-flashbootKeil MCBSTR7 (flash boot)

str710-rambootKeil MCBSTR7 (ram boot)

str91xKeil MCBSTR9

mps-cm0Keil Microcontroller Prototyping System (Cortex-M0)

mps-cm1Keil Microcontroller Prototyping System (Cortex-M1)

2 https://support.codesourcery.com/GNUToolchain/kbentry132

176

Sourcery G++ Debug Sprite

https://support.codesourcery.com/GNUToolchain/kbentry132
https://support.codesourcery.com/GNUToolchain/kbentry132

Register BrowsingConfigBoard

mps-cm3Keil Microcontroller Prototyping System (Cortex-M3)

mps-cm4Keil Microcontroller Prototyping System (Cortex-M4)

phycore-lpc3250PHYTEC phyCore-LPC3250

realview-cm1RealView EB Cortex-M1

yeslm3s101Stellaris LM3S101

yeslm3s102Stellaris LM3S102

yeslm3s1110Stellaris LM3S1110

yeslm3s1133Stellaris LM3S1133

yeslm3s1138Stellaris LM3S1138

yeslm3s1150Stellaris LM3S1150

yeslm3s1162Stellaris LM3S1162

yeslm3s1165Stellaris LM3S1165

yeslm3s1332Stellaris LM3S1332

yeslm3s1435Stellaris LM3S1435

yeslm3s1439Stellaris LM3S1439

yeslm3s1512Stellaris LM3S1512

yeslm3s1538Stellaris LM3S1538

yeslm3s1601Stellaris LM3S1601

yeslm3s1607Stellaris LM3S1607

yeslm3s1608Stellaris LM3S1608

yeslm3s1620Stellaris LM3S1620

yeslm3s1621Stellaris LM3S1621

yeslm3s1625Stellaris LM3S1625

yeslm3s1626Stellaris LM3S1626

yeslm3s1627Stellaris LM3S1627

yeslm3s1635Stellaris LM3S1635

yeslm3s1637Stellaris LM3S1637

yeslm3s1651Stellaris LM3S1651

yeslm3s1751Stellaris LM3S1751

yeslm3s1776Stellaris LM3S1776

yeslm3s1811Stellaris LM3S1811

yeslm3s1816Stellaris LM3S1816

yeslm3s1850Stellaris LM3S1850

yeslm3s1911Stellaris LM3S1911

yeslm3s1918Stellaris LM3S1918

yeslm3s1937Stellaris LM3S1937

yeslm3s1958Stellaris LM3S1958

yeslm3s1960Stellaris LM3S1960

177

Sourcery G++ Debug Sprite

Register BrowsingConfigBoard

yeslm3s1968Stellaris LM3S1968

yeslm3s1b21Stellaris LM3S1B21

yeslm3s1j11Stellaris LM3S1J11

yeslm3s1j16Stellaris LM3S1J16

yeslm3s1n11Stellaris LM3S1N11

yeslm3s1n16Stellaris LM3S1N16

yeslm3s1p51Stellaris LM3S1P51

yeslm3s1r21Stellaris LM3S1R21

yeslm3s1r26Stellaris LM3S1R26

yeslm3s1w16Stellaris LM3S1W16

yeslm3s1z16Stellaris LM3S1Z16

yeslm3s2110Stellaris LM3S2110

yeslm3s2139Stellaris LM3S2139

yeslm3s2276Stellaris LM3S2276

yeslm3s2410Stellaris LM3S2410

yeslm3s2412Stellaris LM3S2412

yeslm3s2432Stellaris LM3S2432

yeslm3s2533Stellaris LM3S2533

yeslm3s2601Stellaris LM3S2601

yeslm3s2608Stellaris LM3S2608

yeslm3s2616Stellaris LM3S2616

yeslm3s2620Stellaris LM3S2620

yeslm3s2637Stellaris LM3S2637

yeslm3s2651Stellaris LM3S2651

yeslm3s2671Stellaris LM3S2671

yeslm3s2678Stellaris LM3S2678

yeslm3s2730Stellaris LM3S2730

yeslm3s2739Stellaris LM3S2739

yeslm3s2776Stellaris LM3S2776

yeslm3s2793Stellaris LM3S2793

yeslm3s2911Stellaris LM3S2911

yeslm3s2918Stellaris LM3S2918

yeslm3s2939Stellaris LM3S2939

yeslm3s2948Stellaris LM3S2948

yeslm3s2950Stellaris LM3S2950

yeslm3s2965Stellaris LM3S2965

yeslm3s2b93Stellaris LM3S2B93

yeslm3s300Stellaris LM3S300

178

Sourcery G++ Debug Sprite

Register BrowsingConfigBoard

yeslm3s301Stellaris LM3S301

yeslm3s308Stellaris LM3S308

yeslm3s310Stellaris LM3S310

yeslm3s315Stellaris LM3S315

yeslm3s316Stellaris LM3S316

yeslm3s317Stellaris LM3S317

yeslm3s328Stellaris LM3S328

yeslm3s3634Stellaris LM3S3634

yeslm3s3651Stellaris LM3S3651

yeslm3s3739Stellaris LM3S3739

yeslm3s3748Stellaris LM3S3748

yeslm3s3749Stellaris LM3S3749

yeslm3s3826Stellaris LM3S3826

yeslm3s3j26Stellaris LM3S3J26

yeslm3s3n26Stellaris LM3S3N26

yeslm3s3w26Stellaris LM3S3W26

yeslm3s3z26Stellaris LM3S3Z26

yeslm3s5632Stellaris LM3S5632

yeslm3s5651Stellaris LM3S5651

yeslm3s5652Stellaris LM3S5652

yeslm3s5656Stellaris LM3S5656

yeslm3s5662Stellaris LM3S5662

yeslm3s5732Stellaris LM3S5732

yeslm3s5737Stellaris LM3S5737

yeslm3s5739Stellaris LM3S5739

yeslm3s5747Stellaris LM3S5747

yeslm3s5749Stellaris LM3S5749

yeslm3s5752Stellaris LM3S5752

yeslm3s5762Stellaris LM3S5762

yeslm3s5791Stellaris LM3S5791

yeslm3s5951Stellaris LM3S5951

yeslm3s5956Stellaris LM3S5956

yeslm3s5b91Stellaris LM3S5B91

yeslm3s5k31Stellaris LM3S5K31

yeslm3s5k36Stellaris LM3S5K36

yeslm3s5p31Stellaris LM3S5P31

yeslm3s5p36Stellaris LM3S5P36

yeslm3s5p51Stellaris LM3S5P51

179

Sourcery G++ Debug Sprite

Register BrowsingConfigBoard

yeslm3s5p56Stellaris LM3S5P56

yeslm3s5r31Stellaris LM3S5R31

yeslm3s5r36Stellaris LM3S5R36

yeslm3s5t36Stellaris LM3S5T36

yeslm3s5y36Stellaris LM3S5Y36

yeslm3s600Stellaris LM3S600

yeslm3s601Stellaris LM3S601

yeslm3s608Stellaris LM3S608

yeslm3s610Stellaris LM3S610

yeslm3s6100Stellaris LM3S6100

yeslm3s611Stellaris LM3S611

yeslm3s6110Stellaris LM3S6110

yeslm3s612Stellaris LM3S612

yeslm3s613Stellaris LM3S613

yeslm3s615Stellaris LM3S615

yeslm3s617Stellaris LM3S617

yeslm3s618Stellaris LM3S618

yeslm3s628Stellaris LM3S628

yeslm3s6420Stellaris LM3S6420

yeslm3s6422Stellaris LM3S6422

yeslm3s6432Stellaris LM3S6432

yeslm3s6537Stellaris LM3S6537

yeslm3s6610Stellaris LM3S6610

yeslm3s6611Stellaris LM3S6611

yeslm3s6618Stellaris LM3S6618

yeslm3s6633Stellaris LM3S6633

yeslm3s6637Stellaris LM3S6637

yeslm3s6730Stellaris LM3S6730

yeslm3s6753Stellaris LM3S6753

yeslm3s6911Stellaris LM3S6911

yeslm3s6918Stellaris LM3S6918

yeslm3s6938Stellaris LM3S6938

yeslm3s6950Stellaris LM3S6950

yeslm3s6952Stellaris LM3S6952

yeslm3s6965Stellaris LM3S6965

yeslm3s800Stellaris LM3S800

yeslm3s801Stellaris LM3S801

yeslm3s808Stellaris LM3S808

180

Sourcery G++ Debug Sprite

Register BrowsingConfigBoard

yeslm3s811Stellaris LM3S811

yeslm3s812Stellaris LM3S812

yeslm3s815Stellaris LM3S815

yeslm3s817Stellaris LM3S817

yeslm3s818Stellaris LM3S818

yeslm3s828Stellaris LM3S828

yeslm3s8530Stellaris LM3S8530

yeslm3s8538Stellaris LM3S8538

yeslm3s8630Stellaris LM3S8630

yeslm3s8730Stellaris LM3S8730

yeslm3s8733Stellaris LM3S8733

yeslm3s8738Stellaris LM3S8738

yeslm3s8930Stellaris LM3S8930

yeslm3s8933Stellaris LM3S8933

yeslm3s8938Stellaris LM3S8938

yeslm3s8962Stellaris LM3S8962

yeslm3s8970Stellaris LM3S8970

yeslm3s8971Stellaris LM3S8971

yeslm3s9781Stellaris LM3S9781

yeslm3s9790Stellaris LM3S9790

yeslm3s9792Stellaris LM3S9792

yeslm3s9997Stellaris LM3S9997

yeslm3s9b81Stellaris LM3S9B81

yeslm3s9b90Stellaris LM3S9B90

yeslm3s9b92Stellaris LM3S9B92

yeslm3s9b95Stellaris LM3S9B95

yeslm3s9b96Stellaris LM3S9B96

yeslm3s9l97Stellaris LM3S9L97

yesstm3210b-evalSTMicroelectronics STM3210B-EVAL

yesstm3210c-evalSTMicroelectronics STM3210C-EVAL

yesstm3210e-evalSTMicroelectronics STM3210E-EVAL

xilinxa9Xilinx Cortex-A9

7.14. Board File Syntax
The board-file can be a user-written XML file to describe a non-standard board. The Sourcery
G++ Debug Sprite searches for board files in the arm-none-eabi/lib/boards directory in
the installation. Refer to the files in that directory for examples.

The file's DTD is:

181

Sourcery G++ Debug Sprite

<!-- Board description files

 Copyright (c) 2007-2009 CodeSourcery, Inc.

 THIS FILE CONTAINS PROPRIETARY, CONFIDENTIAL, AND TRADE
 SECRET INFORMATION OF CODESOURCERY AND/OR ITS LICENSORS.

 You may not use or distribute this file without the express
 written permission of CodeSourcery or its authorized
 distributor. This file is licensed only for use with
 Sourcery G++. No other use is permitted.
 -->

<!ELEMENT board
 (properties?, feature?, initialize?, memory-map?)>

<!ELEMENT properties
 (description?, property*)>

<!ELEMENT initialize
 (write-register | write-memory | delay
 | wait-until-memory-equal | wait-until-memory-not-equal)* >
<!ELEMENT write-register EMPTY>
<!ATTLIST write-register
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT write-memory EMPTY>
<!ATTLIST write-memory
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 bits CDATA #IMPLIED>
<!ELEMENT delay EMPTY>
<!ATTLIST delay
 time CDATA #REQUIRED>
<!ELEMENT wait-until-memory-equal EMPTY>
<!ATTLIST wait-until-memory-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>
<!ELEMENT wait-until-memory-not-equal EMPTY>
<!ATTLIST wait-until-memory-not-equal
 address CDATA #REQUIRED
 value CDATA #REQUIRED
 timeout CDATA #IMPLIED
 bits CDATA #IMPLIED>

<!ELEMENT memory-map (memory-device)*>
<!ELEMENT memory-device (property*, description?, sectors*)>
<!ATTLIST memory-device
 address CDATA #REQUIRED
 size CDATA #REQUIRED
 type CDATA #REQUIRED

182

Sourcery G++ Debug Sprite

 device CDATA #IMPLIED>

<!ELEMENT description (#PCDATA)>
<!ELEMENT property (#PCDATA)>
<!ATTLIST property name CDATA #REQUIRED>
<!ELEMENT sectors EMPTY>
<!ATTLIST sectors
 size CDATA #REQUIRED
 count CDATA #REQUIRED>

<!ENTITY % gdbtarget SYSTEM "gdb-target.dtd">
%gdbtarget;

All values can be provided in decimal, hex (with a 0x prefix) or octal (with a 0 prefix). Addresses
and memory sizes can use a K, KB, M, MB, G or GB suffix to denote a unit of memory. Times must
use a ms or us suffix.

The following elements are available:

<board> This top-level element encapsulates the entire description of the board. It
can contain <properties>, <feature>, <initialize> and
<memory-map> elements.

<properties> The <properties> element specifies specific properties of the target
system. This element can occur at most once. It can contain a
<description> element.

It can also contain <property> elements with the following names:

banked-regs The banked-regs property specifies that the CPU
of the target board has banked registers for different
processor modes (supervisor, IRQ, etc.).

has-vfp The has-vfp property specifies that the CPU of the
target board has VFP registers.

system-v6-m The system-v6-m property specifies that the CPU
of the target board has ARMv6-M architecture system
registers.

system-v7-m The system-v7-m property specifies that the CPU
of the target board has ARMv7-M architecture system
registers.

core-family The core-family property specifies the ARM
family of the target. The body of the <property>
element may be one of arm7, arm9, arm11, and
cortex.

system-clock This property specifies the target clock frequency (in
Hertz) after reset. It is used to configure flash program-
ming algorithms.

<initialize> The <initialize> element defines an initialization sequence for the
board, which the Sprite performs before downloading a program. It can

183

Sourcery G++ Debug Sprite

contain <write-register>, <write-memory> and <delay>
elements.

<feature> This element is used to inform GDB about additional registers and peri-
pherals available on the board. It is passed directly to GDB; see the GDB
manual for further details.

<memory-map> This element describes the memory map of the target board. It is used by
GDB to determine where software breakpoints may be used and when
flash programming sequences must be used. This element can occur at
most once. It can contain <memory-device> elements.

<memory-device> This element specifies a region of memory. It has four attributes:
address, size, type and device. The address and size attributes
specify the location of the memory device. The type attribute specifies
that device as ram, rom or flash. The device attribute is required for
flash regions; it specifies the flash device type. Supported flash device
types include at91sam7sxxx, cfi, lpc21xx, stellaris,
stm32f10xxx, str91xfa, and ulink; not all flash devices are sup-
ported by all debugging devices. Additional flash device types are suppor-
ted if you are using the Sourcery G++ Debug Sprite with SEGGER J-Link.
For more information, refer to Section 7.10, “SEGGER J-Link Devices”..
The <memory-device> element can contain a <description>
element.

It can also contain the following named <property> element for addi-
tional flash-specific information:

programaddress This numeric property is used for ulink flash
devices. It specifies an alias for the flash region
in the memory map that should be used for pro-
gramming the flash device, independently of the
address the CPU uses.

<write-register> This element writes a value to a control register. It has three attributes:
address, value and bits. The bits attribute, specifying the bit
width of the write operation, is optional; it defaults to 32.

<write-memory> This element writes a value to a memory location. It has three attributes:
address, value and bits. The bits attribute is optional and defaults
to 32. Bit widths of 8, 16 and 32 bits are supported. The address written
to must be naturally aligned for the size of the write being done.

<delay> This element introduces a delay. It has one attribute, time, which specifies
the number of milliseconds, or microseconds to delay by.

<description> This element encapsulates a human-readable description of its enclosing
element.

<property> The <property> element allows additional name/value pairs to be
specified. The property name is specified in a name attribute. The property
value is the body of the <property> element.

184

Sourcery G++ Debug Sprite

Chapter 8
Next Steps with Sourcery G++
This chapter describes where you can find additional documentation and information about
using Sourcery G++ and its components.

185

8.1. Sourcery G++ Support
If you have a Sourcery G++ subscription, you may manage your account by visiting the Sourcery
G++ Portal1. The Portal gives you access to technical support, the latest software updates, and the
Sourcery G++ Knowledge Base.

If you have a support account, but are unable to log in to the Portal, send email to
<support@codesourcery.com> for assistance.

8.2. Sourcery G++ Knowledge Base
The Sourcery G++ Knowledge Base is available to registered users at the Sourcery G++ Portal2.
Here you can find solutions to common problems including installing Sourcery G++, making it work
with specific targets, and interoperability with third-party libraries. There are also additional example
programs and tips for making the most effective use of the toolchain and for solving problems
commonly encountered during debugging. The Knowledge Base is updated frequently with additional
entries based on inquiries and feedback from customers.

8.3. Example Programs
Sourcery G++ includes some bundled example programs. You can find the source code for these
examples in the share/sourceryg++-arm-none-eabi-examples directory of your
Sourcery G++ installation.

The StellarisWare subdirectory contains examples for TI Stellaris boards that illustrate target-
specific features such as peripheral I/O. The example programs and libraries are packaged for easy
import into the Sourcery G++ IDE; refer to Section 3.5.2, “Using StellarisWare with Sourcery G++”
for more details.

The stm32 subdirectory similarly contains sample programs and libraries to illustrate the use of
peripheral devices on STMicroelectronics STM32 boards. These examples are packaged for easy
import into the Sourcery G++ IDE, as described in Section 3.6, “Using Sourcery G++ with STM32
Boards”.

The Kinetis subdirectory likewise contains sample programs and libraries specific to Freescale
Kinetis targets. Refer to Section 3.4, “Using Sourcery G++ with Kinetis Boards” for more information
and instructions for importing the examples into the Sourcery G++ IDE.

The remaining subdirectories contain a number of small, target-independent test programs. You may
find these programs useful as self-contained test cases when experimenting with configuring the
correct compiler and debugger settings for your target, or when learning how to use the debugger or
other features of the Sourcery G++ toolchain. You can import these examples into the Sourcery G++
IDE using the procedure outlined in Section 4.4.4, “Importing Code into the IDE”.

8.4. Manuals for GNU Toolchain Components
Sourcery G++ includes the full user manuals for each of the GNU toolchain components, such as
the compiler, linker, assembler, and debugger. Most of the manuals include tutorial material for new
users as well as serving as a complete reference for command-line options, supported extensions,
and the like.

1 https://support.codesourcery.com/GNUToolchain/
2 https://support.codesourcery.com/GNUToolchain/

186

Next Steps with Sourcery G++

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

When you install Sourcery G++, links to both the PDF and HTML versions of the manuals are created
in the shortcuts folder you select. If you elected not to create shortcuts when installing Sourcery
G++, the documentation can be found in the share/doc/sourceryg++-arm-none-eabi/
subdirectory of your installation directory.

You can also access the manuals from the Help menu in the Sourcery G++ IDE. See Section 8.5,
“Help for the Sourcery G++ IDE”, below.

In addition to the detailed reference manuals, Sourcery G++ includes a Unix-style manual page for
each toolchain component. You can view these by invoking the man command with the pathname
of the file you want to view. For example, you can first go to the directory containing the man pages:

> cd $INSTALL/share/doc/sourceryg++-arm-none-eabi/man/man1

Then you can invoke man as:

> man ./arm-none-eabi-gcc.1

Alternatively, if you use man regularly, you'll probably find it more convenient to add the directory
containing the Sourcery G++ man pages to your MANPATH environment variable. This should go in
your .profile or equivalent shell startup file; see Section 2.7, “Setting up the Environment” for
instructions. Then you can invoke man with just the command name rather than a pathname.

Finally, note that every command-line utility program included with Sourcery G++ can be invoked
with a --help option. This prints a brief description of the arguments and options to the program
and exits without doing further processing.

8.5. Help for the Sourcery G++ IDE
The Sourcery G++ IDE, which is based on Eclipse and its C/C++ Development Toolkit, includes an
extensive online help facility. To access this information, select Help Contents from the Help
menu in the IDE toolbar.

Note

The Help Contents command requires that your computer has its local network enabled.
On Linux, verify that the lo (loopback) interface is up. On Windows, verify that connections
to the local computer are not blocked. You do not need an active Internet connection to
view online help in the IDE.

Select the Workbench User Guide for general help with the Eclipse IDE. Topics discussed in
this manual include using the editor, file operations, and managing views and bookmarks.

Select the C/C++ Development Toolkit User Guide for assistance with using project
templates, importing existing projects into the IDE, using Makefile mode, using and customizing
features of the editor specific to C and C++ code, and using the debugger GUI.

Select Sourcery G++ for ARM EABI to view the Getting Started Guide and manuals for GNU
toolchain components included with this version of Sourcery G++.

187

Next Steps with Sourcery G++

IDE Help. Sourcery G++ manuals are available in the IDE from the Help
Contents menu command.

188

Next Steps with Sourcery G++

Appendix A
Sourcery G++ Release Notes
This appendix contains information about changes in this release of Sourcery G++ for ARM
EABI.You should read through these notes to learn about new features and bug fixes.

189

A.1. Changes in Sourcery G++ for ARM EABI
This section documents Sourcery G++ changes for each released revision.

A.1.1. Changes in Sourcery G++ 2011.02-2

Internal compiler error with NEON intrinsics. A compiler bug has been fixed that caused in-
ternal compiler errors when using certain NEON intrinsics.

GCC code generation bug for casts to volatile types. A compiler bug has been fixed that
sometimes caused incorrect code for references to pointers to types with volatile casts.

Incorrect optimization fix. An optimizer bug that in rare cases caused incorrect code to be gen-
erated for complex AND and OR expressions containing redundant subexpressions has been fixed.

Internal compiler error fixes. Two bugs have been fixed that caused compiler crashes in rare
cases. The first bug involved code with multiple comparison operations, and the second one involved
char to int conversion.

License manager bug fix for Windows hosts. A bug in the license manager has been fixed that
sometimes caused a confusing FLEXnet License Finder dialog to pop up on the Windows
desktop when running licensed tools, such as the compiler, without first installing a Sourcery G++
license. Sourcery G++ does not use this method to locate a license. Instead, you should use the Li-
censing wizard from the Sourcery G++ IDE to install a license file.

Floating license checkout failure fixed. A bug that caused floating license checkouts on
GNU/Linux hosts to fail with a This platform not authorized by license. error
has been fixed. To correct the error update both the license server manager and the CodeSourcery
vendor daemon to the latest version. For more information about installing a floating license server
please refer to the Sourcery G++ Knowledge Base1.

Example programs for Kinetis. Sourcery G++ now includes a set of example programs for
Freescale Kinetis targets. The examples have been bundled for easy import into the Sourcery G++
IDE. For more information, refer to Section 3.4, “Using Sourcery G++ with Kinetis Boards”.

Importing Sourcery G++ Example Projects. A bug in the Sourcery G++ IDE that caused select-
ing Sourcery G++ Example Project in the Import dialog to raise an error dialog box has
been fixed.

Support for P&E devices. The Sourcery G++ Debug Sprite now supports Freescale Kinetis targets
equipped with an OSJTAG device from P&E Microcomputer Systems. For more information, refer
to Section 7.11, “P&E Devices”.

A.1.2. Changes in Sourcery G++ 2010.09-66

GCC fixes for -fstrict-volatile-bitfields. GCC now honors
-fstrict-volatile-bitfields when a bitfield is not declared volatile initially, but an object
including bit fields is cast to volatile. Also, a bug was fixed that caused incorrect code to be generated
for some stores to volatile bit fields when -fstrict-volatile-bitfields is enabled.

Add-on installation fix. A bug in the Sourcery G++ IDE that prevented it from installing add-
ons from the Sourcery G++ Portal2 has been fixed.

1 https://support.codesourcery.com/GNUToolchain/kbentry198
2 https://support.codesourcery.com/GNUToolchain/

190

Sourcery G++ Release Notes

https://support.codesourcery.com/GNUToolchain/kbentry198
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/kbentry198
https://support.codesourcery.com/GNUToolchain/

Incorrect Board Builder diagnostic fixed. A bug in the Sourcery G++ IDE has been fixed that
caused a pop-up dialog incorrectly asserting that files generated by the Board Builder were manually
modified. The bug was specific to Windows hosts.

IDE static library projects. Bugs in the Sourcery G++ IDE have been fixed that caused the new
project wizard to fail to create new static library projects, or other incorrect behavior when setting
the project properties.

A.1.3. Changes in Sourcery G++ 2010.09-47

GCC fix for duplicated symbols. A GCC optimizer bug that caused multiple definitions of local
symbols has been fixed. Code affected by the bug was rejected by the assembler.

NEON code generation fix. A GCC bug has been fixed that resulted in an assembler error VFP/
Neon double precision register expected.

Static data size improvement at -Os. When optimizing for size, the compiler no longer implicitly
adds padding bytes to align static and local arrays on word boundaries. This fixes static data size
regressions introduced since GCC 4.4. The additional alignment is still used when optimizing for
speed.

New -fstrict-volatile-bitfields option. The compiler has a new option,
-fstrict-volatile-bitfields, which forces access to a volatile structure member using
the width that conforms to its type. This option is enabled by default to conform to the ARM EABI.
Refer to the GCC manual for details.

Internal compiler error fixes. A bug has been fixed that caused the compiler to crash on code
containing a typedef alias for __builtin_va_list with option
-femit-struct-debug-baseonly. A second bug has been fixed that caused a crash when
compiling code using C99 variable-length arrays. Additionally, a compiler crash on code using 64-
bit integer multiplications with NEON vectorization enabled has also been fixed.

NEON narrowing-move instructions. The compiler now supports narrowing-move instructions
when auto-vectorizing for NEON. Loops accessing arrays of char or short values are now more
likely to be vectorized.

Improved support for atomic memory builtins. The compiler support for built-in atomic
memory access operations on ARMv7 targets has been improved. These builtins are documented in
the GCC manual.

Linker debug information fix. A bug in linker processing of debug information has been fixed.
The bug sometimes prevented the Sourcery G++ debugger from displaying source code if the execut-
able was linked with the --gc-sections option.

Absolute branch bug fixes. A bug that caused the assembler to crash on a branch to an absolute
address has been fixed. Linker handling of the resulting relocations has also been improved. Previously
this caused an invalid switch to ARM mode on ARMv7-M devices.

VMOV instruction bug fix. A bug that caused the assembler to incorrectly reject certain valid
immediate operands for the VMOV instruction has been fixed.

Extraneous editor window in IDE debugger. A bug in the Sourcery G++ IDE has been fixed
that caused the debugger to open an editor window at the program start address when connecting to
the target.

191

Sourcery G++ Release Notes

Map file name. The Sourcery G++ IDE now names map files with the .map extension replacing
any extension on the executable file name, instead of simply appending to it.

IDE out-of-memory error fix. A bug has been fixed that caused the Sourcery G++ IDE to start
with a low heap size. The bug could lead to OutOfMemoryError failures in the IDE.

GDB termination from IDE debugger. Bugs have been fixed that caused the Sourcery G++
IDE to fail to terminate GDB when the application being debugged exits, or when launching the
debug session fails for any reason.

New IDE command-line build option. The IDE command-line builder now supports the
-refresh option, which forces a workspace refresh before the build. Use this option if you have
made changes to the project outside the IDE, such as adding or deleting files.

Terminate and Relaunch fix. The bug in the Sourcery G++ IDE that caused the Terminate
and Relaunch command to not actually relaunch has been fixed.

Support for Freescale Kinetis devices. Sourcery G++ now includes CS3 support for Freescale
Kinetis devices. Board support packages for the Freescale TWR-K40X256 and TWR-K60N512 are
provided, and other boards based on Kinetis devices are supported via the Sourcery G++ Board
Builder.

New manual for CodeSourcery C Library. The CodeSourcery C Library now includes its own
manual, replacing the Newlib C Library and Math Library manuals formerly distributed with Sourcery
G++.

Debugger warnings quieted. GDB no longer prints RMT ERROR diagnostics on connection to
the Sourcery G++ Debug Sprite. In spite of the alarming appearance of the messages, they were not
actually indicative of a serious problem.

Faster flash programming on Stellaris. The Sourcery G++ Debug Sprite can now program flash
memory on Stellaris Sandstorm, Fury, and DustDevil devices significantly faster.

J-Link driver update and new CPU support. The J-Link driver included in Sourcery G++ has
been updated to version 4.20h. The Sourcery G++ Debug Sprite can now use a J-Link to debug
Cortex-M4, Cortex-R4, Cortex-A5, and Cortex-A8 cores.

A.1.4. Changes in Sourcery G++ 2010.09-15

Changes to Sourcery G++ version numbering. Sourcery G++ product and Lite toolchains now
uniformly use a version numbering scheme of the form 2011.02-2. The major and minor parts of the
version number, in this case 2011.02, identify the release branch, while the final component is a
build number within the branch. There are also new preprocessor macros defined by the compiler
for the version number components so that you may conditionalize code for Sourcery G++ or partic-
ular Sourcery G++ versions. Details are available in the Sourcery G++ Knowledge Base3.

GCC fix for reference to undefined label. A bug in the optimizer that caused GCC to emit ref-
erences to undefined labels has been fixed.

Precision improvement with vectorization enabled. The GCC auto-vectorizer no longer uses
NEON floating-point instructions unless the -funsafe-math-optimizations option (implied
by -ffast-math) is specified. This is because NEON hardware does not fully support the IEEE
754 standard for floating-point arithmetic. In particular, very small quantities may be flushed to zero.

3 https://support.codesourcery.com/GNUToolchain/kbentry1

192

Sourcery G++ Release Notes

https://support.codesourcery.com/GNUToolchain/kbentry1
https://support.codesourcery.com/GNUToolchain/kbentry1

Alignment attributes. A bug has been fixed that caused the compiler to ignore alignment attributes
of C++ static member variables where the attribute was present on the definition, but not the declar-
ation.

naked attribute semantics. The naked function attribute now also implies the noinline
and noclone attributes. This fixes bugs resulting from invalid optimizations of functions with this
attribute.

Thumb-2 internal compiler error fix. A bug has been fixed that caused the compiler to crash
when compiling Thumb-2 code using 64-bit integer arithmetic.

Compiler optimization improvements. The compiler has been enhanced with a number of op-
timization improvements, including:

• More efficient assignment for structures containing bitfields.

• Better code for initializing C++ arrays with explicit element initializers.

• Improved logic for eliminating/combining redundant comparisons in code with nested conditionals.

• Better selection of loop variables, resulting in fewer temporaries and more efficient register usage.

• More optimization of references to globals in position-independent code.

• Various Thumb code generation improvements.

• Better code when constant addresses are used as arguments to inline assembly statements.

• Better code for copying small constant strings.

• Improved tuning for Cortex-M4 processors.

• Cortex-A9 specific tuning for VFP and NEON instructions.

• Use of more NEON features.

Preprocessor symbols for floating-point calling convention. Built-in preprocessor symbols
__ARM_PCS and __ARM_PCS_VFP are now defined to indicate the current floating-point calling
convention.

GCC version 4.5.1. Sourcery G++ for ARM EABI is now based on GCC version 4.5.1. For more
information about changes from GCC version 4.4 that was included in previous releases, see
http://gcc.gnu.org/gcc-4.5/changes.html.

New -Wdouble-promotion warning option. The compiler has a new option,
-Wdouble-promotion, which enables warnings about implicit promotions of float values to
double. This option is useful when compiling code for processors (such as ARM Cortex-M4) that
have hardware support for single-precision floating-point arithmetic only, where unintentional use
of double precision results in dramatically slower code.

Assembler PC-relative store fix. A bug that caused the assembler to reject some valid PC-relative
store instructions has been fixed. It now issues a warning instead for architectures where these in-
structions are deprecated.

Additional validation in the assembler. The assembler now diagnoses an error, instead of pro-
ducing an invalid object file, when directives such as .hidden are missing operands.

193

Sourcery G++ Release Notes

Binutils update. The binutils package has been updated to version 2.20.51.20100809 from the
FSF trunk. This update includes numerous bug fixes.

License files with non-ASCII characters. A bug in the Sourcery G++ IDE that resulted in license
installation failures on Windows hosts has been fixed.

IDE displays selected multilib name. The project properties dialog in the Sourcery G++ IDE
now identifies the multilib selected by the project build options. Additionally, when the selected
multilib is an add-on library that is not installed, this is flagged in the project properties dialog. For
more information about using the libraries included with Sourcery G++, refer to Section 3.2, “Library
Configurations”.

Fix for unnecessary project relinking. A bug in the Sourcery G++ IDE that caused project relink
after every IDE restart has been fixed.

Importing an executable into the IDE. The Sourcery G++ IDE now includes an improved
wizard for importing an existing executable. The new wizard correctly associates a Sourcery G++
toolchain with the program, and creates a Sourcery G++ debug launch by default. See Section 4.4.5,
“Importing an Executable into the Sourcery G++ IDE” for details.

IDE post-build binary size display bug fixes. Two bugs in the post-build step in the Sourcery
G++ IDE that displays the size of the binary have been fixed. One bug caused the command to fail
when the build artifact pathname contains spaces. The second bug resulted in a command syntax
error when building static libraries.

Sourcery G++ IDE update. The Sourcery G++ IDE has been updated to version 3.6 (Helios) of
the Eclipse Platform and version 7.0 of the Eclipse C/C++ Development Tools (CDT). This update
includes many bug fixes and usability improvements. In addition, the internal change to the new
DSF debugger framework has resulted in a number of (mostly minor) changes to the debugger user
interface. The CDT documentation4 includes a detailed list of changes, but note that not all new
features are applicable to Sourcery G++ for ARM EABI.

IDE memory view improvement. The IDE Memory window now better handles display and
scrolling of memory contents at the lower end of a memory region. Previously, it sometimes reported
bytes within the valid memory range as unavailable.

IDE external tools improvements. The predefined External Tool launches for GNU Binary
Utilities queries now save output to a file which is automatically opened in an editor view, instead
of writing to a console. This change only affects newly-created workspaces; to get the new behavior
in an existing workspace, first delete the previous External Tool launch definitions, then restart the
Sourcery G++ IDE.

IDE build errors for simulator projects. A bug in the Sourcery G++ IDE has been fixed that
caused projects for simulator targets (i.e., QEMU) created with older versions of Sourcery G++ to
fail to build when loaded or imported into a newer version of the IDE.

Support for NXP LPC17xx devices. Sourcery G++ now includes CS3 support for NXP LPC17xx
devices. A board support package for the Keil MCB1760 is provided, and other boards based on
these devices are supported via the Sourcery G++ Board Builder.

Support for Keil Microcontroller Prototyping System. Sourcery G++ now includes support
for the MPS. The Cortex-M0, Cortex-M1, Cortex-M3, and Cortex-M4 images are all supported.
Programs may execute from flash or SSRAM1.

4 http://wiki.eclipse.org/CDT/User/NewIn70

194

Sourcery G++ Release Notes

http://wiki.eclipse.org/CDT/User/NewIn70
http://wiki.eclipse.org/CDT/User/NewIn70

Additional alignment in CS3-defined linker scripts. Sourcery G++ now ensures 8-byte alignment
at additional points in CS3-defined linker scripts. Previously, placing a symbol in certain sections
broke the initialization of the .data and/or .bss sections.

Thumb support in Board Builder reset sequences. The Board Builder in the Sourcery G++
IDE now supports both ARM and Thumb in delay code used in reset sequences. Previously, Thumb
was not supported.

Library footprint improvements. The Sourcery G++ libraries have been improved to reduce
program size by simplifying the actions that are performed in some situations where the C and/or
C++ standards do not specify behavior. Specifically:

• In freestanding (unhosted) configurations, abort now calls __builtin_trap, resulting in an
immediate program crash. In previous releases, abort caused SIGABRT to be raised. The beha-
vior in hosted configurations has not been changed because the ISO C standard requires that
SIGABRT be raised in a hosted configuration.

• When a C++ pure virtual function is called, the internal __cxa_pure_virtual function now
calls __builtin_trap. In previous releases, __cxa_pure_virtual printed a message
before calling std::terminate.

• Recursive initialization of a C++ function-local static variable now results in a call to
__builtin_trap instead of throwing an exception.

CSLIBC update. The CodeSourcery C Library has been updated to incorporate changes from
Newlib 1.18.0. This update provides additional wide-character functions, along with other bug fixes
and enhancements.

Improved support for debugging RealView® C++ programs . GDB has been enhanced to
handle some debug information contained in binaries produced by the ARM RealView® compiler.
Formerly, GDB sometimes crashed on programs which use C++ templates.

GDB update. The included version of GDB has been updated to 7.2.50.20100908. This update
adds numerous bug fixes and new features, including improved C++ language support, a new command
to save breakpoints to a file, extensive Python API improvements, a new convenience variable $_
thread that holds the number of the current thread, among many other improvements.

GDB crash fix. A bug has been fixed that caused GDB to crash on launch if the environment
variable CYGPATH is set to a program that does not exist or cannot be executed.

IDE debugger assignment to I/O registers. A bug has been fixed that caused a GDB crash when
writing values to read-sensitive I/O registers that have not previously been read.

Debug Sprite abnormal termination bug fix. The Sourcery G++ Debug Sprite no longer termin-
ates abnormally if GDB is killed while the target is waiting for semihosted I/O to complete. The bug
was only triggered when running GDB on a Windows host.

J-Link support on GNU/Linux hosts. The Sourcery G++ Debug Sprite now supports J-Link
devices on GNU/Linux hosts as well as Microsoft Windows. For more information, refer to Sec-
tion 7.10, “SEGGER J-Link Devices”.

Faster startup for J-Link debugging. The Sourcery G++ Debug Sprite now launches significantly
faster when used with SEGGER J-Link devices and boards with external CFI-compatible flash
devices, such as STMicroelectronics STM32 evaluation boards.

195

Sourcery G++ Release Notes

Updated ULINK2 support. The ULINK2 drivers, firmware, and flash algorithms included with
Sourcery G++ have been updated to V4.11. The new drivers support debugging on additional devices,
including NXP LPC11xx, NXP LPC13xx, Energy Micro EFM32, and Cortex-M4 processors. For
more information on using the Sourcery G++ Debug Sprite with ULINK2 devices, see Section 7.8,
“Keil ULINK2 Devices”.

J-Link driver update. The J-Link driver included in Sourcery G++ has been updated to version
4.14i.

Debug Sprite fix for Stellaris targets at low system clocks. The Sourcery G++ Debug Sprite
now accommodates Stellaris devices running at low system clocks. Previously, the Sprite sometimes
reported spurious traps in this situation.

ULINK2 flash programming. The Sourcery G++ Debug Sprite now supports programming CFI-
compatible flash devices with ULINK2 probes.

J-Link watchpoint support. The Sourcery G++ Debug Sprite now supports watchpoints with
SEGGER J-Link devices.

Debug Sprite interrupt behavior fix. A bug in the ARMUSB and J-Link support in the Sourcery
G++ Debug Sprite has been fixed. The bug sometimes caused the Sprite to ignore requests from the
debugger to interrupt a running program on the target.

StellarisWare update. Sourcery G++ includes a more recent version of the bundled Stellarisware
libraries (release 6459).

Dhrystone example program. The Dhrystone 2.1 benchmark has been added to the set of example
programs bundled with Sourcery G++. Refer to Section 8.3, “Example Programs” for more inform-
ation about bundled examples.

A.1.5. Changes in Older Releases

For information about changes in older releases of Sourcery G++ for ARM EABI, please refer to
the Getting Started guide packaged with those releases.

196

Sourcery G++ Release Notes

Appendix B
Sourcery G++ Licenses
Sourcery G++ contains software provided under a variety of licenses. Some components
are “free” or “open source” software, while other components are proprietary.This appendix
explains what licenses apply to your use of Sourcery G++. You should read this appendix
to understand your legal rights and obligations as a user of Sourcery G++.

197

B.1. Licenses for Sourcery G++ Components
The table below lists the major components of Sourcery G++ for ARM EABI and the license terms
which apply to each of these components.

Some free or open-source components provide documentation or other files under terms different
from those shown below. For definitive information about the license that applies to each component,
consult the source package corresponding to this release of Sourcery G++. Sourcery G++ may contain
free or open-source components not included in the list below; for a definitive list, consult the source
package corresponding to this release of Sourcery G++.

LicenseComponent

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Compiler Collection

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Binary Utilities

Eclipse Public License 1.0
http://www.eclipse.org/org/documents/epl-v10.php

Eclipse IDE

Eclipse Public License 1.0
http://www.eclipse.org/org/documents/epl-v10.php

Eclipse C/C++ Development Tools

CodeSourcery License and Eclipse Public License 1.0
http://www.eclipse.org/org/documents/epl-v10.php

Sourcery G++ Eclipse Plugin(s)

CodeSourcery LicenseSourcery G++ IDE Launcher

GNU General Public License 3.0
http://www.gnu.org/licenses/gpl.html

GNU Debugger

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

Sourcery G++ Cygwin GDB Wrapper

CodeSourcery LicenseSourcery G++ Debug Sprite for ARM

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

QEMU Emulator

CodeSourcery LicenseCodeSourcery Common Startup Code Se-
quence

CodeSourcery LicenseCodeSourcery C Library

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Make

GNU General Public License 2.0
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

GNU Core Utilities

The CodeSourcery License refers to the license agreement under which you licensed Sourcery G++
from CodeSourcery, Inc. or its authorized distributor or reseller, including without limitation the
Sourcery G++™ Software License Agreement (see Section B.2, “Sourcery G++ Software License
Agreement” below).

Important

Although some of the licenses that apply to Sourcery G++ are “free software” or “open
source software” licenses, none of these licenses impose any obligation on you to reveal

198

Sourcery G++ Licenses

http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl.html
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php
http://www.eclipse.org/org/documents/epl-v10.php
http://www.gnu.org/licenses/gpl.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

the source code of applications you build with Sourcery G++. You can develop proprietary
applications and libraries with Sourcery G++.

Sourcery G++ may include some third party example programs and libraries in the share/
sourceryg++-arm-none-eabi-examples subdirectory. These examples are not covered
by the Sourcery G++ Software License Agreement. To the extent permitted by law, these examples
are provided by CodeSourcery as is with no warranty of any kind, including implied warranties of
merchantability or fitness for a particular purpose. Your use of each example is governed by the license
notice (if any) it contains.

The Sourcery G++ IDE contains components licensed under the Eclipse Public License. In order to
obtain the source code for these components, file a request for the source code in the Sourcery G++
Portal1 specifying the Sourcery G++ version number, the target CPU, the target OS, and the host
OS.

B.2. Sourcery G++™ Software License Agree-
ment
1. Parties. The parties to this Agreement are you, the licensee (“You” or “Licensee”) and

CodeSourcery. If You are not acting on behalf of Yourself as an individual, then “You” means
Your company or organization.

2. The Software. The Software licensed under this Agreement consists of computer programs
and documentation referred to as Sourcery G++™ Professional Edition, Sourcery G++™
Standard Edition, Sourcery G++™ Personal Edition, Sourcery G++™ Academic Edition, or
Sourcery G++™ for Evaluation (the “Software”) provided to You, including any Updates
thereto.

3. Definitions.

3.1. Effective Date. The date on which CodeSourcery gives You access to CodeSourcery's
electronic support system.

3.2. CodeSourcery Proprietary Components. The components of the Software that are
owned and/or licensed by CodeSourcery and are not subject to a “free software” or
“open source” license, such as the GNU Public License. The CodeSourcery Proprietary
Components of the Software include, without limitation, the Sourcery G++ Installer,
any Sourcery G++ Eclipse plug-ins, the CodeSourcery C Library (CSLIBC), and any
Sourcery G++ Debug Sprite. For a complete list, refer to the Getting Started Guide in-
cluded with the distribution.

3.3. Open Source Software Components. The components of the Software that are
subject to a “free software” or “open source” license, such as the GNU Public License.

3.4. Proprietary Rights. All rights in and to copyrights, rights to register copyrights,
trade secrets, inventions, patents, patent rights, trademarks, trademark rights, confidential
and proprietary information protected under contract or otherwise under law, and other
similar rights or interests in intellectual or industrial property.

3.5. Redistributable Components. The CodeSourcery Proprietary Components that are
intended to be incorporated or linked into Licensee object code developed with the
Software. The Redistributable Components of the Software include, without limitation,

1 https://support.codesourcery.com/GNUToolchain/

199

Sourcery G++ Licenses

https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/
https://support.codesourcery.com/GNUToolchain/

CSLIBC and the CodeSourcery Common Startup Code Sequence (CS3). For a complete
list, refer to the Getting Started Guide included with the distribution.

4. License Grant to Proprietary Components of the Software.

4.1. Sourcery G++ Professional Edition. Subject to the terms and conditions hereof,
CodeSourcery hereby grants to Licensee of Sourcery G++ Professional Edition a per-
petual, non-exclusive license under the Proprietary Rights of CodeSourcery and its li-
censors (a) to install and use the CodeSourcery Proprietary Components of the Software
(i) if the license is a node-locked license, by a single user who uses the Software on up
to two machines provided that only one copy of the Software is in use at any one time,
or (ii) if the license is a floating license, by the authorized number of concurrent users
on one or more machines provided that only the authorized number of copies of the
Software are in use at any one time, and (b) to distribute the Redistributable Component(s)
of the Software in binary form only and only as part of Licensee object code developed
with the Software that provides substantially different functionality than the Redistrib-
utable Component(s).

4.2. Sourcery G++ Standard Edition. Subject to the terms and conditions hereof,
CodeSourcery hereby grants to Licensee of Sourcery G++ Standard Edition a perpetual,
non-exclusive license under the Proprietary Rights of CodeSourcery and its licensors
(a) to install and use the CodeSourcery Proprietary Components of the Software by a
single user who uses the Software up to two machines provided that only one copy of
the Software is in use at any one time, and (b) to distribute the Redistributable Compon-
ent(s) of the Software in binary form only and only as part of Licensee object code de-
veloped with the Software that provides substantially different functionality than the
Redistributable Component(s).

4.3. Sourcery G++ Personal Edition. Subject to the terms and conditions hereof,
CodeSourcery hereby grants to Licensee of Sourcery G++ Personal Edition a perpetual,
non-exclusive license under the Proprietary Rights of CodeSourcery and its licensors
(a) to install and use the CodeSourcery Proprietary Components of the Software by a
single user who uses the Software on one machine, and (b) to distribute the Redistribut-
able Component(s) of the Software in binary form only and only as part of Licensee
object code developed with the Software that provides substantially different function-
ality than the Redistributable Component(s).

4.4. Sourcery G++ Academic Edition. Subject to the terms and conditions hereof,
CodeSourcery hereby grants to Licensee of Sourcery G++ Academic Edition a perpetual,
non-exclusive license under the Proprietary Rights of CodeSourcery and its licensors
(a) to install and use the CodeSourcery Proprietary Components of the Software, for
non-commercial, academic purposes only, by a single user who uses the Software on
one machine, and (b) to distribute the Redistributable Component(s) of the Software in
binary form only and only as part of Licensee object code developed with the Software
that provides substantially different functionality than the Redistributable Component(s).

4.5. Sourcery G++ for Evaluation. Subject to the terms and conditions hereof, Code-
Sourcery hereby grants to Licensee of Sourcery G++ for Evaluation a limited, non-ex-
clusive license under the Proprietary Rights of CodeSourcery and its licensors to install
and use the CodeSourcery Proprietary Components of the Software, for evaluation pur-
poses only, by a single user who uses the Software on one machine during the term of
this Agreement.

5. Restrictions. You may not: (i) copy or permit others to use the CodeSourcery Proprietary
Components of the Software, except as expressly provided above; (ii) distribute the CodeSourcery

200

Sourcery G++ Licenses

Proprietary Components of the Software to any third party, except as expressly provided above;
or (iii) reverse engineer, decompile, or disassemble the CodeSourcery Proprietary Components
of the Software, except to the extent this restriction is expressly prohibited by applicable law.

5.1. ARM Keil ULINK2 Drivers. Sourcery G++ may include ULINK2 drivers from
ARM, Ltd. If these drivers are included, the following additional terms and conditions
apply:

a. You may use the ULINK2 drivers only in conjunction with a compatible ARM Keil
ULINK2 hardware unit manufactured by or under license from ARM and purchased
from CodeSourcery, ARM, or a distributor authorized by ARM.

b. You may use the ULINK2 drivers only to connect to the GNU Debugger included
in Sourcery G++.

c. The ULINK2 drivers are not supported by ARM, Ltd.; You should contact Code-
Sourcery for any support regarding the ULINK2 drivers.

d. You may not redistribute or transfer the ULINK2 drivers.

e. You may not translate, adapt, arrange or otherwise alter the object code of the ULINK2
drivers (including without limitation copying, adapting or reverse compiling the object
code of the ULINK2 drivers for the purpose of error correction) except as allowed
by applicable law.

f. You may not remove or obstruct any notice or marker incorporated into the ULINK2
drivers to protect ARM's or third parties' intellectual property or Proprietary Rights.

g. The ULINK2 drivers are licensed, not sold; all right, title and interest therein is re-
served to CodeSourcery or its licensors, and You acquire no right, title or interest
therein.

5.2. SEGGER J-Link™ Devices. Sourcery G++ includes proprietary software from
SEGGER Microcontroller GmbH & Co.KG that allows the use of SEGGER J-Link debug
devices with the Sourcery G++ Debug Sprite. You may use software from SEGGER
only under the SEGGER J-Link software terms of use 2 and license agreement3.

5.3. Sourcery G++ Debug Sprite with ARM SWD. The Sourcery G++ Debug Sprite
for ARM and Stellaris processors includes software for ARM SWD support from ARM,
Ltd. You may use the ARM SWD software only in conjunction with a Cortex-M1 or
Cortex-M3 microprocessor manufactured under license from ARM.

5.4. Sourcery G++ Debug Sprite for P&E Devices. This software application may in-
clude P&E NGS Drivers version 120210 third-party software, which is distributed on
an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.
P&E NGS Drivers version 120210 may be subject to the following copyrights:

© 1999-2003, Lukas Gebauer
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

2 http://segger.com/jlink_arm_software_terms_of_use.html
3 http://segger.com/pub/jlink/license_agreement.txt

201

Sourcery G++ Licenses

http://segger.com/jlink_arm_software_terms_of_use.html
http://segger.com/pub/jlink/license_agreement.txt
http://segger.com/jlink_arm_software_terms_of_use.html
http://segger.com/pub/jlink/license_agreement.txt

• Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

• Neither the name of Lukas Gebauer nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

• THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEM-
PLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
OF THE POSSIBILITY OF SUCH DAMAGE.

6. “Free Software” or “Open Source” License to Certain Components of the Software.
This Agreement does not limit Your rights under, or grant You rights that supersede, the license
terms of any Open Source Software Component delivered to You by CodeSourcery. Sourcery
G++ includes components provided under various different licenses. The Getting Started Guide
provides an overview of which license applies to different components, and, for components
subject to the Eclipse Public License, contains information on how to obtain the source code.
Definitive licensing information for each “free software” or “open source” component is available
in the relevant source file.

7. CodeSourcery Trademarks. Notwithstanding any provision in a “free software” or “open
source” license agreement applicable to a component of the Software that permits You to dis-
tribute such component to a third party in source or binary form, You may not use any Code-
Sourcery trademark, whether registered or unregistered, including without limitation, Code-
Sourcery™, Sourcery G++™, the CodeSourcery crystal ball logo, or the Sourcery G++ splash
screen, or any confusingly similar mark, in connection with such distribution, and You may not
recompile the Open Source Software Components with the --with-pkgversion or
--with-bugurl configuration options that embed CodeSourcery trademarks in the resulting
binary.

8. Term.

8.1. Sourcery G++ Professional, Standard, Personal, and Academic Edition Subscrip-
tions. For Licensee of Sourcery G++ Professional, Standard, Personal, or Academic
Edition, this Agreement shall have a subscription term of one (1) year unless this
Agreement is terminated pursuant to Section 12.

8.2. Sourcery G++ for Evaluation. For Licensee of Sourcery G++ for Evaluation, this
Agreement shall have an evaluation term of thirty (30) days unless this Agreement is
terminated pursuant to Section 12.

202

Sourcery G++ Licenses

8.3. Renewals. For Licensee of Sourcery G++ Professional, Standard, Personal, or Aca-
demic Edition, You may renew this Agreement for successive one (1) year subscription
terms by paying the maintenance fee on or before the anniversary of the Effective Date
of this Agreement.

8.4. Lapsed Subscription. If You desire to reinstate an Agreement that has been expired
for more than thirty (30) days, You must pay the renewal fee for the any years during
which Your subscription lapsed and the full license fee for the first year in which Your
subscription is reinstated.

9. Updates. During the term of this Agreement, You may download, free of charge, any new
version(s), update(s), or upgrade(s) ("Updates") to the Software that CodeSourcery makes
available at such times as may be determined by CodeSourcery in its sole discretion.

10. Technical Support. CodeSourcery shall provide technical support only to Licensee of
Sourcery G++ Professional or Standard Edition.

10.1. Support Term. CodeSourcery shall provide technical support to Licensee pursuant
to this Section 10 during the subscription term of this Agreement.

10.2. Scope of Support. CodeSourcery shall assist Licensee in installing and using the
Software in binary form. If Licensee reports a defect in the Software, CodeSourcery
shall suggest a work-around, and, if Licensee is a Professional Edition subscriber, correct
the defect, subject to the limitations set forth below. CodeSourcery shall impose no
limit on the number of support requests made by Licensee. Licensee may submit support
requests only on its own behalf and not on behalf of any other party, including a licensee
of any other edition of Sourcery G++, such as Sourcery G++ Personal, Academic or
Lite Edition. If Licensee is a member of a development team, all members of the team
must be Licensees of the same edition of Sourcery G++ (either Professional or Standard
Edition). Although CodeSourcery will make source code for the Open Source Compon-
ents available to Licensee, CodeSourcery's support does not cover rebuilding the tool-
chains from the source packages, correcting defects in any such rebuilt toolchains, or
answering any questions arising from Licensee's use of source packages.

10.3. Professional Edition Update Releases. For Licensee of Sourcery G++ for Profes-
sional Edition only, CodeSourcery shall use commercially reasonable efforts to provide
an Update incorporating the correction of any defect reported by Licensee for which no
satisfactory work-around exists.

10.4. Electronic Support System. Licensee shall make all support requests via Code-
Sourcery's electronic support system, and CodeSourcery shall respond via the same
electronic support system. CodeSourcery will not accept support requests by telephone
or other means.

10.5. Response Time. CodeSourcery's electronic support system will provide Licensee
with an immediate acknowledgment of the support request (including a unique tracking
number) by electronic mail. Support requests from Licensee of Sourcery G++ Profes-
sional Edition shall receive priority for response and resolution. CodeSourcery shall
respond to all Sourcery G++ Professional Edition support requests within one business
day and Sourcery G++ Standard Edition support requests within three business days
except in extraordinary circumstances.

10.6. No Guarantee of Resolution. CodeSourcery does not guarantee that it will be able
to resolve all support requests. Without limitation, CodeSourcery may, in its sole discre-
tion, determine that a defect in the Software is too difficult to correct, or that any correc-

203

Sourcery G++ Licenses

tion would likely risk the introduction of additional defects, or that the defect is not
likely to be encountered often enough to be worthy of correction, or that the defect is
insufficiently severe to be worthy of correction.

10.7. Support for Previous Versions. After the release of an Update, CodeSourcery shall
provide support for previous version(s) of the Software for a period of six (6) months.
CodeSourcery will have no obligation to provide support after this period. Long-term
support for an older version of the Software is available to Licensee of Sourcery G++
Professional Edition for an additional fee.

10.8. Test Cases. In many cases, CodeSourcery will require access to Licensee's source
code in order to resolve Licensee's support request. CodeSourcery may, in its sole dis-
cretion, create regression tests distilled from Licensee's source code for use in testing
changes to the Software. CodeSourcery shall use commercially reasonable efforts to
disguise the origin of the source code, to eliminate non-essential aspects of the source
code, and to otherwise protect the confidentiality of Licensee's source code. These re-
gression tests may be made available to other CodeSourcery licensees or to the general
public.

11. Fees.

11.1. Fees. The licenses and rights granted in this Agreement are subject to Licensee's
payment of all fees owed to CodeSourcery.

11.2. Taxes. All fees are exclusive of sales or use taxes and any levy imposed on the
transportation or use of the Software. Licensee shall pay all such charges either as levied
by taxing authorities or as invoiced by CodeSourcery.

11.3. Non-refundability. All payments made to CodeSourcery are non-refundable.

12. Termination.

12.1. Grounds for Termination.

12.1.1. Termination for Material Breach. CodeSourcery may terminate this
Agreement upon seven (7) days written notice of a material breach of this
Agreement if such breach is not cured; provided that the unauthorized use,
copying, or distribution of the CodeSourcery Proprietary Components of the
Software will be deemed a material breach that cannot be cured.

12.1.2. Termination of Updates and Technical Support for Unauthorized Redis-
tribution of Binaries . CodeSourcery shall provide Updates and Technical
Support to Licensee, pursuant to Sections 9 and 10, respectively, only on the
condition that Licensee uses the Software for internal use and/or distributes
the Software in binary form pursuant to a separate redistribution agreement
with CodeSourcery. Any other distribution by Licensee of the Software in
binary form, including distribution permitted by the applicable "free software"
or "open source" license, shall automatically terminate this Agreement and
shall void the remainder of Licensee's subscription term.

12.2. Effect of Termination.

12.2.1. Surviving Obligations. The following obligations shall survive the termin-
ation or expiration of this Agreement: (i) any and all warranty disclaimers or
limitations of liability herein, and (ii) any covenant granted herein for the
purpose of determining ownership of, or protecting, the Proprietary Rights of

204

Sourcery G++ Licenses

either party, including the CodeSourcery trademarks as set forth in Section 7,
or any remedy for breach thereof.

12.2.2. Surviving Rights. After the expiration of this Agreement, Licensee of
Sourcery G++ Professional, Standard, Personal, or Academic Edition may
continue to use the Software, including the CodeSourcery Proprietary Com-
ponents, pursuant to Section 4 and 5, but CodeSourcery shall provide no further
Updates or Technical Support to Licensee. However, if this agreement is ter-
minated pursuant to Section 12.1, Licensee's rights pursuant to Section 4 shall
terminate immediately and Licensee shall destroy all copies of the Code-
Sourcery Proprietary Components of the Software.

13. Transfers. You may not transfer any rights under this Agreement without the prior written
consent of CodeSourcery, which consent shall not be unreasonably withheld. A condition to
any transfer or assignment shall be that the recipient agrees to the terms of this Agreement. Any
attempted transfer or assignment in violation of this provision shall be null and void.

14. Ownership. CodeSourcery owns and/or has licensed the CodeSourcery Proprietary Com-
ponents of the Software and all intellectual property rights embodied therein, including copyrights
and valuable trade secrets embodied in its design and coding methodology. The CodeSourcery
Proprietary Components of the Software are protected by United States copyright laws and in-
ternational treaty provisions. CodeSourcery also owns all rights, title and interest in and with
respect to its trade names, domain names, trade dress, logos, trademarks, service marks, and
other similar rights or interests in intellectual property. This Agreement provides You only a
limited use license, and no ownership of any intellectual property.

15. Warranty Disclaimer; Limitation of Liability. CODESOURCERY AND ITS LICENSORS
PROVIDE THE SOFTWARE “AS-IS” AND PROVIDED WITH ALL FAULTS. CODE-
SOURCERY DOES NOT MAKE ANY WARRANTY OF ANY KIND, EXPRESS OR IM-
PLIED. CODESOURCERY SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES
OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, SYSTEM INTEGRATION, AND DATA ACCURACY. THERE IS NO WAR-
RANTY OR GUARANTEE THAT THE OPERATION OF THE SOFTWARE WILL BE
UNINTERRUPTED, ERROR-FREE, OR VIRUS-FREE, OR THAT THE SOFTWARE WILL
MEET ANY PARTICULAR CRITERIA OF PERFORMANCE, QUALITY, ACCURACY,
PURPOSE, OR NEED. YOU ASSUME THE ENTIRE RISK OF SELECTION, INSTALLA-
TION, AND USE OF THE SOFTWARE. THIS DISCLAIMER OF WARRANTY CONSTI-
TUTES AN ESSENTIAL PART OF THIS AGREEMENT. NO USE OF THE SOFTWARE
IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

16. Local Law. If implied warranties may not be disclaimed under applicable law, then ANY
IMPLIED WARRANTIES ARE LIMITED IN DURATION TO THE PERIOD REQUIRED
BY APPLICABLE LAW.

17. Limitation of Liability. INDEPENDENT OF THE FORGOING PROVISIONS, IN NO
EVENT AND UNDER NO LEGAL THEORY, INCLUDING WITHOUT LIMITATION,
TORT, CONTRACT, OR STRICT PRODUCTS LIABILITY, SHALL CODESOURCERY
BE LIABLE TO YOU OR ANY OTHER PERSON FOR ANY INDIRECT, SPECIAL, INCID-
ENTAL, OR CONSEQUENTIAL DAMAGES OF ANY KIND, INCLUDING WITHOUT
LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER
MALFUNCTION, OR ANY OTHER KIND OF COMMERCIAL DAMAGE, EVEN IF
CODESOURCERY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL
INJURY TO THE EXTENT PROHIBITED BY APPLICABLE LAW. IN NO EVENT SHALL
CODESOURCERY'S LIABILITY FOR ACTUAL DAMAGES FOR ANY CAUSE WHAT-

205

Sourcery G++ Licenses

SOEVER, AND REGARDLESS OF THE FORM OF ACTION, EXCEED THE AMOUNT
PAID BY YOU IN FEES UNDER THIS AGREEMENT DURING THE PREVIOUS ONE
YEAR PERIOD.

18. Export Controls. You agree to comply with all export laws and restrictions and regulations
of the United States or foreign agencies or authorities, and not to export or re-export the Software
or any direct product thereof in violation of any such restrictions, laws or regulations, or without
all necessary approvals. As applicable, each party shall obtain and bear all expenses relating to
any necessary licenses and/or exemptions with respect to its own export of the Software from
the U.S. Neither the Software nor the underlying information or technology may be electronically
transmitted or otherwise exported or re-exported (i) into Cuba, Iran, Iraq, Libya, North Korea,
Sudan, Syria or any other country subject to U.S. trade sanctions covering the Software, to in-
dividuals or entities controlled by such countries, or to nationals or residents of such countries
other than nationals who are lawfully admitted permanent residents of countries not subject to
such sanctions; or (ii) to anyone on the U.S. Treasury Department's list of Specially Designated
Nationals and Blocked Persons or the U.S. Commerce Department's Table of Denial Orders.
By downloading or using the Software, Licensee agrees to the foregoing and represents and
warrants that it complies with these conditions.

19. U.S. Government End-Users. The Software is a “commercial item,” as that term is defined
in 48 C.F.R. 2.101 (Oct. 1995), consisting of “commercial computer software” and “commercial
computer software documentation,” as such terms are used in 48 C.F.R. 12.212 (Sept. 1995).
Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
all U.S. Government End Users acquire the Software with only those rights set forth herein.

20. Licensee Outside The U.S. If You are located outside the U.S., then the following provisions
shall apply: (i) Les parties aux presentes confirment leur volonte que cette convention de meme
que tous les documents y compris tout avis qui siy rattache, soient rediges en langue anglaise
(translation: “The parties confirm that this Agreement and all related documentation is and will
be in the English language.”); and (ii) You are responsible for complying with any local laws
in your jurisdiction which might impact your right to import, export or use the Software, and
You represent that You have complied with any regulations or registration procedures required
by applicable law to make this license enforceable.

21. Severability. If any provision of this Agreement is declared invalid or unenforceable, such
provision shall be deemed modified to the extent necessary and possible to render it valid and
enforceable. In any event, the unenforceability or invalidity of any provision shall not affect
any other provision of this Agreement, and this Agreement shall continue in full force and effect,
and be construed and enforced, as if such provision had not been included, or had been modified
as above provided, as the case may be.

22. Arbitration. Except for actions to protect intellectual property rights and to enforce an ar-
bitrator's decision hereunder, all disputes, controversies, or claims arising out of or relating to
this Agreement or a breach thereof shall be submitted to and finally resolved by arbitration under
the rules of the American Arbitration Association (“AAA”) then in effect. There shall be one
arbitrator, and such arbitrator shall be chosen by mutual agreement of the parties in accordance
with AAA rules. The arbitration shall take place in Granite Bay, California, and may be conducted
by telephone or online. The arbitrator shall apply the laws of the State of California, USA to
all issues in dispute. The controversy or claim shall be arbitrated on an individual basis, and
shall not be consolidated in any arbitration with any claim or controversy of any other party.
The findings of the arbitrator shall be final and binding on the parties, and may be entered in
any court of competent jurisdiction for enforcement. Enforcements of any award or judgment
shall be governed by the United Nations Convention on the Recognition and Enforcement of

206

Sourcery G++ Licenses

Foreign Arbitral Awards. Should either party file an action contrary to this provision, the other
party may recover attorney's fees and costs up to $1000.00.

23. Jurisdiction And Venue. The courts of Placer County in the State of California, USA and
the nearest U.S. District Court shall be the exclusive jurisdiction and venue for all legal proceed-
ings that are not arbitrated under this Agreement.

24. Independent Contractors. The relationship of the parties is that of independent contractor,
and nothing herein shall be construed to create a partnership, joint venture, franchise, employ-
ment, or agency relationship between the parties. Licensee shall have no authority to enter into
agreements of any kind on behalf of CodeSourcery and shall not have the power or authority
to bind or obligate CodeSourcery in any manner to any third party.

25. Force Majeure. Neither CodeSourcery nor Licensee shall be liable for damages for any
delay or failure of delivery arising out of causes beyond their reasonable control and without
their fault or negligence, including, but not limited to, Acts of God, acts of civil or military au-
thority, fires, riots, wars, embargoes, or communications failure.

26. Miscellaneous. This Agreement constitutes the entire understanding of the parties with respect
to the subject matter of this Agreement and merges all prior communications, representations,
and agreements. This Agreement may be modified only by a written agreement signed by the
parties. If any provision of this Agreement is held to be unenforceable for any reason, such
provision shall be reformed only to the extent necessary to make it enforceable. This Agreement
shall be construed under the laws of the State of California, USA, excluding rules regarding
conflicts of law. The application of the United Nations Convention of Contracts for the Interna-
tional Sale of Goods is expressly excluded. This license is written in English, and English is its
controlling language.

B.3. Attribution
This version of Sourcery G++ may include code based on work under the following copyright and
permission notices:

B.3.1. Android Open Source Project

/*
 * Copyright (C) 2008 The Android Open Source Project
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in
 * the documentation and/or other materials provided with the
 * distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

207

Sourcery G++ Licenses

 * SUCH DAMAGE.
 */

B.3.2. Newlib

The newlib subdirectory is a collection of software from several sources.

Each file may have its own copyright/license that is embedded in the source
file. Unless otherwise noted in the body of the source file(s), the following copyright
notices will apply to the contents of the newlib subdirectory:

(1) Red Hat Incorporated

Copyright (c) 1994-2007 Red Hat, Inc. All rights reserved.

This copyrighted material is made available to anyone wishing to use,
modify, copy, or redistribute it subject to the terms and conditions
of the BSD License. This program is distributed in the hope that
it will be useful, but WITHOUT ANY WARRANTY expressed or implied,
including the implied warranties of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. A copy of this license is available at
http://www.opensource.org/licenses. Any Red Hat trademarks that are
incorporated in the source code or documentation are not subject to
the BSD License and may only be used or replicated with the express
permission of Red Hat, Inc.

(2) University of California, Berkeley

Copyright (c) 1981-2000 The Regents of the University of California.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.
 * Neither the name of the University nor the names of its contributors
 may be used to endorse or promote products derived from this software
 without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.

(3) David M. Gay (AT&T 1991, Lucent 1998)

The author of this software is David M. Gay.

Copyright (c) 1991 by AT&T.

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting
documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

208

Sourcery G++ Licenses

The author of this software is David M. Gay.

Copyright (C) 1998-2001 by Lucent Technologies
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that the copyright notice and this
permission notice and warranty disclaimer appear in supporting
documentation, and that the name of Lucent or any of its entities
not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
THIS SOFTWARE.

(4) Advanced Micro Devices

Copyright 1989, 1990 Advanced Micro Devices, Inc.

This software is the property of Advanced Micro Devices, Inc (AMD) which
specifically grants the user the right to modify, use and distribute this
software provided this notice is not removed or altered. All other rights
are reserved by AMD.

AMD MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS
SOFTWARE. IN NO EVENT SHALL AMD BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL
DAMAGES IN CONNECTION WITH OR ARISING FROM THE FURNISHING, PERFORMANCE, OR
USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the 29K Technical Support Center at
800-29-29-AMD (800-292-9263) in the USA, or 0800-89-1131 in the UK, or
0031-11-1129 in Japan, toll free. The direct dial number is 512-462-4118.

Advanced Micro Devices, Inc.
29K Support Products
Mail Stop 573
5900 E. Ben White Blvd.
Austin, TX 78741
800-292-9263

(5) C.W. Sandmann

Copyright (C) 1993 C.W. Sandmann

This file may be freely distributed as long as the author's name remains.

(6) Eric Backus

(C) Copyright 1992 Eric Backus

This software may be used freely so long as this copyright notice is
left intact. There is no warrantee on this software.

(7) Sun Microsystems

Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.

Developed at SunPro, a Sun Microsystems, Inc. business.
Permission to use, copy, modify, and distribute this

209

Sourcery G++ Licenses

software is freely granted, provided that this notice is preserved.

(8) Hewlett Packard

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:
 permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be
used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(9) Hans-Peter Nilsson

Copyright (C) 2001 Hans-Peter Nilsson

Permission to use, copy, modify, and distribute this software is
freely granted, provided that the above copyright notice, this notice
and the following disclaimer are preserved with no changes.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

(10) Stephane Carrez (m68hc11-elf/m68hc12-elf targets only)

Copyright (C) 1999, 2000, 2001, 2002 Stephane Carrez (stcarrez@nerim.fr)

The authors hereby grant permission to use, copy, modify, distribute,
and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors
and need not follow the licensing terms described here, provided that
the new terms are clearly indicated on the first page of each file where
they apply.

(11) Christopher G. Demetriou

Copyright (c) 2001 Christopher G. Demetriou
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(12) SuperH, Inc.

210

Sourcery G++ Licenses

Copyright 2002 SuperH, Inc. All rights reserved

This software is the property of SuperH, Inc (SuperH) which specifically
grants the user the right to modify, use and distribute this software
provided this notice is not removed or altered. All other rights are
reserved by SuperH.

SUPERH MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS SOFTWARE. IN NO EVENT SHALL SUPERH BE LIABLE FOR INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH OR ARISING FROM
THE FURNISHING, PERFORMANCE, OR USE OF THIS SOFTWARE.

So that all may benefit from your experience, please report any problems
or suggestions about this software to the SuperH Support Center via
e-mail at softwaresupport@superh.com .

SuperH, Inc.
405 River Oaks Parkway
San Jose
CA 95134
USA

(13) Royal Institute of Technology

Copyright (c) 1999 Kungliga Tekniska Högskolan
(Royal Institute of Technology, Stockholm, Sweden).
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

3. Neither the name of KTH nor the names of its contributors may be
 used to endorse or promote products derived from this software without
 specific prior written permission.

THIS SOFTWARE IS PROVIDED BY KTH AND ITS CONTRIBUTORS ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL KTH OR ITS CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(14) Alexey Zelkin

Copyright (c) 2000, 2001 Alexey Zelkin <phantom@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

211

Sourcery G++ Licenses

IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(15) Andrey A. Chernov

Copyright (C) 1997 by Andrey A. Chernov, Moscow, Russia.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(16) FreeBSD

Copyright (c) 1997-2002 FreeBSD Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(17) S. L. Moshier

Author: S. L. Moshier.

Copyright (c) 1984,2000 S.L. Moshier

Permission to use, copy, modify, and distribute this software for any
purpose without fee is hereby granted, provided that this entire notice
is included in all copies of any software which is or includes a copy
or modification of this software and in all copies of the supporting

212

Sourcery G++ Licenses

documentation for such software.

THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
WARRANTY. IN PARTICULAR, THE AUTHOR MAKES NO REPRESENTATION
OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY OF THIS
SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.

(18) Citrus Project

Copyright (c)1999 Citrus Project,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(19) Todd C. Miller

Copyright (c) 1998 Todd C. Miller <Todd.Miller@courtesan.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
3. The name of the author may not be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(20) DJ Delorie (i386)
Copyright (C) 1991 DJ Delorie
All rights reserved.

Redistribution and use in source and binary forms is permitted
provided that the above copyright notice and following paragraph are
duplicated in all such forms.

This file is distributed WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

(21) Free Software Foundation LGPL License (*-linux* targets only)

213

Sourcery G++ Licenses

 Copyright (C) 1990-1999, 2000, 2001 Free Software Foundation, Inc.
 This file is part of the GNU C Library.
 Contributed by Mark Kettenis <kettenis@phys.uva.nl>, 1997.

 The GNU C Library is free software; you can redistribute it and/or
 modify it under the terms of the GNU Lesser General Public
 License as published by the Free Software Foundation; either
 version 2.1 of the License, or (at your option) any later version.

 The GNU C Library is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public
 License along with the GNU C Library; if not, write to the Free
 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301 USA.

(22) Xavier Leroy LGPL License (i[3456]86-*-linux* targets only)

Copyright (C) 1996 Xavier Leroy (Xavier.Leroy@inria.fr)

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.

(23) Intel (i960)

Copyright (c) 1993 Intel Corporation

Intel hereby grants you permission to copy, modify, and distribute this
software and its documentation. Intel grants this permission provided
that the above copyright notice appears in all copies and that both the
copyright notice and this permission notice appear in supporting
documentation. In addition, Intel grants this permission provided that
you prominently mark as "not part of the original" any modifications
made to this software or documentation, and that the name of Intel
Corporation not be used in advertising or publicity pertaining to
distribution of the software or the documentation without specific,
written prior permission.

Intel Corporation provides this AS IS, WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE. Intel makes no guarantee or
representations regarding the use of, or the results of the use of,
the software and documentation in terms of correctness, accuracy,
reliability, currentness, or otherwise; and you rely on the software,
documentation and results solely at your own risk.

IN NO EVENT SHALL INTEL BE LIABLE FOR ANY LOSS OF USE, LOSS OF BUSINESS,
LOSS OF PROFITS, INDIRECT, INCIDENTAL, SPECIAL OR CONSEQUENTIAL DAMAGES
OF ANY KIND. IN NO EVENT SHALL INTEL'S TOTAL LIABILITY EXCEED THE SUM
PAID TO INTEL FOR THE PRODUCT LICENSED HEREUNDER.

(24) Hewlett-Packard (hppa targets only)

(c) Copyright 1986 HEWLETT-PACKARD COMPANY

To anyone who acknowledges that this file is provided "AS IS"
without any express or implied warranty:
 permission to use, copy, modify, and distribute this file
for any purpose is hereby granted without fee, provided that
the above copyright notice and this notice appears in all
copies, and that the name of Hewlett-Packard Company not be

214

Sourcery G++ Licenses

used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
Hewlett-Packard Company makes no representations about the
suitability of this software for any purpose.

(25) Henry Spencer (only *-linux targets)

Copyright 1992, 1993, 1994 Henry Spencer. All rights reserved.
This software is not subject to any license of the American Telephone
and Telegraph Company or of the Regents of the University of California.

Permission is granted to anyone to use this software for any purpose on
any computer system, and to alter it and redistribute it, subject
to the following restrictions:

1. The author is not responsible for the consequences of use of this
 software, no matter how awful, even if they arise from flaws in it.

2. The origin of this software must not be misrepresented, either by
 explicit claim or by omission. Since few users ever read sources,
 credits must appear in the documentation.

3. Altered versions must be plainly marked as such, and must not be
 misrepresented as being the original software. Since few users
 ever read sources, credits must appear in the documentation.

4. This notice may not be removed or altered.

(26) Mike Barcroft

Copyright (c) 2001 Mike Barcroft <mike@FreeBSD.org>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(27) Konstantin Chuguev (--enable-newlib-iconv)

Copyright (c) 1999, 2000
 Konstantin Chuguev. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

215

Sourcery G++ Licenses

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

 iconv (Charset Conversion Library) v2.0

(28) Artem Bityuckiy (--enable-newlib-iconv)

Copyright (c) 2003, Artem B. Bityuckiy, SoftMine Corporation.
Rights transferred to Franklin Electronic Publishers.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

(29) IBM, Sony, Toshiba (only spu-* targets)

 (C) Copyright 2001,2006,
 International Business Machines Corporation,
 Sony Computer Entertainment, Incorporated,
 Toshiba Corporation,

 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the names of the copyright holders nor the names of their
 contributors may be used to endorse or promote products derived from this
 software without specific prior written permission.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 POSSIBILITY OF SUCH DAMAGE.

(30) - Alex Tatmanjants (targets using libc/posix)

 Copyright (c) 1995 Alex Tatmanjants <alex@elvisti.kiev.ua>

216

Sourcery G++ Licenses

 at Electronni Visti IA, Kiev, Ukraine.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(31) - M. Warner Losh (targets using libc/posix)

 Copyright (c) 1998, M. Warner Losh <imp@freebsd.org>
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(32) - Andrey A. Chernov (targets using libc/posix)

 Copyright (C) 1996 by Andrey A. Chernov, Moscow, Russia.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

217

Sourcery G++ Licenses

 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(33) - Daniel Eischen (targets using libc/posix)

 Copyright (c) 2001 Daniel Eischen <deischen@FreeBSD.org>.
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(34) - Jon Beniston (only lm32-* targets)

 Contributed by Jon Beniston <jon@beniston.com>

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

(35) - ARM Ltd (arm and thumb variant targets only)

 Copyright (c) 2009 ARM Ltd
 All rights reserved.

 Redistribution and use in source and binary forms, with or without
 modification, are permitted provided that the following conditions
 are met:
 1. Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 2. Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 3. The name of the company may not be used to endorse or promote
 products derived from this software without specific prior written

218

Sourcery G++ Licenses

 permission.

 THIS SOFTWARE IS PROVIDED BY ARM LTD ``AS IS'' AND ANY EXPRESS OR IMPLIED
 WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 IN NO EVENT SHALL ARM LTD BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
 TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(36) - CodeSourcery, Inc.

Copyright (c) 2009 CodeSourcery, Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
 * Redistributions of source code must retain the above copyright
 notice, this list of conditions and the following disclaimer.
 * Redistributions in binary form must reproduce the above copyright
 notice, this list of conditions and the following disclaimer in the
 documentation and/or other materials provided with the distribution.
 * Neither the name of CodeSourcery nor the
 names of its contributors may be used to endorse or promote products
 derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY CODESOURCERY, INC. ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL CODESOURCERY BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

(37) MIPS Technologies, Inc
/*
 * Copyright (c) 2009 MIPS Technologies, Inc.
 *
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * * Redistributions in binary form must reproduce the above
 * copyright
 * notice, this list of conditions and the following disclaimer
 * in the documentation and/or other materials provided with
 * the distribution.
 * * Neither the name of MIPS Technologies Inc. nor the names of its
 * contributors may be used to endorse or promote products derived
 * from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

219

Sourcery G++ Licenses

 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

220

Sourcery G++ Licenses

	Sourcery G++
	Table of Contents
	Preface
	1. Intended Audience
	2. Organization
	3. Typographical Conventions

	Chapter 1 Quick Start
	1.1. Installation and Set-Up
	1.2. Configuring Sourcery G++ for the Target System
	1.3. Building Your Program
	1.4. Running and Debugging Your Program

	Chapter 2 Installation and Configuration
	2.1. Terminology
	2.2. System Requirements
	2.2.1. Host Operating System Requirements
	2.2.2. Host Hardware Requirements
	2.2.3. Target System Requirements

	2.3. Registering with the Sourcery G++ Portal
	2.4. Downloading an Installer
	2.5. Installing Sourcery G++
	2.5.1. Using the Sourcery G++ Installer on Microsoft Windows
	2.5.2. Using the Sourcery G++ Installer on GNU/Linux Hosts
	2.5.3. Installing the Java Runtime Environment

	2.6. Installing Sourcery G++ Updates
	2.7. Setting up the Environment
	2.7.1. Setting up the Environment on Microsoft Windows Hosts
	2.7.1.1. Setting the PATH
	2.7.1.2. Working with Cygwin

	2.7.2. Setting up the Environment on GNU/Linux Hosts

	2.8. License Keys
	2.8.1. Using the Licensing Wizard
	2.8.2. Obtaining a License Automatically
	2.8.3. Configuring a Proxy Server
	2.8.4. Manually Downloading Your License Key
	2.8.5. Installing a License File
	2.8.6. Viewing or Reinstalling Your License Key

	2.9. Installing Add-Ons
	2.10. Uninstalling Sourcery G++
	2.10.1. Using the Sourcery G++ Uninstaller on Microsoft Windows
	2.10.2. Using the Sourcery G++ Uninstaller on GNU/Linux

	Chapter 3 Sourcery G++ for ARM EABI
	3.1. Included Components and Features
	3.2. Library Configurations
	3.2.1. Base Library Configurations
	3.2.2. Add-On Libraries
	3.2.3. Library Selection

	3.3. CodeSourcery C Library
	3.4. Using Sourcery G++ with Kinetis Boards
	3.4.1. Using the Sourcery G++ Debug Sprite with Kinetis Boards
	3.4.2. Using the Kinetis Example Programs

	3.5. Using Sourcery G++ with Stellaris Boards
	3.5.1. Using the Sourcery G++ Debug Sprite with Stellaris Boards
	3.5.2. Using StellarisWare with Sourcery G++

	3.6. Using Sourcery G++ with STM32 Boards
	3.7. Peripheral Register Browsing
	3.8. Using Flash Memory
	3.9. Using VFP Floating Point
	3.9.1. Enabling Hardware Floating Point
	3.9.2. NEON SIMD Code
	3.9.3. Half-Precision Floating Point

	3.10. ABI Compatibility
	3.11. ARM Profiling Implementation
	3.12. Object File Portability

	Chapter 4 Using the Sourcery G++ IDE
	4.1. Overview
	4.2. Building Applications
	4.2.1. Setting Up an Example Project
	4.2.2. Writing Source Code
	4.2.3. Using Cross-Reference Information
	4.2.4. Dealing with Errors
	4.2.5. Customizing Build Actions

	4.3. Debugging Applications
	4.3.1. Starting the Debugger
	4.3.2. Debugging Modes for Embedded Targets
	4.3.2.1. Sourcery G++ Debug Sprite for ARM
	4.3.2.2. Macraigor OCDRemote
	4.3.2.3. Sourcery G++ External Embedded Server
	4.3.2.4. Sourcery G++ QEMU CPU Emulator

	4.3.3. Tuning Debugger Behavior
	4.3.3.1. Debugger Startup
	4.3.3.2. Configuring the Memory Map
	4.3.3.3. Troubleshooting

	4.3.4. Controlling Execution
	4.3.5. Low-Level Debugging

	4.4. Advanced IDE Features
	4.4.1. Using the Sourcery G++ Board Builder
	4.4.2. Makefile Projects
	4.4.3. Building IDE Projects from the Command Line
	4.4.4. Importing Code into the IDE
	4.4.5. Importing an Executable into the Sourcery G++ IDE
	4.4.6. Using the Terminal Emulator
	4.4.7. Using External Tools
	4.4.8. Using Run Launches
	4.4.9. Using Eclipse Plugins in the Sourcery G++ IDE

	Chapter 5 Using Sourcery G++ from the Command Line
	5.1. Building an Application
	5.2. Running Applications on the Target System
	5.3. Running Applications from GDB
	5.3.1. Connecting to the QEMU Emulator
	5.3.2. Connecting to the Sourcery G++ Debug Sprite
	5.3.3. Connecting to an External GDB Server
	5.3.4. Loading and Running Applications

	Chapter 6 CS3™: The CodeSourcery Common Startup Code Sequence
	6.1. Linker Scripts
	6.1.1. Program and Data Placement
	6.1.2. Hosting and Semihosting
	6.1.3. Specifying a Linker Script

	6.2. Program Startup and Termination
	6.2.1. The Hard Reset Phase
	6.2.2. The Assembly Initialization Phase
	6.2.3. The C Initialization Phase
	6.2.4. Arguments to main
	6.2.5. Program Termination

	6.3. Memory Layout
	6.3.1. Memory Regions and Program Sections
	6.3.2. Programmatic Access to the CS3 Memory Map
	6.3.3. Heap and Stack Placement

	6.4. Interrupt Vectors and Handlers
	6.4.1. ARM EABI Interrupt Vector Implementation
	6.4.2. Writing Interrupt Handlers

	6.5. Supported Boards for ARM EABI
	6.6. Interrupt Vector Tables
	6.6.1. __cs3_interrupt_vector_arm
	6.6.2. __cs3_interrupt_vector_efm32g
	6.6.3. __cs3_interrupt_vector_kinetis
	6.6.4. __cs3_interrupt_vector_lpc17xx
	6.6.5. __cs3_interrupt_vector_lpc21xx
	6.6.6. __cs3_interrupt_vector_micro
	6.6.7. __cs3_interrupt_vector_stellaris
	6.6.8. __cs3_interrupt_vector_stellaris_fury
	6.6.9. __cs3_interrupt_vector_stellaris_sandstorm
	6.6.10. __cs3_interrupt_vector_stellaris_tempest
	6.6.11. __cs3_interrupt_vector_stm32f10
	6.6.12. __cs3_interrupt_vector_stm32f10cl

	Chapter 7 Sourcery G++ Debug Sprite
	7.1. Probing for Debug Devices
	7.2. Debug Sprite Example
	7.3. Invoking Sourcery G++ Debug Sprite
	7.4. Sourcery G++ Debug Sprite Options
	7.5. ARMUSB (Stellaris) Devices
	7.5.1. ARMUSB Configuration and Drivers
	7.5.1.1. Configuration on Microsoft Windows Hosts
	7.5.1.2. Configuration on GNU/Linux Hosts

	7.5.2. Using a Stellaris Board to Debug Production Systems
	7.5.3. Troubleshooting

	7.6. Remote Debug Interface Devices
	7.7. Actel FlashPro Devices
	7.7.1. Installing FlashPro Windows drivers

	7.8. Keil ULINK2 Devices
	7.8.1. Configuring ULINK2 Options
	7.8.2. ULINK2 Target Boards
	7.8.3. Installing ULINK2 Windows Drivers

	7.9. Altera Devices
	7.9.1. Setting Up the Altera Device
	7.9.2. Hardware Breakpoints

	7.10. SEGGER J-Link Devices
	7.10.1. Configuration on Microsoft Windows Hosts
	7.10.2. Configuration on GNU/Linux Hosts

	7.11. P&E Devices
	7.11.1. Configuration on Microsoft Windows Hosts
	7.11.2. Configuration on GNU/Linux Hosts

	7.12. Debugging a Remote Board
	7.13. Supported Board Files
	7.14. Board File Syntax

	Chapter 8 Next Steps with Sourcery G++
	8.1. Sourcery G++ Support
	8.2. Sourcery G++ Knowledge Base
	8.3. Example Programs
	8.4. Manuals for GNU Toolchain Components
	8.5. Help for the Sourcery G++ IDE

	Appendix A Sourcery G++ Release Notes
	A.1. Changes in Sourcery G++ for ARM EABI
	A.1.1. Changes in Sourcery G++ 2011.02-2
	A.1.2. Changes in Sourcery G++ 2010.09-66
	A.1.3. Changes in Sourcery G++ 2010.09-47
	A.1.4. Changes in Sourcery G++ 2010.09-15
	A.1.5. Changes in Older Releases

	Appendix B Sourcery G++ Licenses
	B.1. Licenses for Sourcery G++ Components
	B.2. Sourcery G++ Software License Agreement
	B.3. Attribution
	B.3.1. Android Open Source Project
	B.3.2. Newlib

