COMP/ELEC 429/556
Introduction to Computer Networks

Weighted Fair Queuing

Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang
Critical Features of TCP

- Increase rate until packet loss
 - What’s the problem?
- Use loss as indication of congestion
 - What’s the problem?
- Slow start to probe for initial rate
 - What’s the problem?
- AIMD mechanism oscillates around proper rate
 - What’s the problem?
- Relies on AIMD behavior of end hosts
 - What’s the problem?
Some Answers

• Increase rate until packet loss
 – Drives network into congestion
 – High queuing delay, inefficient
• Use loss as indication of congestion
 – Cannot distinguish congestion from packet corruption
• Slow start to probe for initial rate
 – Bad for short lived flows (e.g. most Web transfers, a lot of Internet traffic is web transfer)
• AIMD mechanism oscillates around proper rate
 – Rate is not smooth
 • Bad for streaming applications (e.g. video)
 – Inefficient utilization
• Relies on AIMD behavior of end hosts for fairness
 – People can cheat (not use AIMD)
 – People can open many parallel connections
Can Routers Provide Bandwidth Guarantee to a Traffic Flow?

• If so, then sender can request for a bandwidth guarantee and knows exactly what rate to send at
 – No packet loss, no congestion
 – No need for probing bandwidth (slow start)
 – No AIMD oscillation
 – No cheating

• The answer is yes, but it’ll add complexity to routers
Guaranteeing Performance Requires Flow Isolation

Scheduler

1

2

FIFO queue of packets in router memory buffer
Classifier

- A “flow” is a sequence of packets that are related
- Classifier takes a packet and matches it against flow definitions to decide which flow it belongs

- Examples:
 - All TCP packets from Eugene’s web browser on machine A to web server on machine B
 - All packets from Rice
 - All packets between Rice and CMU
 - All UDP packets from Rice ECE department

- A flow may be defined by bits in the packet
 - source/destination IP address (32 bits)
 - or address prefix
 - source/destination port number (16 bits)
 - protocol type (8 bits)
 - type of service (4 bits)
 - even bits beyond TCP and IP headers could be used
Scheduler

- Decides how the output link capacity is shared by flows
- A chance to be smart: Transmission of packets held in queues can be *scheduled*
 - Which stored packet goes out next? Which is more "important"?
 - Impacts quality of service
What is Weighted Fair Queuing?

- A mathematical model for flow scheduling
- Each flow i given a weight (importance) w_i
- WFQ guarantees a minimum service rate to flow i
 - $r_i = R \times \frac{w_i}{(w_1 + w_2 + \ldots + w_n)}$
 - Implies isolation among flows (one cannot mess up another)
What is the Intuition? Fluid Flow

water pipes
Fluid Flow System: Example 1

<table>
<thead>
<tr>
<th></th>
<th>Packet Size (bits)</th>
<th>Packet inter-arrival time (ms)</th>
<th>Arrival Rate (Kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow 1</td>
<td>1000</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Flow 2</td>
<td>500</td>
<td>10</td>
<td>50</td>
</tr>
</tbody>
</table>

Flow 1 ($w_1 = 1$) 100 Kbps

Flow 2 ($w_2 = 1$)

Flow 1 (arrival traffic)

Flow 2 (arrival traffic)

Service in fluid flow system

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

T. S. Eugene Ng
eugeneng at cs.rice.edu
Rice University
Fluid Flow System: Example 2

- Red flow has packets backlogged between time 0 and 10
 - Backlogged flow → flow’s queue not empty
- Other flows have packets continuously backlogged
- All packets have the same size
Service Rate and Packet Delay in Fluid Flow System

- WFQ guarantees a minimum service rate to flow \(i \)
 \[
 r_i = R \times \frac{w_i}{(w_1 + w_2 + \ldots + w_n)}
 \]
- What worst case delays are experienced by individual packets in the FFS?
Implementation in Packet System

• Packet (Real) system: packet transmission cannot be preempted. Why?
• Solution: serve packets in the order in which they would have finished being transmitted in the fluid flow system
Packet System: Example 1

Assume for this example all packets are waiting from time 0

- Select the packet that is waiting and finishes first in the fluid flow system
Packet System: Example 2

- Select the packet that is waiting and finishes first in the fluid flow system.
Implementation Challenge

- Four flows, each with weight 1

Flow 1

Flow 2

Flow 3

Flow 4

Finish times computed at time 0

Finish times re-computed at time ε

Note that finishing order of packets from flows 1, 2, and 3 unaffected
Implementation Challenge

• Need to compute the finish time of a packet in the fluid flow system…
• … but the finish time may change as new flows arrive!
• Need to update the finish times of all packets that are in service in the fluid flow system when a new flow arrives
 – But this is very expensive; a high speed router may need to handle hundred of thousands of flows!
• The new finish times don’t affect ordering of packets that are in service in the fluid flow system (a lot of work for nothing)
• Can we capture ordering without using real world finish times??
Bit-by-Bit Round Robin Insight

• If flows can be served one bit at a time, the fluid flow system can be approximated by bit-by-bit weighted round robin
 – During each round from each flow that has data to send, send a number of bits equal to the flow’s weight
• Each packet therefore requires a fixed number of rounds to finish (depends only on weight and packet size); the finishing round number does not change even when new flows arrive

Packet queues

30 bits

20 bits

34 bits

100 bits/sec

How many seconds spent in each round?
Note the answer depends on the total weights
Solution: Virtual Time

- Solution: instead of the packet finish time, maintain the round # when a packet finishes (virtual finishing time)
 - Virtual finishing time doesn’t change when a new flow arrives
 - Packet ordering based on virtual finishing time is the same as that based on real finishing time.

- Need to compute system virtual time function $V(t)$
 - index of the round in the bit-by-bit round robin scheme at time t
Example

- All flow weight = 1
- Suppose each packet is 1000 bits, so takes 1000 rounds to finish. So, first packets of F1, F2, F3 finish at virtual time 1000
- When packet F4 arrives at virtual time 1 (after one round), the virtual finish time of packet F4 is 1001
- But the virtual finish time of packet F1,2,3 remains 1000
- Finishing order is preserved
Computing System Virtual Time (Round #): V(t)

- V(t) increases inversely proportionally to the sum of the weights of the backlogged flows.
- Since round # increases slower when there are more flows to visit each round.
Weighted Fair Queuing Implementation

• Define
 – $F_{i_k}^k$ virtual finishing time of packet k of flow i
 – a_i arrival time of packet k of flow i
 – L_i^k length of packet k of flow i
 – w_i weight of flow i

• The virtual finishing time of packet $k+1$ of flow i is

$$F_i^{k+1} = \max(V(a_i^{k+1}), F_i^k) + L_i^{k+1}/w_i$$

• Smallest virtual finishing time first scheduling policy
Recall in the Fluid Flow System

- Service curve: slope = r_i
- Packet arrival curve
- Worst case packet delay

Time (s) vs. Bits
Properties of WFQ Implementation

• Theorem: WFQ guarantees that any packet is finished within \(\frac{\text{max}_{\text{packet}}_{\text{length}}}{\text{link}_{\text{rate}}} \) of its finish time in the fluid flow system
 – Thus WFQ can guarantee bandwidth and delay
 • Weights assigned appropriately and admission control is performed
 • Packets paced by sender according to guaranteed bandwidth
 – Another way to use WFQ is to assign all flows the same weight and perform no admission control
 • Every flow gets a “max-min” fair share, provides performance isolation among flows
Internet Today

- FIFO queues are used for most network traffic
 - No classifier, no scheduler, best-effort

- Sophisticated mechanisms tend to be more common near the “edge” of the network
 - E.g. At campus routers
 - Use classifier to pick out BitTorrent packets
 - Use scheduler to limit bandwidth consumed by BitTorrent traffic