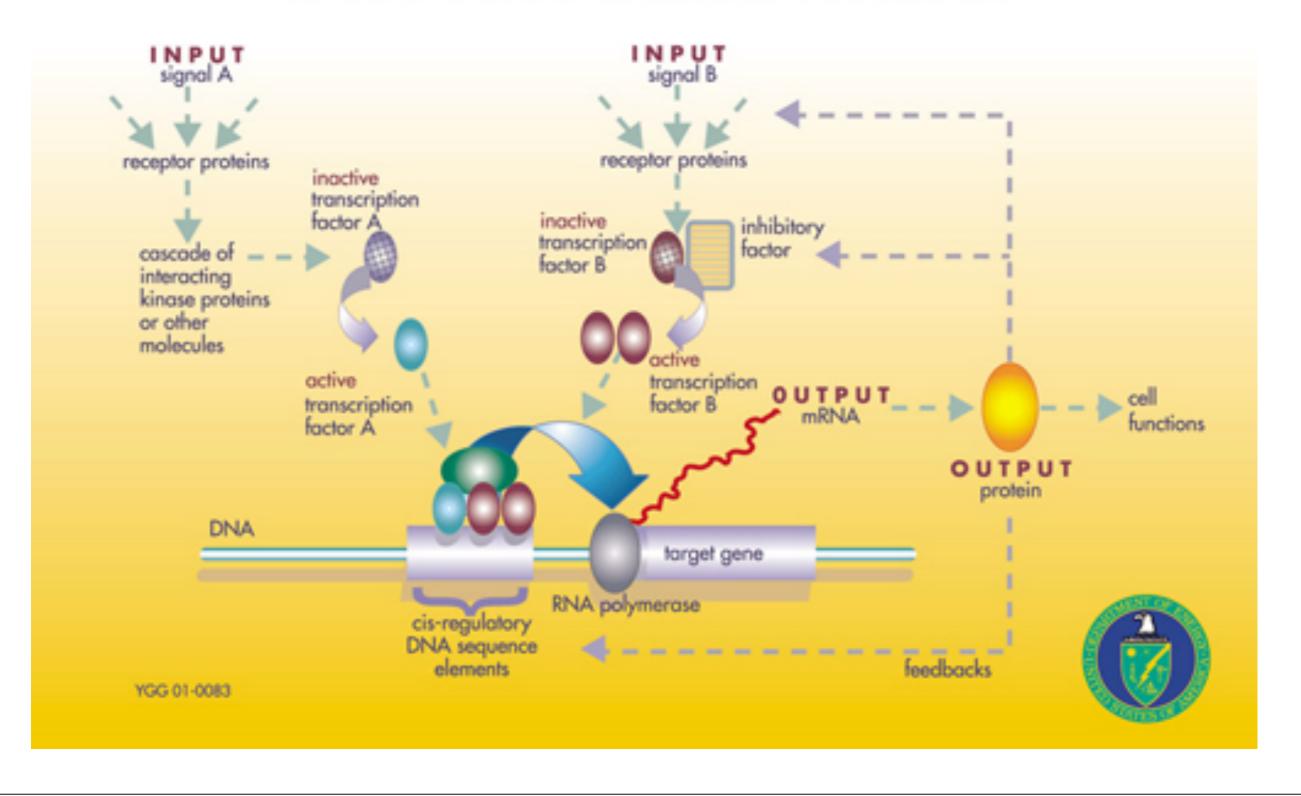
Learning Boolean Models of Regulatory Networks Using Improved Particle Swarm Optimization

Hamim Zafar Advisor: Prof. Luay Nakhleh

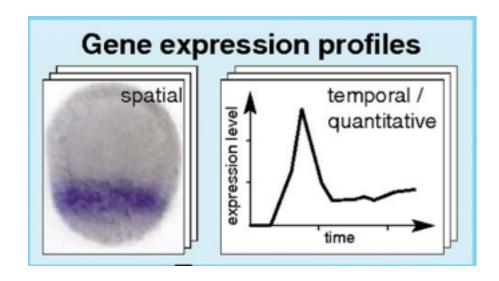
> Comp 600 10/28/2013

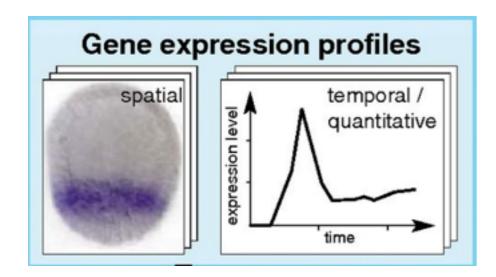
A GENE REGULATORY NETWORK

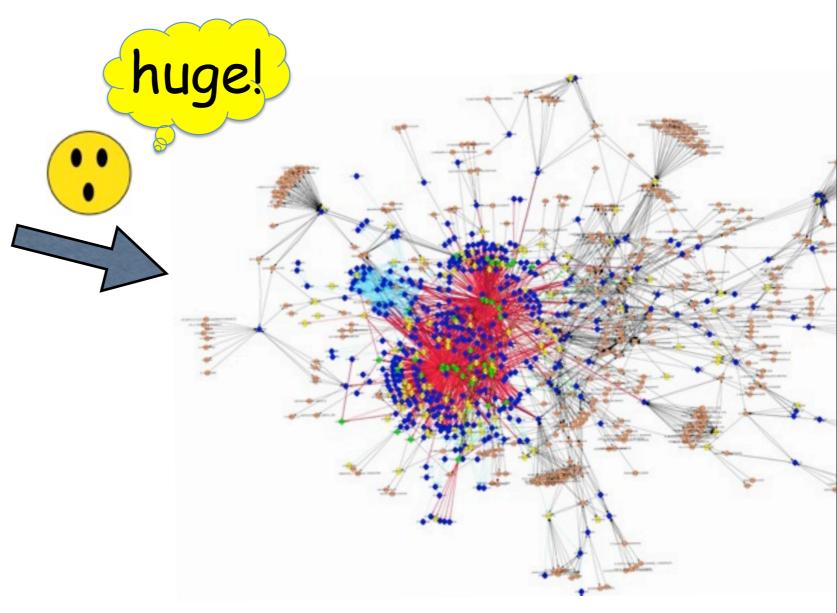


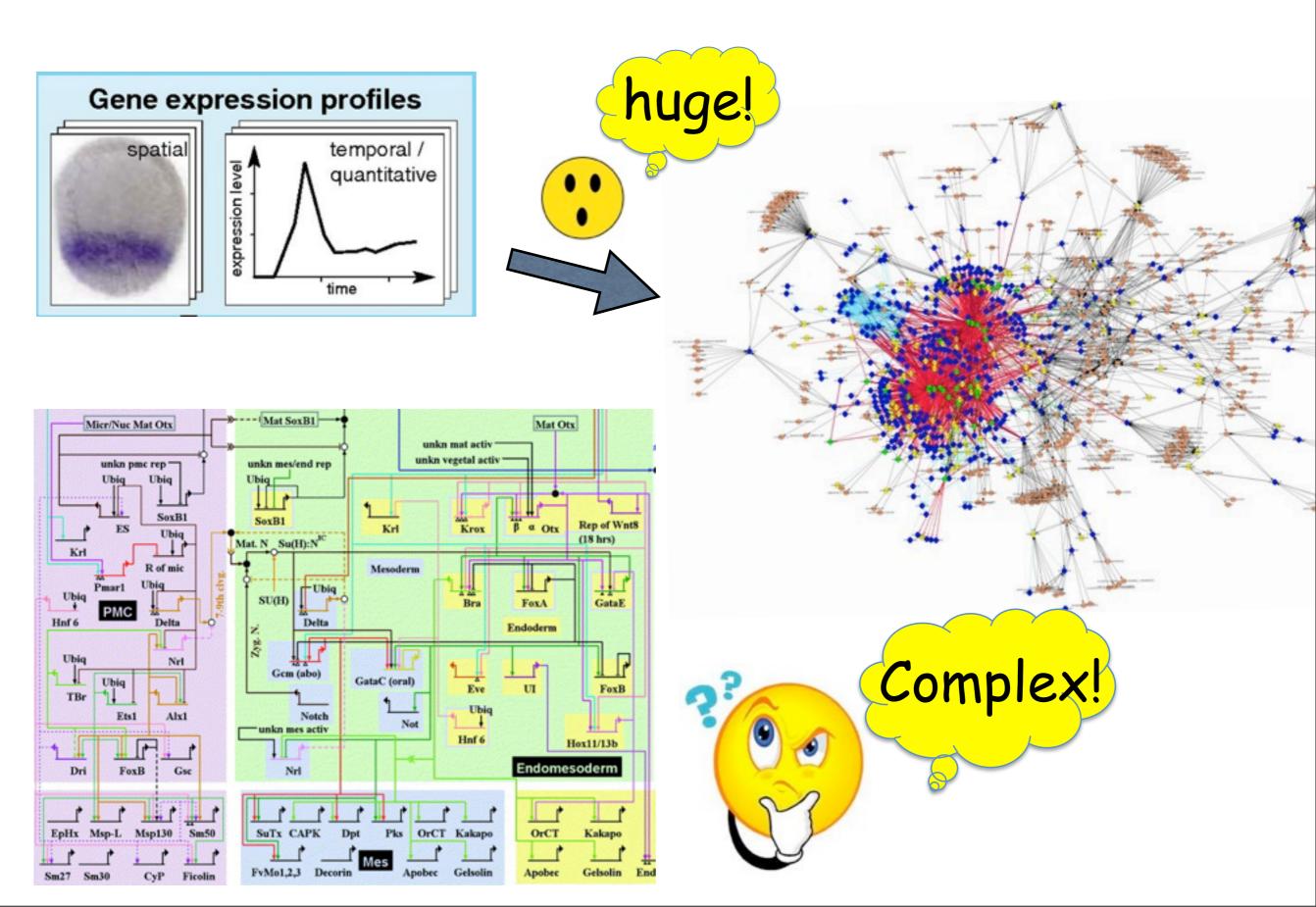
Why are Gene Regulatory Networks (GRN) Important?

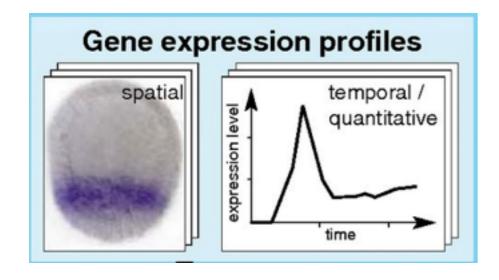
- Essential to the survival and adaptation of the organism.
- Malfunctioning leads to disease (e.g: Cancer, Alzheimer's disease)
- Potential discovery of triggering mechanism.
- Accurate Diagnosis and proper treatments for disease.
- Targeted drug development.

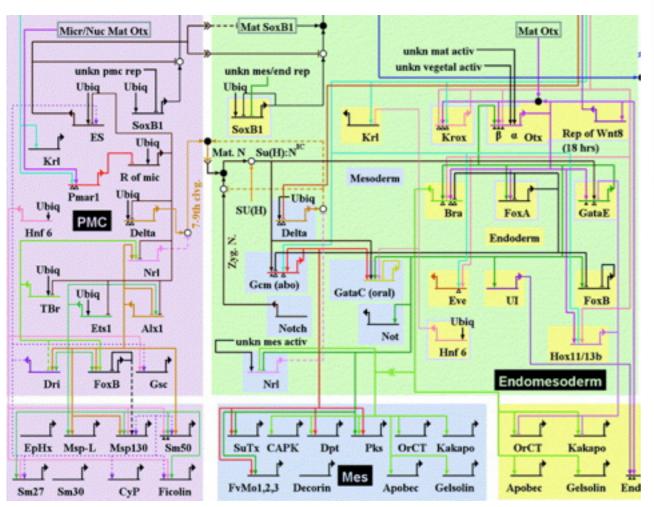


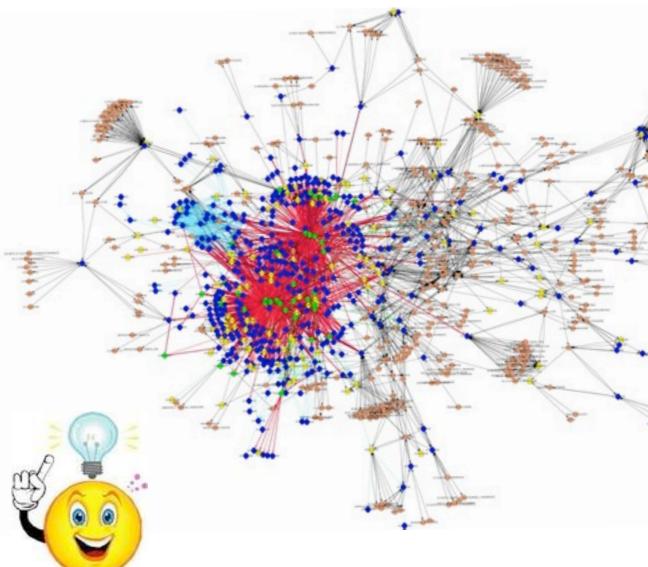












Remedy: Modeling Framework Computational Tool

Modeling Framework for GRN

Linear Models Regression

Lot of Parameters!

Bayesian Network

No Cycles! No Feedback!

Ordinary
Differential
Equations

Prior Knowledge of Kinetics??

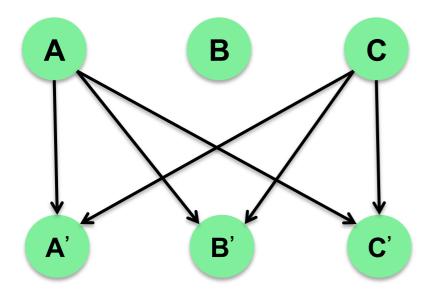
Boolean Network *Simplicity

*Capture the Dynamics

*Capture Steady State Behavior

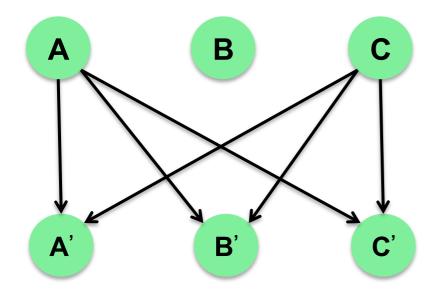
*Smaller amount of Data

Boolean Network



```
A' = not A and C
B' = (not A and not C) or (A and C)
C' = not C or A
```

Boolean Network

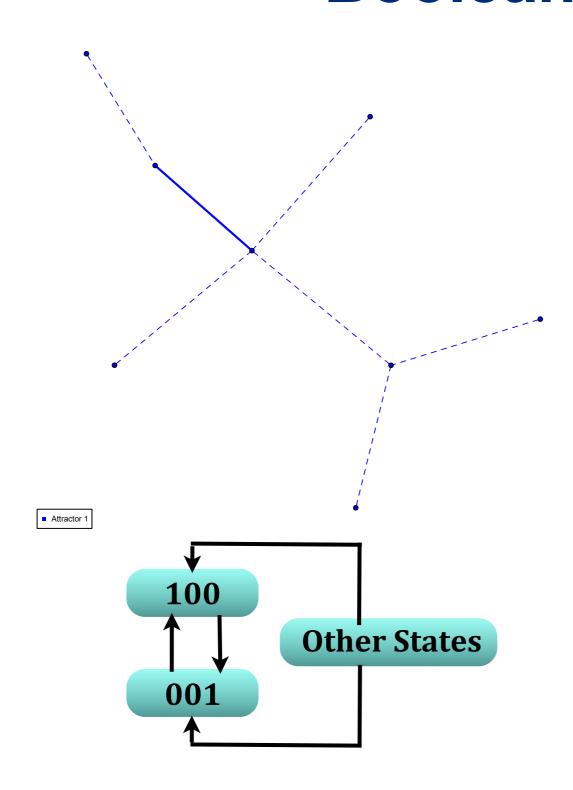


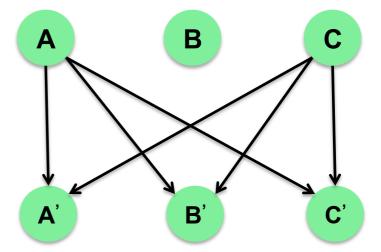
A' = not A and C B' = (not A and not C) or (A and C) C' = not C or A

- 1 active/expressed
- 0 inactive/unexpressed
- Steady states are called Attractors

Α	В	С	A'	B'	C'
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	0	1	1

Boolean Network





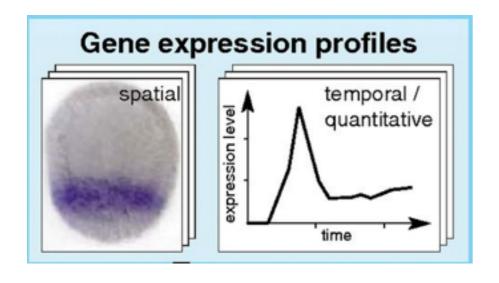
A' = not A and C

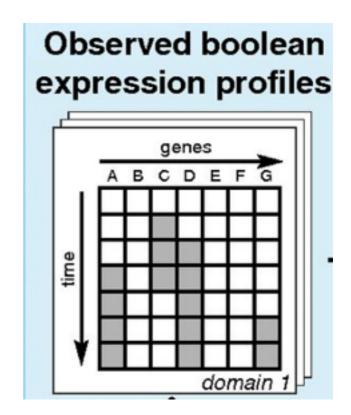
B' = (not A and not C) or (A and C)

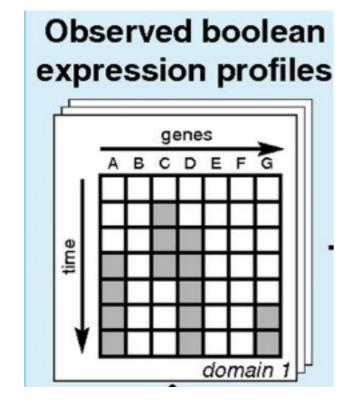
C' = not C or A

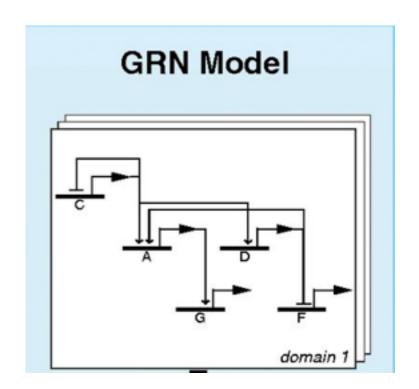
Α	В	C	A'	B'	C'
0	0	0	0	1	1
0	0	1	1	0	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	0	1	1
1	1	0	0	0	1
1	1	1	0	1	1

Inference of GRN

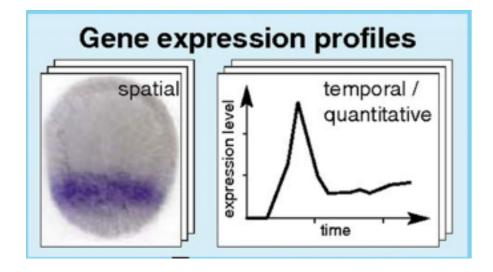




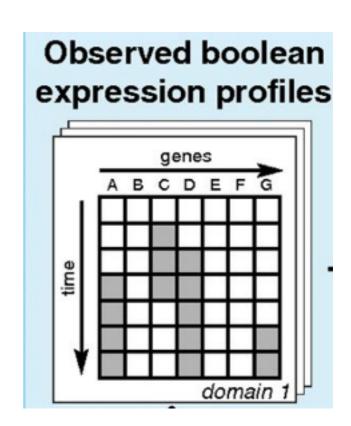


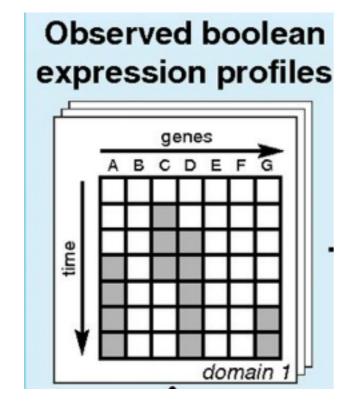


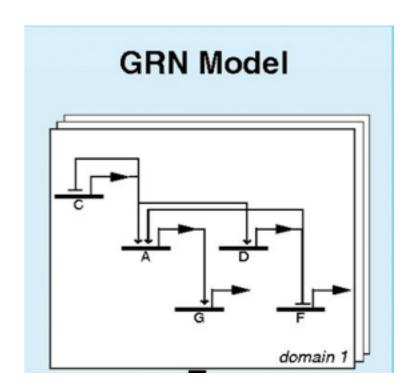
Inference of GRN



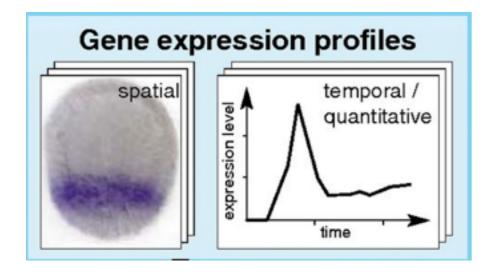
Step 1: Binarization



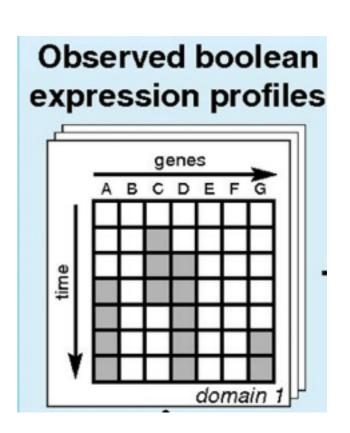


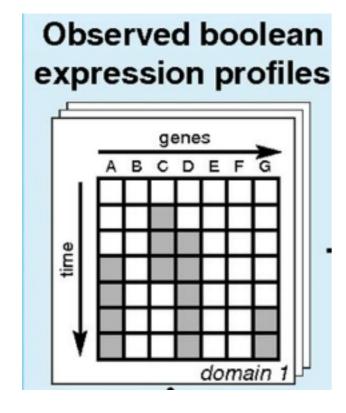


Inference of GRN



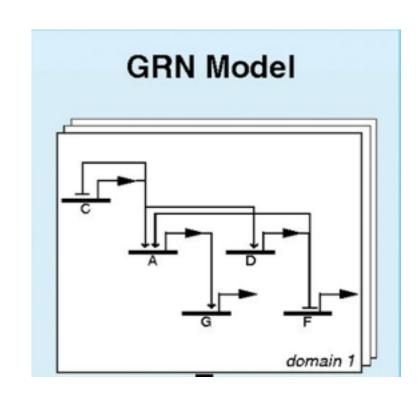
Step 1: Binarization





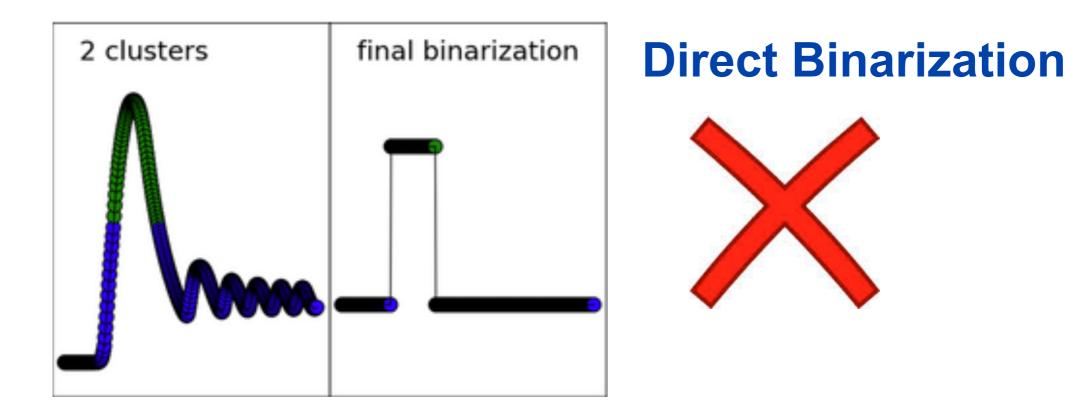
Step 2: Learning

Binary Dynamic Lbest PSO



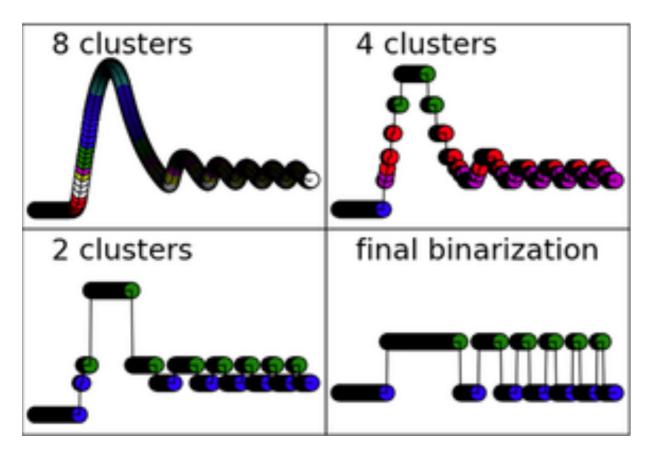
Binarization using Iterative Clustering

- Input: Time series data for n genes
- Output: Binary time series data
- We want to retain all the information from original data (eg. Oscillatory dynamics)



Binarization using Iterative Clustering

- Input: Time series data for n genes
- Output: Binary time series data
- We want to retain all the information from original data (eg. Oscillatory dynamics)



Iterative Binarization

 δ Depth of Clustering

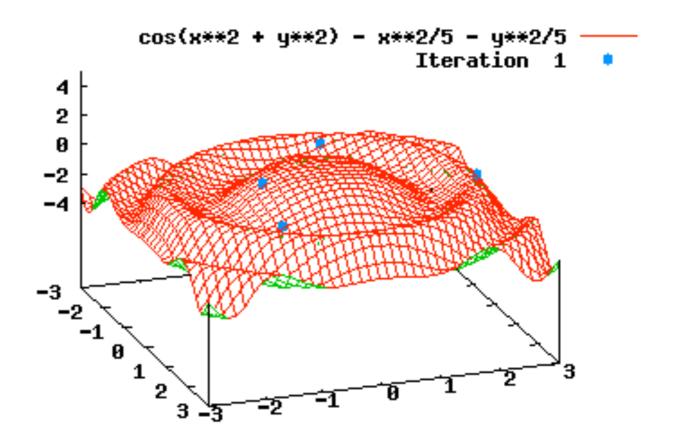
Reference: Berestovsky and Nakhleh 2013

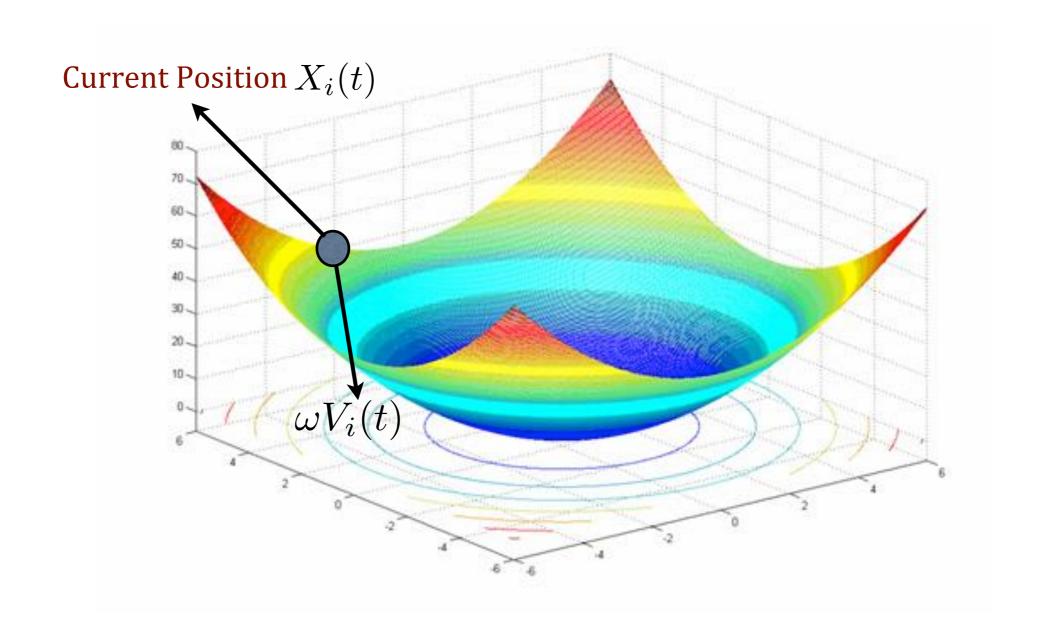
Particle Swarm Optimization (PSO)

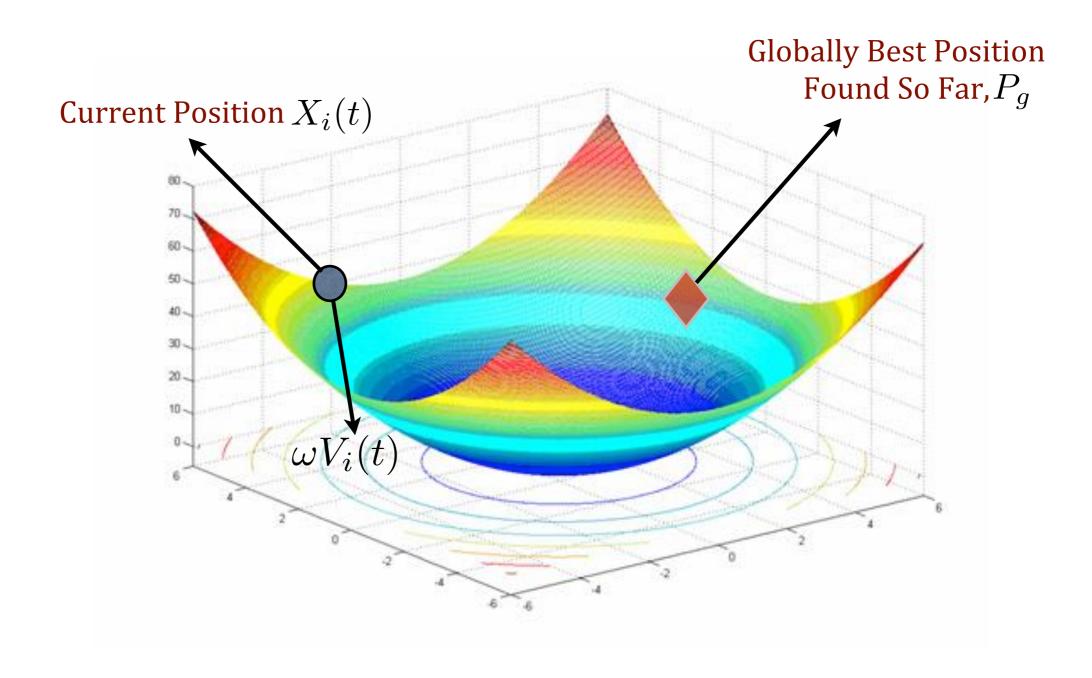
- Nature-inspired
 Stochastic Search
 algorithm.
- Kennedy and Eberhart
- Swarm of particles move around search space looking for best solution.
- Combination of cognitive and social learning.

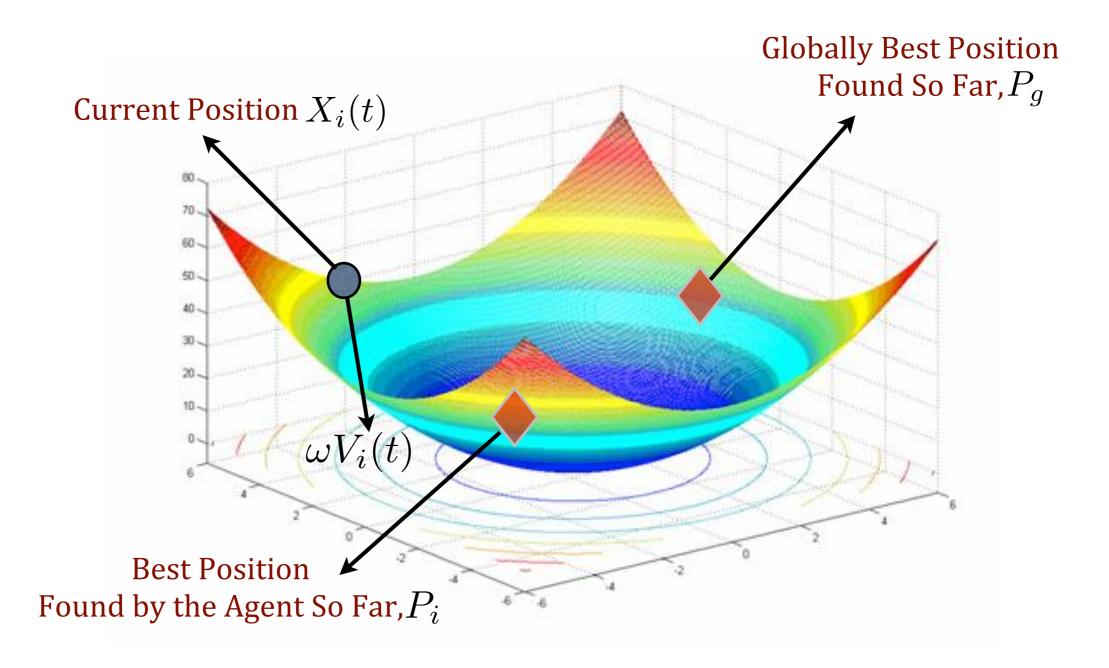
Particle Swarm Optimization (PSO)

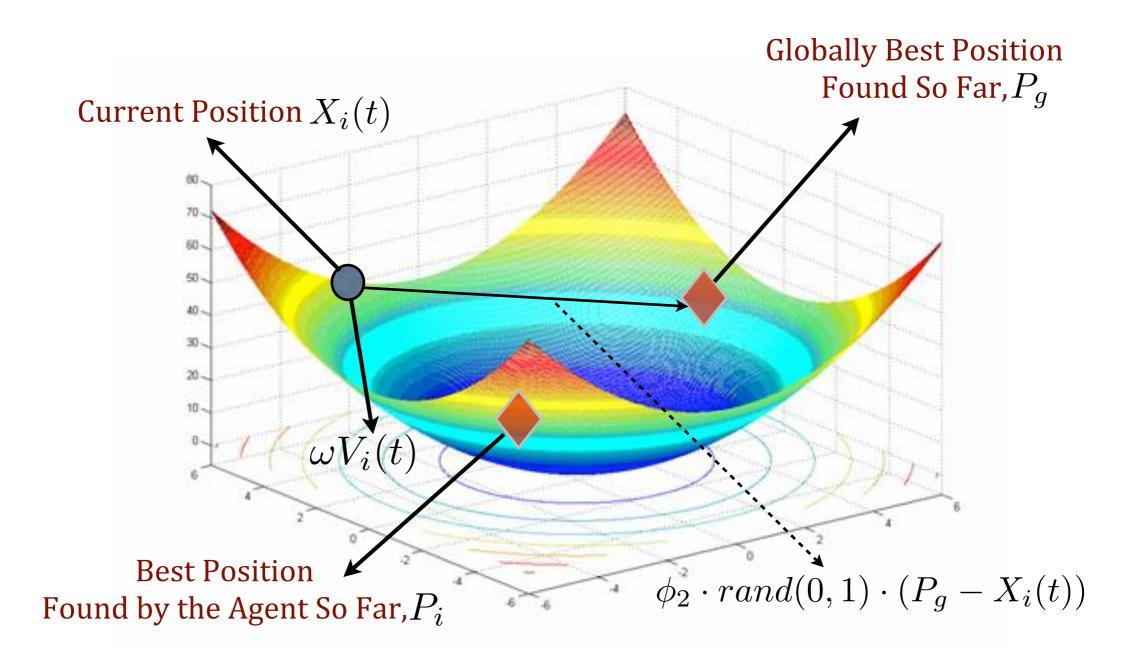
- Nature-inspired
 Stochastic Search
 algorithm.
- Kennedy and Eberhart
- Swarm of particles move around search space looking for best solution.
- Combination of cognitive and social learning.

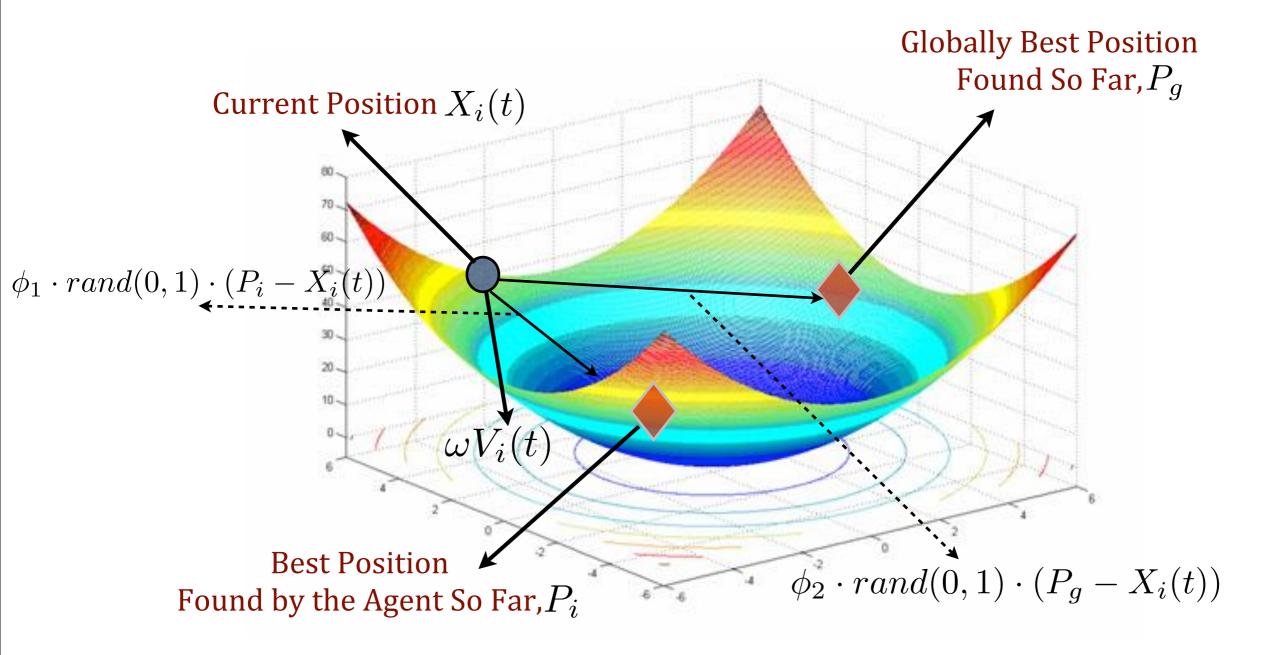


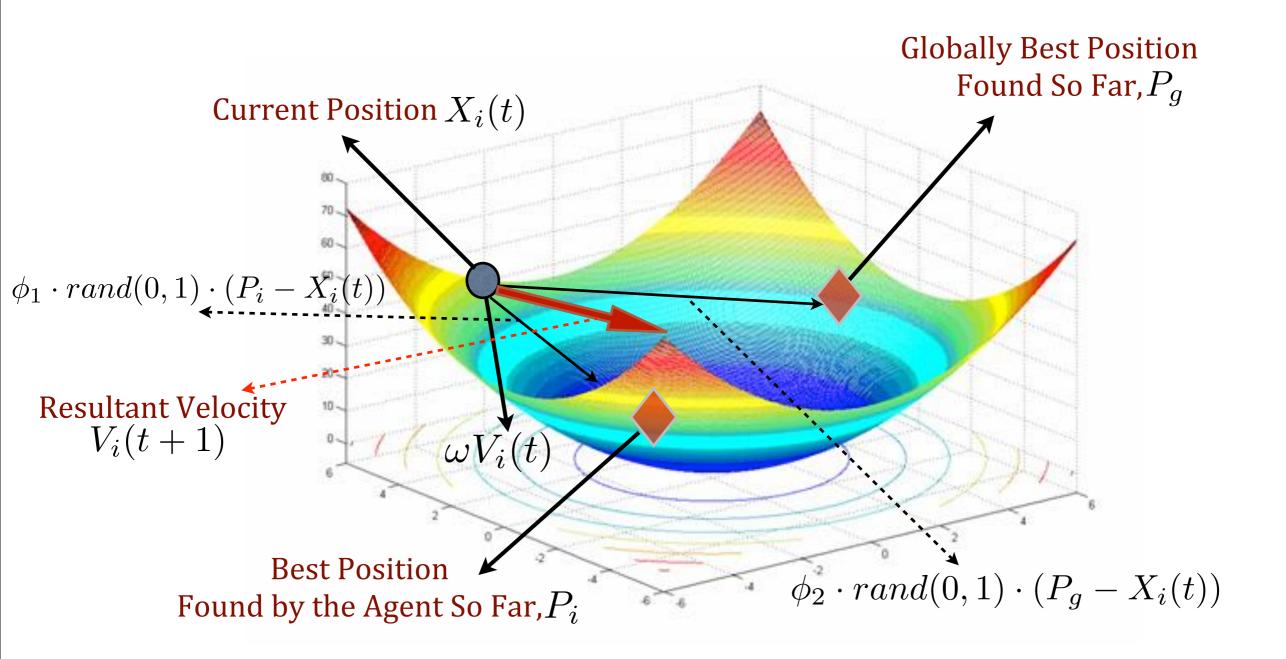


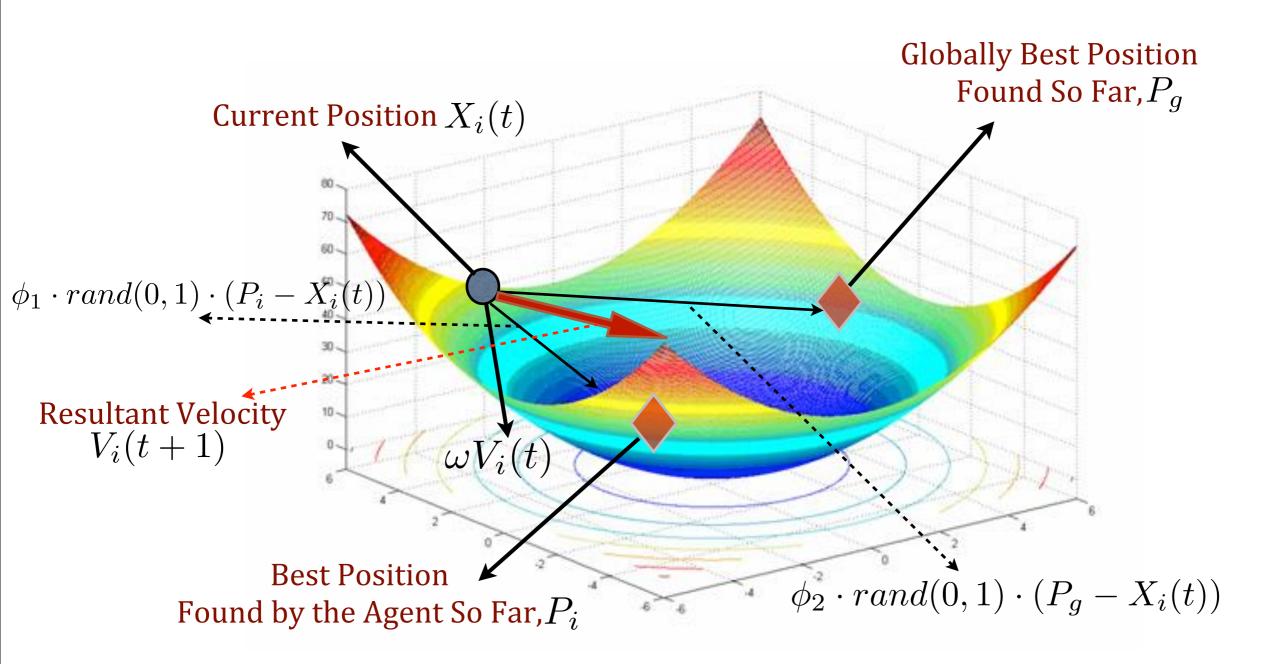












$$X_i(t+1) = X_i(t) + V_i(t+1)$$

Local Neighborhood Based PSO

- Limitation of gbest PSO:
 - Premature convergence to local optima.
- Solution : Ibest PSO
 - Best position achieved within the neighborhood influences a particle's velocity.

$$V_i(t+1) = \omega \cdot V_i(t) + \phi_1 \cdot rand(0,1) \cdot (P_i - X_i(t)) + \phi_2 \cdot rand(0,1) \cdot (L_i - X_i(t))$$

• L_i is best position achieved within the neighborhood.

Dynamic *lbest* PSO (D-LPSO)

Initial Grouping of the Particles After Searching with Initial Groups Information Exchange

Swarms After Random Regrouping

After Searching with New Groups

How to Use D-LPSO for Learning Boolean Network?

Position Vector of a Particle:

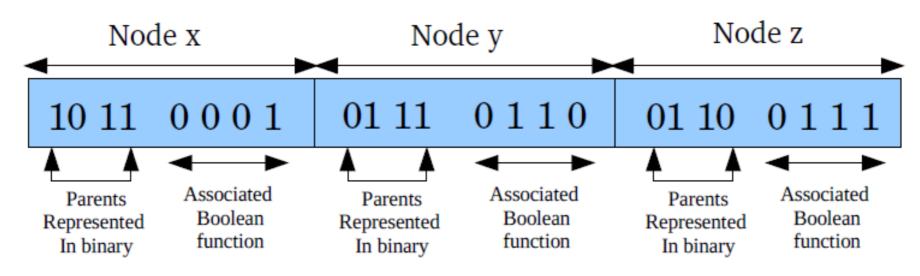
$$\begin{bmatrix} v_{11}v_{12}..v_{1k}f_1 & v_{21}v_{22}..v_{2k}f_2 & . & . & . & . & . & v_{n1}v_{n2}..v_{nk}f_n \end{bmatrix}$$
Candidate Boolean Network

Genes are encoded in Binary n genes k inputs/gene

How to Use D-LPSO for Learning Boolean Network?

Position Vector of a Particle:

e.g: n = 3, k = 2



x:01

y:10

z:11

X	y	Z	\mathbf{x}^*	\mathbf{y}^*	\mathbf{z}^*
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	1
1	0	0	0	1	1
1	0	1	0	0	1
1	1	0	0	1	1
1	1	1	1	0	1

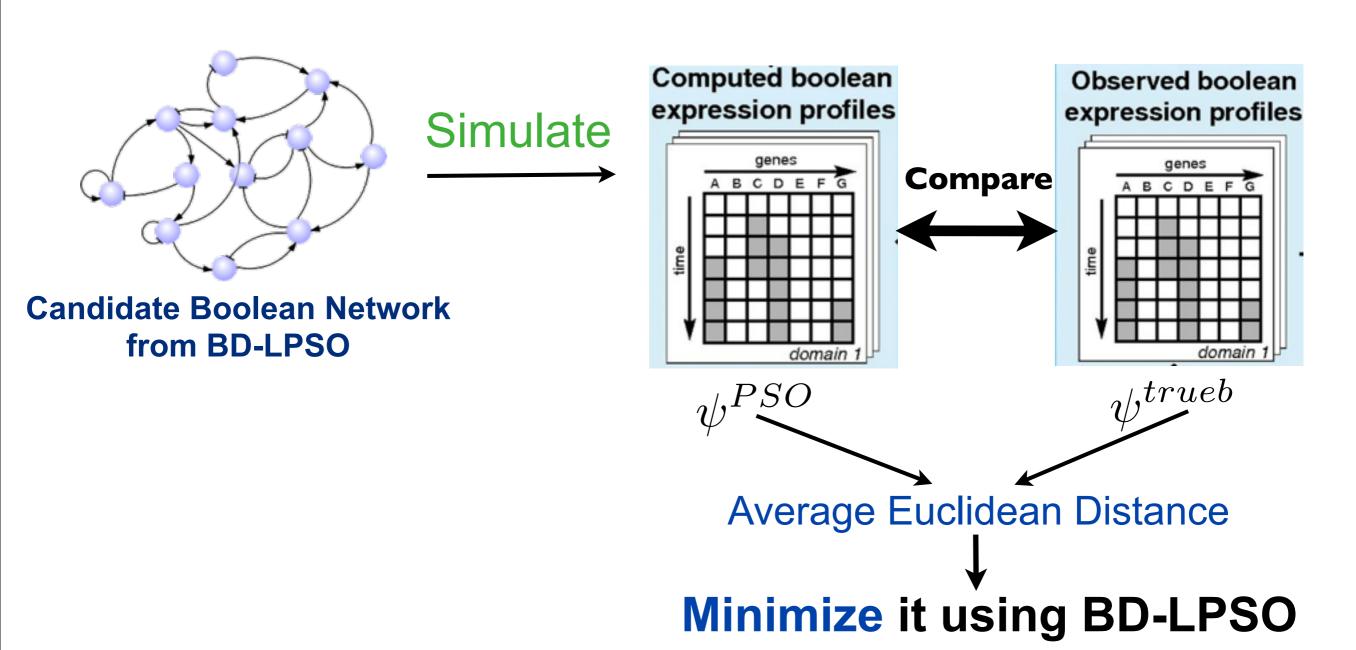
How to handle Binary Data in PSO?

- Velocity of a particle gives the rate of change of bit's value.
- Two additional velocity vectors for each particle
- V_{i1} and V_{i0} , represents the change in velocity.
- Updated with the help of perturbations due to personal and social learning.

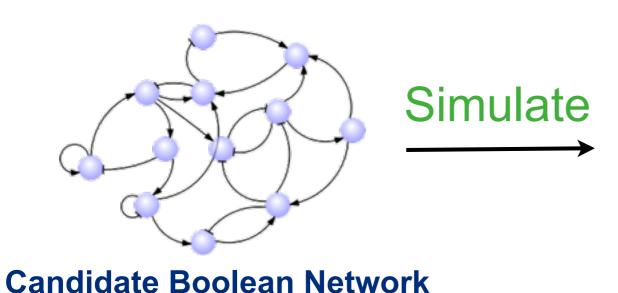
If
$$pbest_i^d = 1$$
 then $d_{i1,pbest}^d = c_1r_1(pbest_i^d - x_i^d)$ and $d_{i0,pbest}^d = -c_1r_1(pbest_i^d - x_i^d)$
If $pbest_i^d = 0$ then $d_{i1,pbest}^d = -c_1r_1(pbest_i^d - x_i^d)$ and $d_{i0,pbest}^d = c_1r_1(pbest_i^d - x_i^d)$
If $lbest_i^d = 1$ then $d_{i1,lbest}^d = c_2r_2(lbest_i^d - x_i^d)$ and $d_{i0,lbest}^d = -c_2r_2(lbest_i^d - x_i^d)$
If $lbest_i^d = 0$ then $d_{i1,lbest}^d = -c_2r_2(lbest_i^d - x_i^d)$ and $d_{i0,lbest}^d = c_2r_2(lbest_i^d - x_i^d)$

We call the resulting algorithm as **BD-LPSO**

Fitness Metric



Fitness Metric



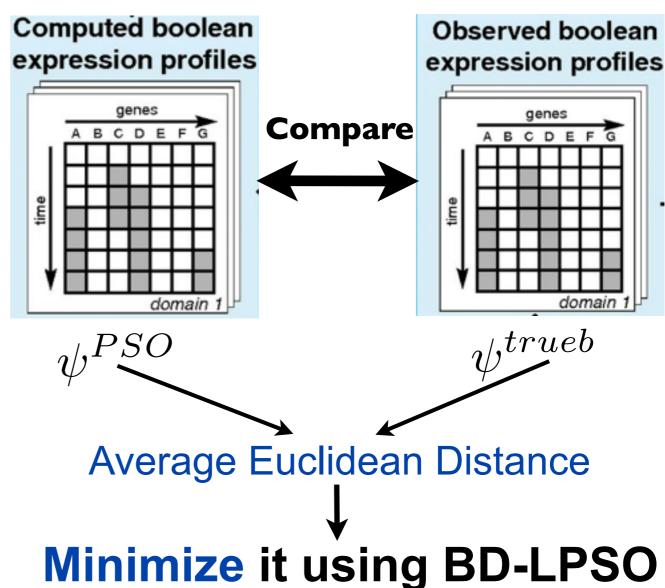


Simulation Scheme:

1. Synchronous

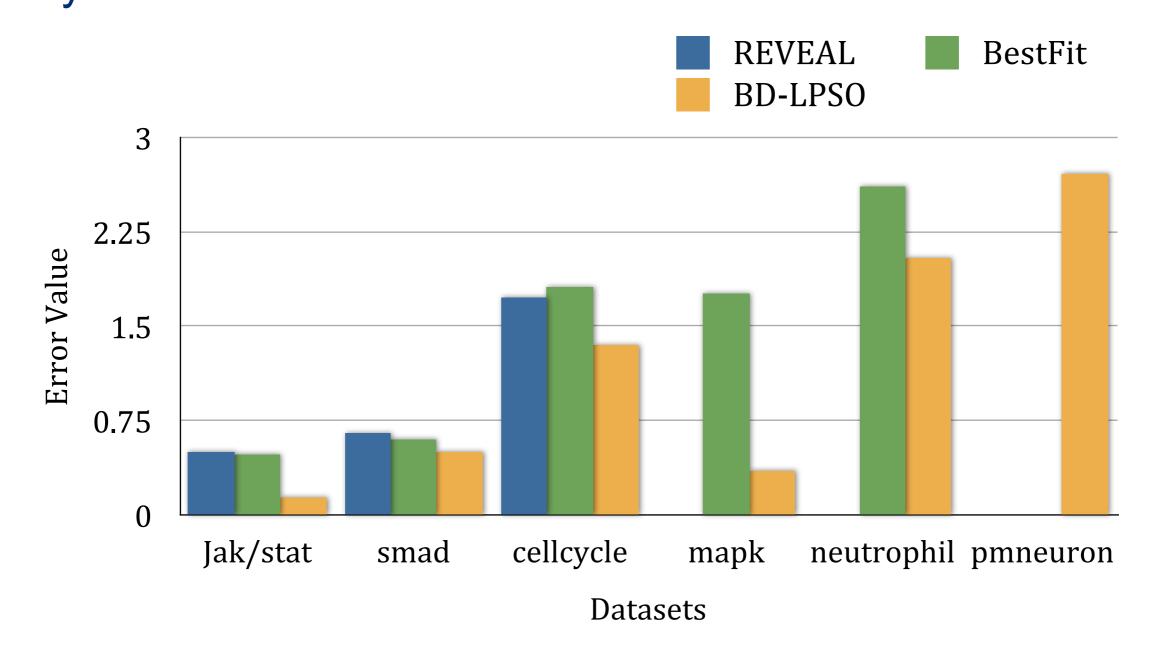
from **BD-LPSO**

2. Asynchronous



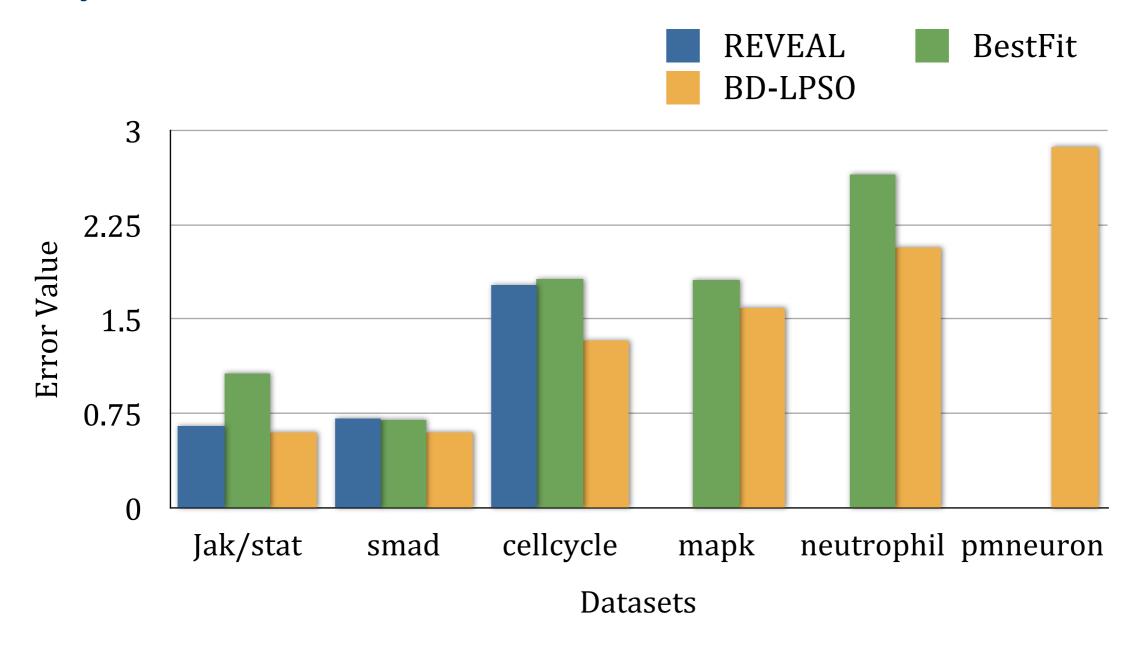
Experimental Results

Error value is measured in terms of average Euclidean distance Synchronous Simulation:

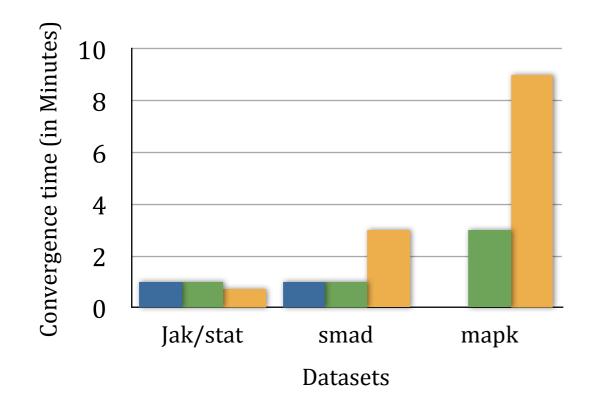


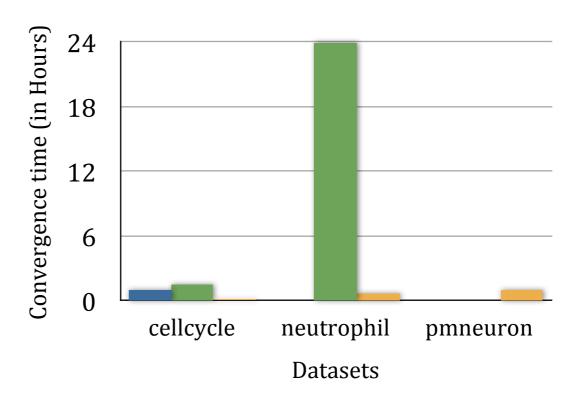
Experimental Results

Asynchronous Simulation:

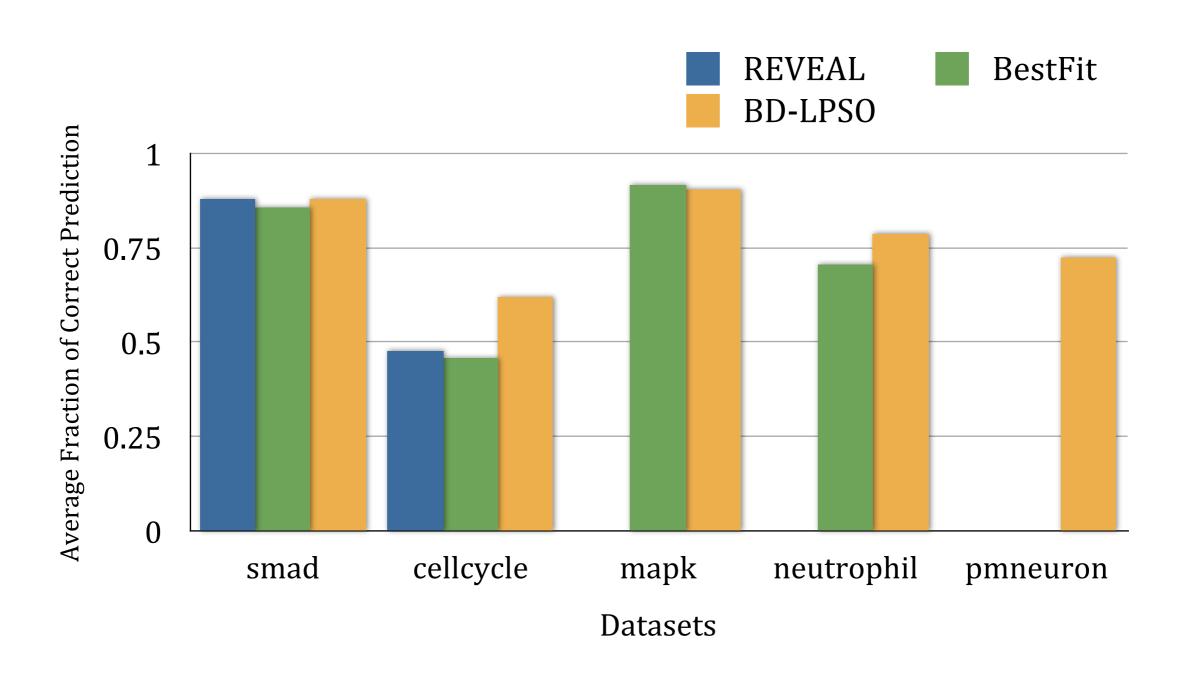


Comparison of Runtime



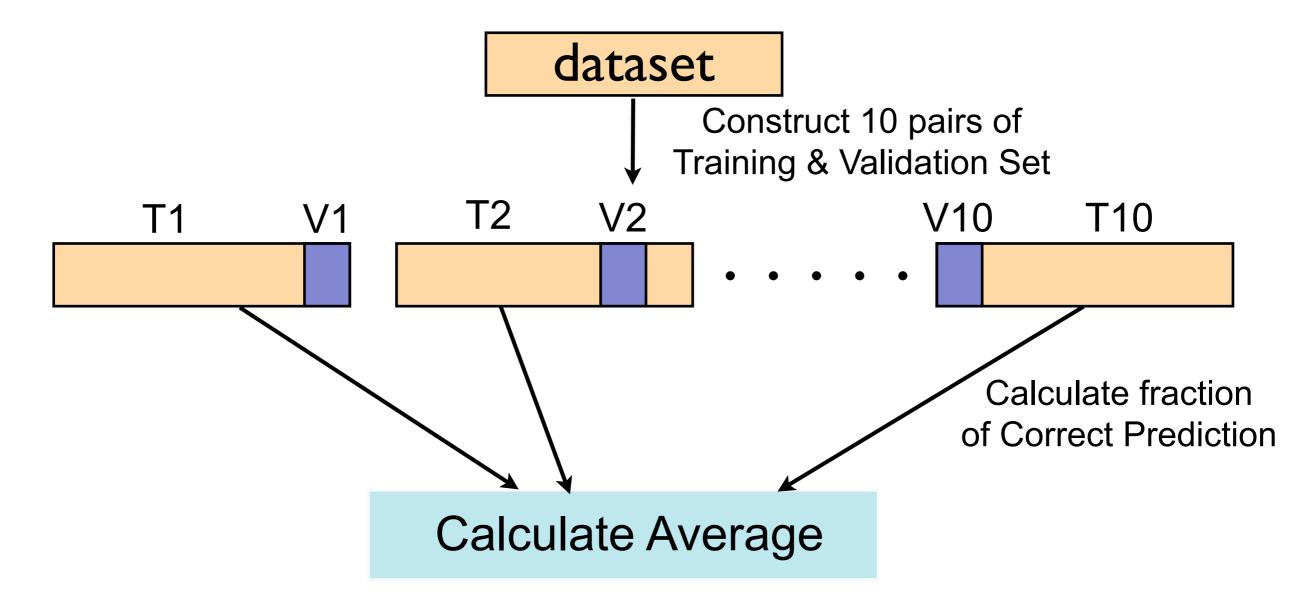


Comparison of Predictive Power



How to Calculate Predictive Power?

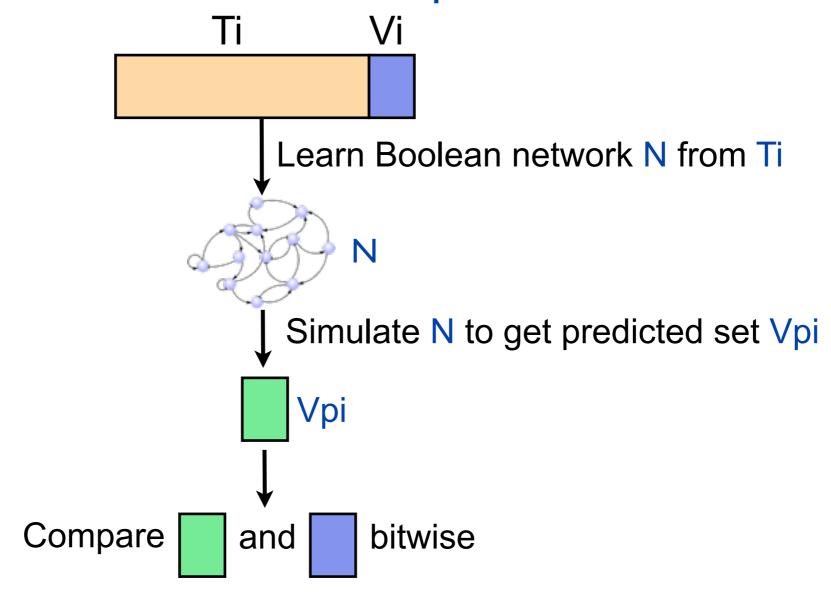
10 fold Cross Validation



Average over 10 runs

How to Calculate Predictive Power?

Fraction of Correct Prediction for a pair of Tr-Val Set:



Value is between 0 and 1

Future Work

- Integrated model of cellular network (signaling, metabolic and Gene Regulatory Networks).
- Learn more complex models (ODE). Supervised Learning using domain knowledge.
- Use of Gene knockout data along with time series data to infer the networks (two stage learning).

Conclusion

- BD-LPSO is an efficient algorithm for learning GRN from time series data.
- Better to learn BN in terms of
 - Accuracy
 - Predictive Power
 - Convergence Time.
- Specifically suitable for larger network with Complex dynamics.