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Need Better Diagnostic Capabilities for Tools

Data race detection tool
Thread 1 Thread 2

.................................. 'YMyTask ()

Calling context enhances tool's capability/usability



How Data Race Detection Works

e ool executes the program

e ool monitors every memory access by each thread

e [ool maintains ablbreviated history of previous accesses
(thread id) for each memory address

e [ool iInspects the access history and determines it any
conflicting accesses happen in parallel



Challenges of Providing Calling Context

e Unwinding can collect current calling context
e Calling context of previous accesses is lost
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Naive Solution: Maintain a History of Contexis

Unwind and store call path on each access
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Unwind and store call path on each access
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Overheads of Naive Solution
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Frameworks for Fine-Grained Program Monitoring

Valgrind

"
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“If you tried to invoke Thread::getCallStack on every
memory access there would be very serious

performance problems ... your program would probably
never reach main.”

* No support for collecting calling contexts

* We built it ourselves—CCTLib

* Demonstrate how it is possible to gather calling
context ubiquitously with CCTLib




Many Tools Require Fine-grained Program Monitoring

e Performance analysis tools

+ Cache simulators

+ Reuse-distance analysis

+ False sharing detection

+ Memory / computation redundancy

e Software correctness

+ Taint analysis
+ Malware detection
+ Memory leak / array out of bounds

e Many other tools, e.g.,
+ Debugging, testing, resiliency, replay, etc.



Store History of Contexts Compactly

Space bloat problem
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Store History of Contexts Compactly

Space bloat problem

Solution

e Call paths share
common prefix
» Store call paths as a
calling context tree (CCT)
 One CCT per thread
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Shadow Stack to Avoid Unwinding Overhead
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Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

wiro

d Tools can obtain

pointer to the
current context
via “CTXT”

in constant time

Problem:
Unwinding overhead
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CTXT Update Cost

| Return to caller
IS constant time operation
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Callee Lookup Could be Costly
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Accelerating Lookup Cost with Splay Trees

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree
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o Attributing to instructions/source lines (not just functions)

Foo () {
*ptr = 100;

CTXT = Foo: line 1

|

CTXT =Foo: line 2



Other Complications in Real Programs

o Attributing to instructions/source lines (not just functions)

e Complex control flow
+ Signal handling
+ Setjmp-Longimp
+ C++ exceptions (try-catch)
e [hread creation and destruction

+ Maintaining parent-child relationships between threads

+ Scalability to large number of threads



Data-Centric Attribution in CCTLIb

int * Create () {
return malloc(..);

}

void Update (int * ptr) ({ Create() Update ()
for( .. )
ptr[i]++;
} malloc()
Main () {

int * p = Create();
Update (p) ;

}

e Associate each data access to the corresponding data object

e Data object:
+ Dynamic allocation — Call path of allocation site
+ Static objects = Variable name
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Details of Data-Centric Attribution

ow to perform data-centric attribution
+ Record all <AddressRange, VariableName> tuples in a map

+ Intercept all allocation/free routines and maintain
<AddressRange, CallPath> tuples in a map

+ On each memory access search these maps for the address

Problems:

+ Searching maps on each access Is expensive

+ Maps need to be concurrent for threaded programs



Data-Centric Attribution via Balanced Trees

e Observation:
+ Updates to maps are infrequent
+ Lookups in maps are frequent

e Solution #1: sorted map

+ Keep N objects and associated address range in balanced binary
trees
*x Low memory cost—O(N), moderate lookup cost—O(log N)

* (Concurrent access is handled by a novel replicated tree data structure



Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory
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Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

e Have shadow memory for each memory cell and record a
nandle to the corresponding data object in the shadow
memory

*x Low lookup cost—O(1), high memory cost— O(Z sizeof(Obj(i)))

i=1

* (Concurrent access is not a problem

e CCTLib supports both solutions, clients can choose



Evaluation

® [Ime overhead

e Memory overhead

e Scaling on multithreaded programs

e Real world, long running programs
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Memory Overhead of CCTLIb

Program
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Conclusions

—nhance diagnostic capabilities of fine-grained
execution monitoring tools by associating each

+ Instruction — calling context (code-centric attribution)

+ Memory address — data object (data-centric attribution)

Ubiquitous calling context collection and data-centric
attribution is expensive (both memory and time)

CCTLib

+ Provides calling context for Pin tools

+ Achieves ubiguitous code- and data-centric attribution via
appropriate choice of algorithms and data structures

CCTLib enables efficient construction of Pin tools that
need detailed attribution of costs to contexts or data
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https://code.google.com/p/cctlib/



https://code.google.com/p/cctlib/

