Call Paths for Pin Tools

Milind Chabbi, Xu Liu, and John Mellor-Crummey
Department of Computer Science
Rice University

Comp 600, January 27,2014

Star Graduate Student

Star Graduate Student

Invention!

Data race detection tool

Inventor

Found Client for His Tool

Data race detection tool

Inventor

Found Client for His Tool

Data race detection tool

Client Uses the Tool

Data race detection tool

CREE I

gi- .. o —-F'—

Client Uses the Tool

Data race detection tool

CREE I

gi- .. o —-F'—

Client Uses the Tool

Data race detection tool

>tool ./myApp

CREE I

gi- .. o —-F'—

Client Uses the Tool

Data race detection tool

>tool ./myApp

Data race
detected!

CREE I

gi ; o'f;;;;;

Where is My Concurrency Bug?

Data race detection tool

 100s of files, 1000s of LOC,
nuMmerous functions

* EXisting tools lack this capability

e \We demonstrate how it Is
possible with acceptable
overhead

Where is My Concurrency Bug?

Data race detection tool

 100s of files, 1000s of LOC,
nuMmerous functions

* EXisting tools lack this capability

e \We demonstrate how it Is
possible with acceptable
overhead

Need Better Diagnostic Capabilities for Tools

Data race detection tool
Thread 1 Thread 2

Need Better Diagnostic Capabilities for Tools

Data race detection tool
Thread 1 Thread 2

Need Better Diagnostic Capabilities for Tools

Data race detection tool
Thread 1 Thread 2

.................................. 'YMyTask ()

Calling context enhances tool's capability/usability

How Data Race Detection Works

e ool executes the program

e ool monitors every memory access by each thread

e [ool maintains ablbreviated history of previous accesses
(thread id) for each memory address

e [ool iInspects the access history and determines it any
conflicting accesses happen in parallel

Challenges of Providing Calling Context

e Unwinding can collect current calling context
e Calling context of previous accesses is lost

Thread 1 Thread 2

.................................. 'Y MyTask ()

\
\/

Foo() {

*ptr = 100;}

Challenges of Providing Calling Context

e Unwinding can collect current calling context
e Calling context of previous accesses is lost

Thread 1 Thread 2

.................................. ,

\

?D

Foo() {

<4

*ptr = 100;}

Naive Solution: Maintain a History of Contexis

Unwind and store call path on each access

Thread 1 Thread N

‘m m
\

Main ()

i
v
Y
B() () 00)

1 l |
z

Foo() {

*ptr } *ptr = 100;}

Naive Solution: Maintain a History of Contexis

Unwind and store call path on each access

Thread 1 Thread N

MyTask ()

\
s

Q()

l

Foo() {

*ptr = 100;}

Naive Solution: Maintain a History of Contexis

Unwind and store call path on each access

Thread 1 Thread N

MyTask ()

\
s

Q()

Foo () {
*ptr = 100;}

Naive Solution: Maintain a History of Contexis

Unwind and store call path on each access

Thread 1 Thread N

_
=>

Foo () {
*ptr = 100;}

<4

Overheads of Naive Solution

Naive Solution
Unwind and record the
calling context on each
MEeMmMOry aCCess
?I? ?I? TI? ?I? Problems
1. Space overhead for
NN RN maintaining many calling

0x00 | 0x01 | 0x02 | 0x03 C?HTGXTS
2. Time overhead for call stack

unwinding at each memory

DOO 000 000 006
YV VY YV VvV V VvV VvV VY

Ox04 | Ox05 | Ox06 | OxO7

shadow memory

shadow memory

Frameworks for Fine-Grained Program Monitoring

Valgrind

"
‘E‘SJ\.

“If you tried to invoke Thread::getCallStack on every
memory access there would be very serious

performance problems ... your program would probably
never reach main.”

* No support for collecting calling contexts

* We built it ourselves—CCTLib

* Demonstrate how it is possible to gather calling
context ubiquitously with CCTLib

Many Tools Require Fine-grained Program Monitoring

e Performance analysis tools

+ Cache simulators

+ Reuse-distance analysis

+ False sharing detection

+ Memory / computation redundancy

e Software correctness

+ Taint analysis
+ Malware detection
+ Memory leak / array out of bounds

e Many other tools, e.g.,
+ Debugging, testing, resiliency, replay, etc.

Store History of Contexts Compactly

Space bloat problem

A® A® A® A®
BO BoOCo® Co
D6 ES Fe Geé

v \ 4 \ 4 \ 4

0x00 | OxO1 | Ox02 | Ox03

shadow memory

Store History of Contexts Compactly

Space bloat problem

Solution

e Call paths share
common prefix
» Store call paths as a
calling context tree (CCT)
 One CCT per thread

AN

A® A® AO® A®
B B6OC® Co
Do ES Fe Ge
0x00 | 0x01 | 0x02 | 0x03

shadow memory

B C
D¢/E\¢?/F.\QG

0x00

Ox01

0Ox02

0x03

shadow memory

Shadow Stack to Avoid Unwinding Overhead

Problem:
Unwinding overhead

\

4

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Problem:
Unwinding overhead

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Problem:
Unwinding overhead

‘

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

Problem:
Unwinding overhead

‘

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

-
wiro

Problem:
Unwinding overhead

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

=
Maln()“

Problem:
Unwinding overhead

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

)

Problem:
Unwinding overhead

‘

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

|

Problem:
Unwinding overhead

‘

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

Problem:
Unwinding overhead

‘

Foo () {
*ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

-
wiro

Problem:
Unwinding overhead

Foo() { Foo () {
*ptr = 100; *ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

-
wiro

Problem:
Unwinding overhead

Foo() { Foo () {
*ptr = 100; *ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

-
wiro

]

Problem:
Unwinding overhead

Foo() { Foo () {
*ptr = 100; *ptr = 100;

Shadow Stack to Avoid Unwinding Overhead

Solution:
Reverse the process. Eagerly build
a replica/shadow stack on-the-fly.

wiro

d Tools can obtain

pointer to the
current context
via “CTXT”

in constant time

Problem:
Unwinding overhead

CTXT Update Cost

ty
n,...
.\
.

L]

-,
RLTT L Ag

CTXT Update Cost

UL bt P
. L

.
R

o

CTXT Update Cost

| Return to caller
IS constant time operation

PTTLLLLLLLLELT
|||IIII|I RRLLETTYS
.
““ Tag,
o b
o* "
0 "
04 '
.
o* A
. 0
o .
5 .
. 0
. .
. .
()
; .
; .
. .
: L}
: |]
. .
‘ H
‘ ¥
* '
0 !
R '
i .
. 4
) o
) o
.
. 0
o *
" *
", o
e, ; Ll
llllllllllll‘ll‘l“

Callee Lookup Could be Costly

Callee Lookup Could be Costly

qummEEEEEg

Each © " from caller “"Q" to its
callees incurs a lookup cost

Callee Lookup Could be Costly

Each © " from caller “"Q" to its
callees incurs a lookup cost

Accelerating Lookup Cost with Splay Trees

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

Accelerating Lookup Cost with Splay Trees

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

Accelerating Lookup Cost with Splay Trees

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

Accelerating Lookup Cost with Splay Trees

Splay tree [“Self-adjusting binary search trees” by Sleator et al. 1985]
ensures frequently called functions are near the root of the tree

Other Complications in Real Programs

o Attributing to instructions/source lines (not just functions)

Foo () {
*ptr = 100;

Other Complications in Real Programs

o Attributing to instructions/source lines (not just functions)

Foo() {

CTXT = Foo: line 1 *ptr = 100;

Other Complications in Real Programs

o Attributing to instructions/source lines (not just functions)

Foo () {
*ptr = 100;

CTXT = Foo: line 1

|

CTXT =Foo: line 2

Other Complications in Real Programs

o Attributing to instructions/source lines (not just functions)

e Complex control flow
+ Signal handling
+ Setjmp-Longimp
+ C++ exceptions (try-catch)
e [hread creation and destruction

+ Maintaining parent-child relationships between threads

+ Scalability to large number of threads

Data-Centric Attribution in CCTLIb

int * Create () {
return malloc(..);

}

void Update (int * ptr) ({ Create() Update ()
for(..)
ptr[i]++;
} malloc()
Main () {

int * p = Create();
Update (p) ;

}

e Associate each data access to the corresponding data object

e Data object:
+ Dynamic allocation — Call path of allocation site
+ Static objects = Variable name

Data-Centric Attribution in CCTLIb

int * Create () {
return malloc(..);

}

void Update (int * ptr) {
for(..)
ptri] ++; —
}

Main () {
int * p = Create();
Update (p) ;

}

Create () Update () R s

malloc ()

e Associate each data access to the corresponding data object

e Data object:

+ Dynamic allocation — Call path of allocation site

+ Static objects = Variable name

Data-Centric Attribution in CCTLIb

int * Create () {
return malloc(..);

}

void Update (int * ptr) {
for(..)
ptri] ++; —
}

Main () {
int * p = Create();
Update (p) ;

}

Create () Update () 4—

malloc () D Rl

e Associate each data access to the corresponding data object

e Data object:

+ Dynamic allocation — Call path of allocation site

+ Static objects = Variable name

Details of Data-Centric Attribution

ow to perform data-centric attribution
+ Record all <AddressRange, VariableName> tuples in a map

+ Intercept all allocation/free routines and maintain
<AddressRange, CallPath> tuples in a map

+ On each memory access search these maps for the address

Problems:

+ Searching maps on each access Is expensive

+ Maps need to be concurrent for threaded programs

Data-Centric Attribution via Balanced Trees

e Observation:
+ Updates to maps are infrequent
+ Lookups in maps are frequent

e Solution #1: sorted map

+ Keep N objects and associated address range in balanced binary
trees
*x Low memory cost—O(N), moderate lookup cost—O(log N)

* (Concurrent access is handled by a novel replicated tree data structure

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

Data-Centric Attribution via Shadow Memory

e Solutions #2: shadow memory

e Have shadow memory for each memory cell and record a
nandle to the corresponding data object in the shadow
memory

*x Low lookup cost—O(1), high memory cost— O(Z sizeof(Obj(i)))

i=1

* (Concurrent access is not a problem

e CCTLib supports both solutions, clients can choose

Evaluation

® [Ime overhead

e Memory overhead

e Scaling on multithreaded programs

e Real world, long running programs

Time Overhead of CCTLIib

Time Overhead of CCTLIib

Spec Int 2006 reference
benchmark

GEOMEAN

Call path on each
memory access

Call path on each

Data-centric
attribution on

instruction [T each instruction
14X 22X 28X
19X 32X 42X
23X 35X 44x
31X 48X 67X
21X $10)¢ 47X
22X 39X 46X
6X 10X 15X
14X 23X 34X
32X 50X 65X
30X 41X 49X
17X 29X 40X
240)'¢ 36X 48X
19x $]0)¢ 41x

Time Overhead of CCTLIib

Program

Call path on each

Call path on each

Data-centric

GEOMEAN

Time In sec memory access instruction attripution on
instruction each instruction
276.26 14X 22X 28X
111.71 19X 32X 42X
44.61 23X 35X 44x
48X 67X
Source-to-source compiler from LLNL 47X
3M LOC compiling 70K LOC 46X
Deep call chains 15X
34X
65X
49x
410)'¢
48X
41x

Time Overhead of CCTLIib

Call path on each

Call path on each

Data-centric

Program Time In sec memory access instruction attri!oution on
Instruction each instruction

astr 276.26 14x 22X 28X
bzip2 111.71 19X 32X 42X
gcc 44 .61 23X 35X 44X
h264ref 260.12 31x 48X 67X
hmmer nlecular dvns nde 47X
libquantum 00K LQO 46X
mcf Jeep Ca C 15X
omnetpp cAtEt 34X
Xalan 94.80 32X 50X 65X
ROSE 23.64 30x 41X 49x
LAMMPS 99.28 17X 29X 210) ¢
LULESH 67.29 2{0) ¢ 36X 48x
GEOMEAN 19x 30x 41x

Time Overhead of CCTLIib

Call path on each Call bath on each Data-centric
Program Time in sec memory access inpstruction attribution on
instruction each instruction
astr 276.26 14X 22X 28X
bzip2 111.71 19x 32X 42X
gcc 44 .61 23X 35X 44x
h264ref 260.12 31X 48X 67X
hmmer
libquantum HTOUYTIa APP IO
ceguent gata allocation and ae-allocatio
mcf
ceMmory pounaed
omnetpp caded, Poor scaling
Xalan
ROSE 23.64 30X 41X 49x
LAMMPS 99.28 17X 29X 40x
LULESH 67.29 p2{0)'¢ 36X 48x
GEOMEAN 15°) ¢ 30X 41X

Time Overhead of CCTLIib

Memory Overhead of CCTLIb

Program

Call path on

Data-centric

GEOMEAN

Original Call path on Data-centric .- :
resident S MR each attribution via attnl::u:;on via
memory in MB | . access instruction binary tree Sfadow
Instruction memory
230 1.16X 1.17X 1.34x 8.65x
561 1.11x 1.12x 1.12x 8.03x
453 15.62x 25.97X 26.03X 36.38X
37 2.49X 2.09X 2.91X 11.47x
15 4.38x 4.36x 5.13X 29.39x
96 1.28X 1.30x 1.32X 11.91x
1677 1.02X 1.03X 1.03X 6.53x
170 1.87X 2.35X 3.76X 10.54X
419 25.86Xx 38.60x 39.12x 46.63X
380 04.38x 98.15x| 100.12x| 105.43x
110 1.58x 1.57x 1.70X 16.88x
26 2.28X 2.27X 2.51X 9.11x
3.49x 4x 4.38x| 16.86x

Memory Overhead of CCTLIb

230 1.16x 1.17x 1.34x 38.65x
561 1.11x 1.12x 1.12x 8.03x
37 2.49x 2.09x 2.91x 11.47X
15 4,38x 4,36X 5.13X 29.39x
96 1.28x 1.30x 1.32x 11.91x
1677 1.02x 1.03x 1.03x 6.53x
170 1.87x 2.35x 3.76X 10.54x
110 1.58x 1.57x 1.70x 16.88x
260 2.28X 2.27X 2.51x 9.11x

Memory Overhead of CCTLIb

230 1.16x 1.17x 1.34x 38.65x
561 1.11x 1.12x 1.12x 8.03x
37 2.49x 2.09x 2.91x 11.47X
15 4,38x 4,36X 5.13X 29.39x
96 1.28x 1.30x 1.32x 11.91x
1677 1.02x 1.03x 1.03x 6.53x
170 1.87x 2.35x 3.76X 10.54x
110 1.58x 1.57x 1.70x 16.88x
260 2.28X 2.27X 2.51x 9.11x

CCTLib is Scalable

CCTLib overhead of nthreads: [e) eI Im ch“;

_ OH(1)
~ OH(n)

CCTLib scalability for n threads: Sl

Higher scalability is better, 1.0 is ideal

CCTLib is Scalable

R:(n)
Ro(n)

CCTLib overhead of n threads: ¥

CCTLib scalability for n threads: BQE gg&;

Higher scalability is better, 1.0 is ideal
CCTLib scalability on LAMMPS

o
N
o

>
=

o

8

®

3]

7p)

Call path collection
Data-centric attribution via Balanced trees
Data-centric attribution via Shadow memoory

2 4 8 16 32

Number of threads

CCTLib is Scalable

R:(n)
Ro(n)

CCTLib scalability for n threads: BQE gg&;

CCTLib overhead of n threads: ¥

Higher scalability is better, 1.0 is ideal
CCTLib scalability on LAMMPS CCTLib scalability on L ULESH

7.00
Call path collection

Data-centric attribution via Balanced trees

6.00 Data-centric attribution via Shadow memoory

5.00

4.00

Scalability
S
Scalability
w
3

o
o))
o

Call path collection
Data-centric attribution via Balanced trees
Data-centric attribution via Shadow memoory

2 4 8 16
4 8 16

Number of threads Number of threads

Conclusions

—nhance diagnostic capabilities of fine-grained
execution monitoring tools by associating each

+ Instruction — calling context (code-centric attribution)

+ Memory address — data object (data-centric attribution)

Ubiquitous calling context collection and data-centric
attribution is expensive (both memory and time)

CCTLib

+ Provides calling context for Pin tools

+ Achieves ubiguitous code- and data-centric attribution via
appropriate choice of algorithms and data structures

CCTLib enables efficient construction of Pin tools that
need detailed attribution of costs to contexts or data

CCTLib Enhances Tool Usability

CCTLib Enhances Tool Usability

Inventor

Tool | + |CCTLIb

https://code.google.com/p/cctlib/

https://code.google.com/p/cctlib/

