CAF 2.0 Phasers

Sri Raj Paul

Advisor: John Mellor-Crummey

Department of Computer Science

Rice University

<u>sriraj@rice.edu</u>

Scale of Computation

http://www.olcf.ornl.gov/titan/

- Data Movement
- Synchronization
- Load Balancing
- Power Consumption

CHAOS

http://nepaliaustralian.com/2012/09/07/traffic-chaos-around-the-world/

Patterns of Synchronization

Point-to-Point

Producer-Consumer

Barrier

1

2

3

4

Phaser

- Unifies barrier and point-to-point synchronization
- Allows dynamic addition/deletion of processes
- Flexible participation modes for each process involved

Phaser Constructs

Registration

- phaser_create(...): creates a phaser in a specified mode
 - SIGNAL
 - WAIT
 - SIGNAL_WAIT
- spawn(...): adds a new process to an existing phaser

Synchronize

— next(...): synchronizes according to the mode

Producer-Consumer Example

Process 1

Process 2

```
if(ME == 1)
         phaser_create(ME, ph, <u>SIG</u>,...)
         spawn<<u>WAIT</u>, ph>(fn,...)[2]
         produce_data()
         next(ph)
```

```
fn(...)
        next(ph)
        consume_data()
end
```

Design Challenges

- Scalability
 - Need to support thousands if not millions of participants
- Concurrency
 - Scalable parallelism requires concurrent operations
- Distribution
 - All significant operations involve interactions between multiple agents
- Dynamism
 - Must support dynamic addition/deletion of processes
- Correctness
 - Operations must be free of deadlock and livelock

Skip Lists as a Building Block for Phasers

- Probabilistic replacement to balanced trees
- Addition/deletion without rebalancing
- Logarithmic space/time complexity for operations

https://github.com/tewuapple/SkipList

Propagate Signals Using Skip List

- One skip list for signalers and one for waiters
- Signaler root collects the signals from all signalers
- Passes it to waiter root
- Waiter root distributes signal to all the waiters

Operations to Maintain the Skip List

Creation

— Recursive doubling

Addition

- Spawnee included into the skip-list before the spawn call returns
 - eager-single-link-modify (to avoid blocking of spawner)
 - lazy-multi-link-modify (move to the required height)

Deletion

— Lazy level by level deletion

Single Level Addition to a Skip List

Verification of the protocol

- Phaser protocol involves many participants
 - Addition/deletion/signaling happens simultaneously
 - Too many messages in flight
 - Proving properties is non-trivial
- Model Checking is the solution
 - Explore the whole state space, i.e., all potential interleaving
- Challenges
 - Size of the state space increases exponentially with the number of participants
 - Exhaustive search not possible
 - approximate methods are necessary

Verification using SPIN

SPIN

- Tool to automate verification of large distributed systems
- Write an algorithm to be checked in PROMELA
- Approximate Model-checking capability
- Progress and correctness properties expressed in Linear Temporal Logic
- Phaser properties currently modeled
 - No signals are lost
 - Eventually neighbors should become consistent
- Our approach
 - Analyze sufficient set of interleavings to drive an agent through all configurations of the phaser protocol

Summary

- Phaser unifies barrier and point-to-point synchronization
- Skip list used as backbone structure
 - Scalability
 - Flexibility
- Protocol Verification done using SPIN
 - Employ approximate methods to model check the entire state space