Integrated Genotyping of Structural Variation in NGS Data

Xian Fan
Luay Nakhleh
Ken Chen
Structural Variation – Variation in Chromosomal Structure

Reference: α → β → γ

Deletion: α → γ

Mr Unknowns’ genome:
Genotyping: find variation states in a genomic region.
Genotyping is Important to Genetic Disease Inheritance

A: dominant

100%

50%
Next Generation Sequencing (NGS)

• Many paired-end reads are randomly sequenced from the target genome.

Target Genome

AGCTTCTTAA
Preprocessing: Alignment to the Reference – Normal Reads

Normal segment: normal distance between left and right reads.
Preprocessing: Alignment to the Reference – Discordant Reads

Discordant segment: abnormal distance between left and right reads.
Preprocessing: Alignment to the Reference – Split Reads

Split segment: split into two in left or right read.
A Standard Homozygous Reference – No Deletion

- Two copies of normal reads inside deleted region.
- No discordant and split reads
A Standard Heterozygous Deletion

- One copy of normal reads inside deleted region.
- A few discordant and split reads
A Standard Homozygous Deletion

- Zero copy of normal reads inside deleted region.
- A few discordant and split reads (twice as heterozygous deletion)
Problem

• Given:
 – \(n, d \) and \(s \) for a particular loci in a sample genome

• Goal:
 – Estimate the genotype of the deletion
 • homozygous deletion
 • heterozygous deletion
 • homozygous reference
Combining n, d, and s

• Random sampling and noise
 — Coverage is over-dispersed.

• Imperfect alignment and repetitive sequence
 — Reads aligned to this region might come from somewhere else.
 — One or more of n, d and s is not trustable.

• Emerging papers address how to combine these three signals.
Literature of Combination

- Mixture Gaussian on population genomes
- Bayesian Framework for combination of n, d, s
- Decision tree
- Applicable only to high coverage data

We Proposed BreakDown:
A General Framework for Genotyping

Genotype likelihood of a variant:

\[L = P(D | G) \]

\[= P(n | G) \cdot P(d | G) \cdot P(s | G) \]

\(D \): Aligned reads in a window encompassing the variant \((n, d, s)\)

\(G \): \{homozygous deletion, heterozygous deletion, homozygous reference\}
Results – 1000 Genomes Project

• 43 normal low coverage samples (2X – 8X)

BreakDown v.s. GenomeSTRiP on Het Variant Events
Results – Cancer Data

• Metastatic melanoma cell line COLO-829 (41X sequence coverage) and matched normal one (32X).
• Discovered 82 novel loss of heterozygosity calls (normal is heterozygous whereas tumor is not).
• Some overlap with important genes.
Conclusion

• BreakDown: statistically tackle SV genotyping by integrating three sources of information.

• Applicable to
 – Both single samples and populations;
 – Both high and low coverage data.

• Applied to both normal and cancer genomes.
 – High accuracy achieved on normal genome;
 – Novel discovery obtained in cancer genome.
Thanks!

• Questions?