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1. Introduction
A nlaze is a finite, two-dimensional, obstructed checkerboard.

To search a maze, a finite automaton, started on any cell, must
eventually visit every reachable cell without passing through any
barriers. In each step, the automaton determines which of its
neighbor cells are reachable in one step and then, depending on -its
state, moves north, east, south, or west one cell.

In 1974 Lothar Budach gave a very long (175 manuscript
pages) but readable proof that no single autonlaton can search all
mazes. The proof was quite formal, making nontrivial use of con
cepts and techniques of category theory.

About the same time, A.N. Shah gave a finite autom~ton with
5 pebbles which could search an arbitrary maze (the autonlaton
may drop a pebble on a cell it is visiting, then upon returning to
that cell later on can sense the pebble's presence, and if desired
pick it up and move it to a new cell). Shah also conjectured that
fewer than 5 pebbles would not suffice. The first of our two main
results is that, contrary to Shah's conjecture, the search can be
implemented with just two pebbles. The question is still open
whether a finite automaton with just one pebble can search any
maze.

The algorithm given has two parts, represented by the follow
ing two lemmas:

Lemma 1. A single automaton without pebbles can search any
maze, provided the westernmost of all southernmost squares of any
barrier is marked.

This lemma is proved by showing how the marked squares of
the barriers delineate a spanning tree covering the maze.

Lemma 2 (Unique Point Lemma). A one-counter automaton
visiting cell P on the boundary of a barrier, may search the boun ~
dary of the barrier and return to P and stop, with the knowledge
whether or not P is the westernmost of all southernmost points of
that barrier. Moreover, the counter never need hold a number
larger than the perimeter of the barrier.

Our proof technique also yields the following related results:

(1) there is a two pebble automaton that can search all mazes
(the two pebbles simulate the counter)~

(2) there are two automata which together can search all
mazes~

(3) there is a logspace algorithm to search mazes, a vast
inlprovenlent over the naive linear spal.:C algorithnl which con
structs a map of the maze.

Mazes and regular planar graphs appear similar on the surface,
but in fact they differ substantially. The primary difference is that
an automaton in a maze has a compass: it can distinguish N,E,S,W.
A compass can provide the automaton with valuable information
as shown by the second of our two main results, namely that n~
three automata together can search all finite planar -cubic graphs.

These two results taken together say that mazes are strictly
easier to search than regular planar graphs, answering a question of
Blum and Sakoda (I977).

The proof that no single automaton can search all finite planar
cubic graphs is quite straightforward, in contrast to Budach's proof
of the corresponding result for mazes. The proof that no pair of
automata can search all finite planar cubic graphs is an order of
magnitude harder ~ but once the tricks are established the proof is
routine.

The proof that no three automata can search all such graphs is
again an order of magnitude harder than the proof for two. We
believe that a foanai treatment ala Budach would yield 175 pages,
as well. The proof makes use of concepts of differential geometry.
In particular it requires the development of the geometry of the
regular tessellations {p,q} (notation is from Coxeter (1963). The
graph {p,q} is the unique planar graph of degree q, all of whose
faces have p edges. The geometry of the five finite {p,q}, i.e. those
for which

.1+1>1-
p q 2

corresponds to spherical geometry. The geometry of {3,6}, {4,4},
and {6,3}, i.e. those {p,q} for which

1+.1=1
p q 2

corresponds to Euclidean plane geometry. The geometry of the
remaining {p,q}, i.e. those for which

.1+1<1
p q 2

corresponds to hyperbolic geometry, first developed by Lobachev
sky and Bolyai and later refined by Gauss. Paths of an automaton
in {p,q} are periodic, due to the rich automorphism structure of
{p,qL they correspond to curves of constant geodesic curvature in
the surface corresponding to {p,q}.
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2. PreJirninar)' definitions and notation

Z, N, and R denote the integers, nonnegative integers, and
real numbers respectively.

A key step in the proof is that, for suitable p and q, any two
initially parallel paths of the automaton in {p,q} diverge, in much
the same way that initially parallel geodesics diverge in a hyperbolic
plane or pseudosphere.

A barrier is any maximal connected set of black cells. The unique
infinite barrier is called the border. Since any two white cells are
connected by a path of edge-adjacent white cells, it follows that bar
riers are simply connected, Le. contain no holes. The maze illus
trated above contains three barriers, including the border.

The boundary of a barrier is the set of edges that separate
black cells from white cells. A white cell edge-adjacent to a black
cell is called a boundary cell.

each with a unique name. At the start, the automaton is carrying
all of its pebbles. Thereafter, it is always carrying some subset of
its pebbles, and the rest are lying on white cells of the maze. In
each step the automaton determines the names of the pebbles it is
carrying and the names of the pebbles lying on the cell it· is visiting.
It may use this information to help detemline its next transition.
In each step the automaton may pick up pebbles from the cell it is
visiting or deposit some.

We may also equip an automaton with one or more counters.
A counter holds a nonnegative integer, initially zero. In each step,
the automaton can increment or decrement the counter by one and
test for zero.

A set of automala is said to be capable of searching a maze if
every reachable white cell ~ visited by sonle automaton eventually.
The autonlata need not halt.

For a nlore formal treatment, the reader is referred to Budach
(1977).

Embedded graphs

Mazes are a special case of the following Olore general con
struct, which we will use in sections 4, 5, and 6.

An fllnbedded graph G is an undirected, connected, planar
graph equipped with an embedding in- the plane. VG represents the
(possibly infinite) set of vertices of G, EG its undirected edges, and
FG its faces. G'" is the planar dual of G. EG is the set of directed
edges formed from edges in EG,

EG = {(u,v)l{u'lv}eEG).

The en1bedding of G imparts an orientation to the edges incident to
a vertex. By an aUlOnwrphisI11 of G we will always mean an auto·
morphism preserving this orientation. The group of all such auto
nl0rphisms is denoted Aut(G). A subgraph II of an embedded
graph G is a full subgraph of G (i.e. one for which {u,v}EEH when·
ever U, \if VB and {u,v}e EG) equipped with the eOlbedding inher
ited fran1 G.

A class of embedded graphs we will find particularly useful is
the class of regular tesselations {p,q}, where {p,q} is the unique
enlbedded graph of degree q, all of whose faces have p edges. Note
that {p,q}* = {q,p}. The notation {p,q} is from Coxeter (1963).

A maze may then be viewed as a finite connected subgraph of
(4,4).

Automata in embedded graphs

Finite automata in embedded graphs are defined with respect
to an arbitrary but fixed kEN. They may search only embedded
graphs which are regular of degree k or their subgraphs. Suppose H
is a subgraph of regular embedded graph G. A collection of finite
automata searches H by visiting its edges. In one step, an automa
ton visiting (directed) edge (u,v) determines which other automata
are visiting (undirected) edge {u, v} and their current states, and
which edges of G incident to v are present in H. Based on this
information, it moves to one of these edges (v,w). 'rne automata
run synchronously. Automata in mazes represent the case k =4.

3. Algorithlns for searching Olazes

In this section we will prove

Theorem 3.1. There is a finite automaton with one counter
which can search any maze and halt.

This yields the following related results:

Corollary J.2. There is a finite automaton with two pebbles
which can search any maze and halt.

Corollary 3.3. There are two finite automata which together
can search any maze and halt.

The I counter or 2 pebbles will be used only to measure y-distance
(latitude) along a boundary.
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Mazes

A vertex is a point in the Euclidean plane with integer coordi
nates. An edge is a unit-length segment connecting two vertices. A
cell is a region of unit area enclosed by four edges. A nlOze consists
of an assignment of either black or white to each cell, so that

i) there are only fmitely nlany white cells,

ii) any pair of white cells is connected by a path of edge-
adjacent white cells. I border :3 barriers

ve,tu",,-

We develop the geometric tools in a fonnal way as far as pos
sible. since they may be of independent interest. In particular we
fornlalize the concept of Craussian curvature for the regular tessella
tions, and prove a discrete analog of the Gauss-Bonnet Fornlula,
one of the central tools of differential geometry.

Our lower hound proof for three autonlata does not appear to
generalize, and in fact the problenl reolains open whether there is a
finite sel of auton1afa which together can search all finite planar
cubic graphs.

ADtomata in mazes

A finite automaton consists of a finite control with start and
halt states and a transition function. A finite set of automata search
a maze as follows. The automata are started together on a white
cell, all in their start states. In one step, each automaton deter
mines which other automata are visiting the same cell and their
current states, which adjacent cells are white, and its own current
state. Based on this information, it moves to an edge-adjacent
white cell and enters a new state.

We may equip an automaton with a finite nun1ber of pebbles,

133



Po·

Cose 1: p] lies \vest of Po' The autonlaton retraces its path
back to PI! and halts there. In this case, PI) is Ilor the unique boun
dary point.

Ca,)(' J: P I lies east of Po. In this case, the automaton contin
u,,~s nl0ving along the boundary (as before) until one of the follow
ing two conditions occurs:

COllditioll 1. A boundary point P2 is found at a latitude beln\\

internal states to keep track ot \{p) mod 3, \Vhen the autornaton IS

Erst interrupted at a point PI (at the sanle latitude as Pn), it kno\\~

whether P I lies west or east of Po, depending on whether v (p 1) nlod
3 = I or 2, respecti vely (t his follows from the mod 3 corollary).

In this case, the automaton can retrace this path back to Po and
halt. Po is 110t the unique point of that boundary.

Condilion 2. The automaton discovers a finite sequence of
successive points P2,P3"" in the sanle latitude as PI with the pro
perty that each point Pi+ I (i ~ 1) lies west of the preceding point PI
until for the first tinle a point Pn+! is found that lies east of the
preceding point Pn-

riY#~dm~ /P 1

Po- ~ /,.pi P5' P4 P3 P2 Pn+ 1

In this case, Pn = Po and Pnt 1 = Pl' The autOlnaton then retraces
its path back frorl1 Pn+l to Pn and halts back where it started. In
this case, Po is the unique point of the boundary.

Finally, the automaton can easily decide whether or not Po lies
on the (outside) border on the basis of whether the cell northeast
or southeast of Po is black.

Replacenlent of the counter by 2 pebbles

To replace the counter by 2 pebbles~ note that the autonlaton
uses the counter only to nleasure y-displacement while traveling
along the boundary of a barrier. An autonlaton can as easily use 2
pebbles to store the count, with the distance along the boundary
between the 2 pebbles serving as counter contents and the lead
pebble serving to n1ark the position of the original I-counter auto
Inaton.

The single counter autonlaton may also be replaced by two
finite auton1ata without counters or pebbles. This construction we
leave to the reader.

o
Po
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unique points

Unique Point Lemma. There exist both 2 pebble and 1
counter autonlata that one nlay place on any white cell, C, of a
nlaze together with 2 pebbles or an ernpty counter (whichever the
case nlay beL in state qNI (or qsw), The autonlaton .. after sonle
1110ving about in the nlaze, will returll (0 C with its 2 pebbles or
enlpty counter and stop in state q~LS (q~JiS) if the NE (S\V) vertex
of C is a "unique point" of a boundary and in (qs"\V) if not.

Let C denote a closed sinlple curve in 2-dinlensional
Euclidean space conlposed entirely of a finite nunlber of horizontal
and vertical line segnlents. Let Po be a point in the interior of
senne vcrtical line segnlenl. For p in the interior of sonle line seg
ment of C, let
v(p) = [total number of right hand turns total number of left
hand turns that nlust be nlade in a walk from Po to p that begins at
Po, initially goes north a nonzero distance, and continues in the
sanle direction along C until p is reached).

I

5 °F~~--~l

r--61_5~J 1
2

4!
L .. ,__J

- 3
4 Lcmllla, v(p()} 4 if thc vvalk frOTll PI) tti PI! is

honhi{opic 10 ~l clockwise loop, \ (Pu) =---4 if the walk is hon10to-
PH () CI)Ulllerclockwi"e loop,

A1nt/ 3 Corolituy. v(Po) = 1 1l10ci 3 if the \\alk fro III P(I to Pu IS

hOinotnpic to a clockwi~e loop, v(Po) = 2 mod 3 if the \valk fronl
hi in Pu is honlotopic to a cou:Herclockwise loop.

J)(/iniriOll. For p = ~l ':orner point and q a point on a verti-
cal line: segnlent having p as endpoint, let v(p) = v(q),

J)C!'fl/rlOll. The [Ill/que pOlIl! of a boundar), BURY', (or its
associated barrier) is the unique point (Xil,y\)) E BDR'{ such that for
;J! I (X. v) E BDRY [y () ~ y 0 r (y if = Y and xn ~ x)].

The [Illique cell of a boundary (or its associated barrier) is the
unique white cell \vhose NE or SW vertex is the boundary's unique
point.

•Po

:=~
AlgoritllIll and infonnal proof of the L nique Point Lenulla for 1
counter autonlata

A l-counter autonlaton can check if a boundary point, Po, is
the unique point of that boundary as follows. First it checks that Pu
is a lower left-hand corner point of a barrier:

/ ~~
/~~//~

Then it travels north from Po along the boundary using the counter
to keep track of vertical distance or latitude. The counter interrupts
the autonlaton each time it passes a point having the sanle latitude
as Po. While nloving along the boundary, the automaton uses its

Proof of Theorelll 3.1.

Let us assign to every vertex of a maze a color. Unique
points are to be colored green and all other vertices are to be
colored white.

Extend the definition of a finite autonlaton so that in any cell
and in any state there, the automaton can detennine which, if any,
of the cell's 4 vertices are green. As usual, the automaton can
deternline which of its neighboring cells are white and then~ based
on this infornlation, can either halt or cross an edge into a neigh
boring white cell and change its state appropriately. This we call a
finite greel1-(}'ed automaton.

A I-counter or 2-pebble automaton is at least as powerful as a
finite green-eyed autonlaton (with no pebbles and no counter) in a
maze whose unique points are colored green. This follows fronl the
unique point lemnla. Thus we may (and shall) complete this proof
by showing how a finite green-eyed automaton can search a maze in
which unique points are colored green.
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to the cut edges.

If the autonlaton VISits infinitely may vertices of {6,3}, then
extend the periodic part of the path of the automaton backwards
and forwards several periods.

4. Lower bounds for 1 and 2 automata in planar graphs

This and the next two sections will be devoted to proving that
no three finite automata together can search all finite cubic embed
ded graphs. In this section we prove such a lower bound for ] and
2 autonlata.

In contrast to Budach's corresponding result for 111azes, the
following theorenl is easy to prove:

Theorem 4. J. No single autonlaton can search all finite cubic
enlbedded graphs.

Proof Start the automaton on {6, 3}. Since all vertices are of
degree 3 and no other automata are present, it eventually enters a
cycle of states, and thereafter its path is periodic. If this periodic
path describes a cycle of {6,3}, then cut away all of {6,3} except the
finite portion ever visited by the autonlaton, plus a little margin.
The resulting finite graph nlay be made cubic again by call1eri:::ing,
i.e. attaching

Cut away all of Ib,3} except the vertices on this path plus a slight
lllargin.

A.--------..----- ---t C
t---,,-~~'" ... -,,~_-."'" " " I' \ I , )\ , J1' ..' './ \,,' ... , '.' \.J... ..~

1 I

sl-----------JD
Twist the resulting graph around and identify AB with CD so that
the ends of the periodic path nlatch up, forming a continuous
periodic cycle. Cauterize cut edges as above.

We begin by defining an ordering on the barriers of a maze.
Let X and Y be barriers. Let V x and V y denote their unique
points. Say that X is father of Y iff Y is not the border and X is the
first barrier reached by moving due south from Vy . This ordering
of the barriers forms a tree (since every barrier except the border
has exactly one father, and the border has no father) which we call
the tree of barriers:

If the white cells fornl a sinlply connected region, i.e. if the
only barrier is the border, then a finite automaton can visit all
(white) bOllndaty cells by 1l10ving fronl one such cell to the next,
keeping the boundary always on the left.

Tn search an entire simply connected nlaze, nl0dif) the above pro
cedure so that each time the autonlaton steps frol11 one boundary
cell to the next, it tlrst goes into a subroutine that causes the duto
maton to nlove north until it reaches a barrier and 1hen to ret urn
south whence it came before going on to the next fhis wa),
each white cell interior to a simply connected nlalC Visited
imnlediately after the white cell beneath it gets visited.

Any nlaze can be converted to a sinlpl:" connected one by
relabeling all vertical edges that lie bet ween each green vertex dnd
the barrier inlmediately beneath it as boundary edges. The figure
below shows all boundary edges plus all those specially labelled as
such drawn heavily in black. The path of an autonlaton along this
boundary is shown dotted.

Finally, in order to halt, the finite green-eyed autonlaton has
only to check that it twice visited the (only) border cell having d

green vertex.
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CON FIG = EOx Q

describing a possible current position of M in G and current stale.
The function NEXTCONFIG:CONFIG-CONFIG describes the
motion of M in one step:

NEXTCONFIG(u, v,p)= (DIRECTION (p) (u,v) ,NEXTSTATE (p»).

Since L, R~ Band NEXTSTATE are 1-1 and onto, so is
NEXTCONFIG.

A hypernode rb is a finite embedded graph with three dis·
tinguished vertices such that

n an vertices are of degree 3 except the 3 distinguished ver·
rices, which are of degree 2~

ii) the 3 distinguished vertices occur on the boundary of the
exterior face of ¢ (determined by the enlbedding):

iii) (/> has a nontrivial automorphism.

We also altow the trivial hypernode, consisting of a single vertex and
no edges.

(;iven a cubic cn1bedded graph G and hypernode ¢. we con
struct en1beddcd graph Golf> by replacing all nodes of G with rf>.
lbe embedding of Goc/> is inherited fronl G and 4>. For example, if
G is the graph

If ~, t/J are hypemodes, then so is ~o4/J. For example, if cP is
the small hypemode pictured above, then cPo</> is the hypemode

Note that 0 is associative and that the trivia! hypernode serves as an
identity for o.

To be completely precise, we must associate with Goe/> a mor
phisrn h :(Jo1>--G which collapses cP, so that we know which
occurrences of 1> in Goc/> replaced vertices of G. We will take this
for granted, using "occurrence of cP in Goet>" for "inverse image of a
vertex of Gunder h". A hyperedge of Go¢ is the inverse image of
an edge of Gunder h, and a hyperface is the inverse image of a face
of Gunder h. We denote by Autet>(Go¢) the group of automor
ph isms of Go¢ preserving occurrences of (j). Then Autet> (Goet» ~

Aut(G).

Suppose $ occurs in (.'oeP as illustrated.

and rJ> is the smail hypernode pictured above, then Go</:> =

L(u,x) == (x,v)
R(u,x) = (x,w)
B(u,x) = (x,u)

w

NEXTSTATE:Q-Q
DIRECTION:Q-{L,R,B}

where Q is the set of cycle states. \\''hen visiting edge (u, v) in state
P€Q with no other auton1ata present, M moves into state
NEXTSTATE(p) and to edge DIRECTION(p) (u,v). NEXTSTATE
is one-one and onto Q.

If M is a set of cycles and G is a cubic embedded graph, the
set of configurations for M and (J is the set

The functions L, R, and B are one-one and onto.

In the absence of other automata, the sequence of states that
M assumes and its turning behavior are independent of the graph it
is searching and quickly become periodic. In order to concentrate
on this periodic behavior, we will isolate the cycles of M, i.e. those
states and transitions of M which remain after removing transitions
involving input from other automata and non-cycle states (p is a
(vcle state if, when started in p, M reenters p infinitely often). The
cycles of M are governed by two functions

All npdes of a cubic graph· Gcan be replaced by hypernodes ~ to
get Goe/>. We then observe an automaton '8 motion in~ Goel>, viewing
occurrences of ¢ as black boxes, ignoring the automaton \ motion
inside ¢. The key lemma (4.5) states that for any automaton M, a
special hypernode rbM may be constructed so thatM's 010tion in
GO</>M is degenerate, i.e. between copies of e/>M always goes left,
always goes right, or always backs up.

Let us restrict our attention to the behavior of an automaton
M in cubic embedded graphs. For such graphs, the orientation
defined by the embedding takes the form of unique left and right
turn functions L,R:EG-EG, as illustrated. We also include
B:EG-EG for backing up..,
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and

Then some cycle 0 of C¢c has xn = BZ.

Lenlma 4.4. If C is degenerate and cP is any hypernode, then
all cycles of C$ are degenerate.

Pro0.1: Follows from Lemma 4.2.

Lemma 4.5. For any M, there is a hypernode cPM such that
MchM is degenerate.

Prool Execute the following program:

begin N := M~

cP := the tri vial hypernode;
while N has a nondegenerate eyrie C do

begin cP := c/Jco¢~

N := N$c

For any periodic x, either xEBz or x€{L,R}z. We say x is degenerate
if ~E{LZ,RZ,BZ}. A cycle Cis dege7zerate if Xc is. An automaton M
is degenerate if all its cycles are. For example, if !c = LZ, and if M
is in cycle C on {6,3}, then M is going counterclockwise around
sonle face, with possible tree-like excursions away from that face at
various points, but always returning to that face.

We now show how to construct a hypernode <PM to make M
degenerate.

Lemma 4.3. For any nondegenerate cycle C, there is a hyper
node cPc such that some cycle of Cfbc is degenerate.

Proof. We may assume without loss of generality that Xc is
reduced modulo trees. Since C is nondegenerate,

Xc € (L,R}Z- {LZ,RZ}.

There are three cases;

i) Xc contains 2 consecutive L's.

il) Xc contains 2 consecutive R's.

iii) Xc = (LR)z.

Case n. Suppose Xc = (LyL)Z for some y E {L,R}+. Construct
cPc from 3 copies of y, placed end to end, oriented clockwise. Free
edges are cauterized. For example, if Xc = (LyL)Z with y =
LLRLR, then !Pc is the hypernode

If p is a state of C such that p occurs at the start of period LyL of
xc, and if D is tbe cycle of Cche containing p, then XD = LZ.

Case ii) is analogous.

Case iii). If Xc = (LR)Z, use cPc ==

v

w
VI'

~

The embedding of rP imparts an orientation to the hyperedges
incident to u, v, and w. This orientation is given by left and right
turn functions Lch , Rq, and backup function B,p:

L,p(u',u)=(w,w')

Rq, (u',u)= (v, v')

Beb (u',u)=(u,u').

Lq" R,p, and Bq, are one-one and onto the set of hyperedges.

Let M be an automaton consisting only of cycles,

M = <Q,NEXTSTATE,DIRECTION> .

Suppose M is started in state p visiting hyperedge (u',u). In the
next step it enters cPo At some future time it must emerge from c/J,
since NEXTCONFIG is one-one. If it emerges in state q, we take

NEXTSTATE,p (p)-=q

then

~c = (LLRLRR) z.

DIRECTIONch(p)=L (respectively R, B)

if it emerges on hyperedge L¢(u',u) (respectively
R,p(u',u), B¢(u',u». It follows from the fact that NEXTCONFIG is
one-one that NEXTSTATEeb is one-one and onto Q, thus partitions
Q into disjoint cycles. Moreover, if p is a state of cycle C of M,
then NEXTSTATE¢(p)EC, so this partitioning refines the partition
ing of NEXTSTATE.

In this way we have defined a new automaton

M cb = <Q,NEXTSTATEcb,DIRECTIONcb >

such that the behavior of M¢ in G mimics the behavior of M in
GocP. V·./e could formalize this statenlenl with a commutative
diagram involving paths of M in GocP, paths of M¢ in G, and the
collapsing morphism GocP-G, but for now we trust in the reader's
intuition and just state

Lemma 4.2. The behavior of Me/> in G mimics the behavior of
M in GocP.

Let C be a cycle of automaton M.e is an automaton itself.
There is a two-way infinite periodic sequence xcE {L,R,B}Z describ
ing the turning motion of M when it is in cycle C. The reduced
sequence !c is Xc modulo trees. For example, if

Xc = (LRBRBBLLBLLBLBLLLRBRRLBL)Z

end
end
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The progr.ml ahvays halts, since each iteration of the while loop
strictly increases the nUlnber of degenerate cycles, by Lemrnas 4.3
Llnd 4.4, and there can be at n10st IQ I. To show correctness, con
sider the statenlent

N = M,/>.

This stalen1ent is certainly true upon first entry to the while loop.
Moreover. it is an invariant of the loop, since if N = M(b then

N,\. =, (M(/J)(b
C

= M,fJc'd"

Thus N = N1'il upon lern1ination. But since N consists only of
degenerate cycles upon tern1ination, the final value of 4> is the
desired hypernode ¢'1'

Theorem 4.6. No two finite autoll1ata together can search all
finite cubic embedded graphs.

Pro(~l Let M', N' be the autonlata consisting of all cycles of
M, N respectively. Let q) = (bM'ocPN' By Lenln1as 4.4 and 4.\ M'(t>

and N'(j, are degenerate.

Start M and N together in {6,3}ueb. If M and N see each other
only finitely often, then M and N eventually revert to M' and N'.
But by 4.2, M' and N' in {6,3}ocb are sinlulated by M"f> and N'(,6 in
{6,3L which are degenerate~ thus M and N thereafter stay confined
within a bounded region of {6, 3} o¢, tracing closed loops. The argu
nlcnt of Theorem 4.1 now applies.

Otherwise, M and N see each other infinitely often.
Eventually a con figuration is repeated, and due to the rich automor
phisn1 structure of {6)}o¢, the behavior of M and N is periodic
thereafter. The argun1ent of Theoren1 4.1 now applies. This con1
pletes the proof.

5. The ~~(,olnetry of {p,q}

In this section we develop the geon1etric tools necessary to
the lower bound for three autonlata to be proved in section 6. This
section may be skipped on first reading. Proofs will be sketched or
ornitted. We will be concerned with the geornetric properties of the
regular tessellations {p,q} defined in section 2, particularly {3,q} for
q > 6.

The rt.;gular tesselation (p,q} is called .spherical, /)Iall(', or h.vper
bolic, if

>1
2'

respecti vel y.

In studying the regular tesellations it is helpful to associate
with each {p,qj a surface of constant Gaussian curvature. With a
spherical (resp. plane, hyperbolic) tessellation we associate a sphere
(resp. Euclidean plane, hyperbolic plane), a surface of constant
positive (resp. zero, negative) Gaussian curvature. The geon1etry
of {p,q} is the discrete analog of the geon1etry of its associated sur~

face. This correspondence has been observed by Coxeter (1963).

The five sphericai tesselations {3,3}, {4,3}, {3,4L {5,3L {3,5}
are the only finite ones: they are the tetrahedron, cube, octahedron,
dodecahedroll, and icosahedron, respecti vely. There are only three
plane tesselations: {6,3}, {4,4}. {3,6}. The ren1aining tesselations
are the hyperbolic tesselations. A portion of {7,3} is illustrated.
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The groups Aut ({p,q}), denoted [p,q] hy Co\eter (196]),
have been studied by ~1illcr (1902l. Brahana (1928) ~llld others
(see Coxeter and i'v1oser (1972)).

Elen1ents of Aut ((p,qj) are denoted IT, 7". Every IT is either d

rofallOn (if it has fInite order) or a trulI.slutlOlI (if it has infmitc
order), Re/lcc'floll.,,' are not allowed. since they do not preserve
orientation. (T is a rotation itf it preserves an edge, face. or vertex,
in which case it has order 2, divisor of p, or divisor of q, respec
tively. {p,q} is sYlllmclric in the sense that for every pair of edges
(u,v), (u',v'), there is a unique (T with IT(U) = u' and (T(V) = v'.

d denotes the shortest-path metric on V{p,ql. If A, B are sets
of vertices, we take

ci(A,B) = inf inf d(u,V),
UtA \d3

although d is no longer a n1etric when extended to sets. Any auto
morphisn1 is an ison1etry with respect to d.

Curves

Let {p,q} be an infinite tesselation. A curve in {p,q} is a two
way infinite path in {p,q} such that any 3 consecutive vertices are
distinct. Curves n1ay be directed or undirected. A parametrization
of a curve is a n1ap x:Z-'Y{p,q} such that

i) x(n1), x(n1+1) are adjacent

ii) x (n1- 1) ;zf; x (n1 + 1) for any n1.

x, y, z denote paranletrizations. x and y paran1etrize the san1e
directed curve if there is a c such that x (n1) = y (c +n1) for all rn.
x and y parametrize the san1e undirected curve if for son1e c, either
x (m) = y(c +01) for all n1 or x (m) = y(c-m) for all m. We n1ay
view a curve as the equivalence class of all its parametrizations.
We will usually fix a parametrization, but most of the properties of
curves to be studied are independent of the choice of parametriza
tion.

Yx denotes the vertices of x and Ex its (undirected) edges. A
curve x is .finite if Yx is. A curve y is a subcurve of x if Ey ~ Ex.
We write d (x,y) for d (Yx, Yy). x (nl,n) denotes the ./inile segment of
x consisting of x (n1 ),x (n1 + l), ... ,x (n), We also allow semi-i/~/illi{(!

segnlents by letting n1 =-00 or n =00. s,t denote finite segn1ents of
curves. s is a loop if its endpoints coincide. We define

Ix (n1,n) I = n-m,

I Ix (111, n) I I = ci(x (m Lx (n )) .

s is a shortesl path if II s II = Is I. x is a .shortest path if all its finite
segnlents are.

Simplicity

A curve is simple if the relation

{ < x (n1 ) ,x (m + I )> I mE Z }

is a one-one function. For infInite x, this means no multiple ver
tices. For finite x, this n1eans x traces a simple circuit in {p,q}. A
simple loop of x is a loop with no multiple vertices except its end
points. It is a consequence of the Jordan curve theoren1 that any
simple curve partitions {p,q} into exactly 2 (plane-) connected
regions. If x is directed, these regions may be designated Ie.!! and
right in the obvious way. A fmite sin1ple curve is positil'e(l' oriented

if it bounds the region to its left.

Periodicity

If CEZ then c is a period of x if there is a (f in Aut ({p,q}) with
o-(x(n1» =x(c+n1) for all nl. For each c, if such a (T exists then it
is unique, and is denoted (T',l" The set

Aut (x) = {(TX•L I c is a period of x 1

is a subgroup of Aut ({p,q}) isomorphic to Z or some cyclic group
Zm. x is said to be periodic if it has a nontrivial period.
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Theorem 5.5. The following are equivalent:

i) x is a shortest path.

ii) x is straight.

iii) for all finite segn1cnts s of x,

These triangles are called fundamental regions by Coxeter (I 963).

Theorem 5.4. Let x be a finite, sinlple, positi vely oriented
curve in {p,q} with k vertices, enclosing A fundamental regions.
Then

Proof Induction on A.

For the remainder of the section, we restrict our attention to
the graphs {3,q}, q~6.

A curve x is Ie./i straIght if

i) for no nl does intI (m) =Q~

ii) for no segment x(ij) does intl(i)=intlU)=2Q and
intl(m) =3Q for i<m <j.

Right straight is similar. x is srraighr if it is both left and right
straight.

Ifs = x(ij), define

in {3,7} has intl(m)=3Q, intr(m)=-4Q, and ext(m)=1/2Q. The
function ext is the discrete analog of geodesic curvature. A curve is
uniquely determined by two vertices and its exterior anglc function.

The Gaussian curvature of the graph {p,q} is defined by

K= [~+~-~11T
P q 2

The Gaussian curvature of {p,q} has the same sign as the Gaussian
curvature of its cor esponding surface.

The Gauss-Bonnet FornluIa

The Gauss-Bonnet Formula is one of the central tools of
differential geometry. It relates a curve x to the simply connected
region S it encloses, in terms of the geodesic curvature g of x and
the Gaussian curvature K of the surface. It states that

fx gdx + I f<)KdS = 21T,

where the first integral is taken with respect to arc length once
around x counterclockwise. For surfaces of constant Gaussian cur
vature such as spheres and pseudospheres, this reduces to

Ix gdx + KA = 21T

where A is the area of S.

We have a discrete version of this theorem for the graphs
{p,q}. Let a face of {p,q} be divided into 2p congruent triangles, as
illustrated.

respectively. For example, the curve

Curvature

The total angle once around each vertex of {p,q} is 21T. The
quantum angle between two consecutive edges adjacent to a vertex
is

Likewise, x diverges- from A if

sup d (x (-oo,nlLA) = 00.

m

sup d(x(nl,oo),A) = 00.

m

Q=~.
q

Every vertex x(m) along a curve x has a Ie./i interior angleintl(nl), a
right interior angle intr(m), and an exterior angle ext (m), defined by

A and B are adherent if they adhere to each other. Let

D(A, B) = nl ax {sup d (u ,B), sup (I( A, v) }.
lItA VtB

x diverges from A if it both diverges+ and diverges-- from A. x and
yare divergent if they di verge fronl each other.

The notions of divergence+, divergence-, and adherence
between curves are not related in general ~ however,

Proposition 5.2. If x,y are periodic, then the following are
equivalent:

i) x diverges+ fr0l11 y

ii) x diverges- fr0l11 y

iii) x does not adhere to y.

In addition,

Proposition 5.]. If x,y are periodic and infinite, then the fol-
lowing are equi valent:

i) x adheres to y

ii) y adheres to x

iii) Aut(x) n Aut(y) is nontrivial.

Thus any pair of infinite periodic curves are either adherent or
divergent.

y is said to approximate x if Aut (x) ~ Aut (y). By the above,
if x is infinite and periodic then any curve approximating x adheres
to x. Every periodic ~urve has a simple approximating subcurve.

Adherence, divergence, approximation

Two curves are adherent if they stay close together. More
precisely, for A,B ~ V{p,q}, we say A adheres to B if

sup d (u,B) < 00.

UtA

Proposition 5.1. If x is periodic then the following are
equivalent:

i) x is in finite

ii) Aut (x) =::: Z

iii ) sup { Inl-n I I d (x (nl ),x (n» < b} <
In the sequel, a period of x, otherwise unqualified, will nlean a
nonzero period of x.

Then A and B arc adherent iff D(A,B) < 00.

Let x be a directed curve, A ~ V{p,q}. x is said to diverge+
fronl A if x gets arbitrarily far away fronl A nloving in the positive
direction, i.e. if
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IL ext I ~ Q - 6( Is 1- UK.

The proofs i) - ii) - iii) are easy. The proof of iii) - i) involves
assuming the contrary and deriving a contradiction of 5.4.

Corollary 5.6. Every infinite periodic curve with period n has
a straight approximating curve y with D(x,y) ~ n.

Theorem 5.7. If q~ 7 and if x,y are adherent straight curves,
then D(x,y) ~ l.

The proof is by contradiction of 5.4. Note that 5.7 doesn 'thold in
{3,6}.

Corollary 5.8. If q~ 7 and if x,y are infinite adherent curves
with positive periods m,n, then

D(x,y) ~ l+m+n.

Let n >0, q~ 7, and let Pn be the set of infinite curves in
{3,Q} with minimal positive period at most n.

Corollary 5.9. If x€pn then all but a finite number of elements
of Pn diverge from x.

The following thcoren1 will aliov\' us to pass infinite periodic
curves through each other.

Theorem 5.10. Let x,y be periodic straight curves in {3.q},
q;;6. Then there exists lft:Aut({3,q}) such that

i) x and a- (y) diverge~

ii) x (0,00) lies to the left of (T (y) and x (--00,0) lies to the
right of a- (y).

The following theurem will help us cut up the graph {p,q} to
form a finite graph.

Lemma 5.11. For any translation a in Aut ({ 3,q}), q~ 6, there
is a curve x such that

i) x and a-ox are disjoint~

ii) x lies entirely to the left of (ToX and aoX lies entirely to the
right of x.

Using 5.11, it is easy to prove

Lemma 5.12. If (J" is a translation, then

inf d(u,uk(u» ~ k.
u

Let u be a translation and let (p,Q}/(T be the graph obtained from
{p,Q} by identifying vertices u and v iff there is an n such that v =

(Tn(u). Let [uJ={un(u) In€Z}. The [ul are the vertices of
{p,Q}/u. This graph may be visualized by finding x satisfying
5.11 (i) and (ij), cutting {p,q} along x and aox, and wrapping the
resulting graph around and identifying x (m) and u (x (m» to form a
cylinder. Using 5.11 and 5.12, we have

Theorem 5.13. If a is a translation and k€ N, then

i) {p,Q}/ a k is planar~

iO the canonical morphism (p,q}-{p,q}/u k which takes
u-[u] is one-one on regions of {p,Q} of diameter k~

iii) the map [ul-[a (u)], denoted [a-], is an automorphism of
(p,q}/uk.

5.13(ii) says that {p,q}/a-k looks locally like {p,q} on regions of
diameter ~ k.

If H is a subgraph of {p,q}, let [H] be its image under the
canonical morphism {p,q}-~{p,q}/ak. The following is immediate
from 5.13(iii).

Corollary 5.14. If H is a subgraph of {p,q} preserved by CT,

then [H] is preserved by [eT].
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6. A lower bound for three automata in planar graphs

In this section we combine the results of the previous two
sections and prove

Theorem 6.1. No three finite automata together can search all
finite cubic embedded graphs.

We will be discussing the motion of 3 automata on {7,3}o¢ for
some suitable hypernode ¢. In order to use the theory of section
5, we will view periodic curves in {7,3}oet> as periodic curves in
{3, 7}, by fixing once and for all a pair of morphisms

{7,3}ocf> l {7,3} ~ {3,7}

where h collapses et> and g associates vertices (faces) of {7,3} with
faces (vertices) of {3,7}. {7,3}o¢, {7,3} and {3,7} are all in a sense
isomorphic, in that hand g provide one-one correspondences
between hypernodes (hyperedges, hyperfaces) of {7,3}0cfJ, nodes
(edges, faces) of {7,3}, and faces (edges, nodes) of {3,7L more
over, hand g induce isomorphisms

Autet> ({7,3}°cfJ) E. Aut({7,3})..l Aut({3,7}).

Thus, periodic curves x in {7,3}ocf> may be viewed as periodic
curves g(h(x» in {3,7} which mimic x. We will use this correspon
dence freely in the proof.

Pro(~l of Theorem 6. 1. Let A, B, C be 3 automata. Let
cf> = cf> A°cf>B°q.C, where q. A is defined in 4.5. By 4.2, 4.4, and 4.5,
A, B, and C are each individually degenerate in {7,3}oq..

Consider the motion of A and B together in {7,3}oq., in the
absence of C. At any point in time, either

(0 A and B will land on the same edge at some time in the
future~ or

(ij) A and B will never see each other again.

If motion 0) occurs indefinitely, then the motion of A and B
together is eventually periodic, since they may occupy the same
edge in at most IA II B I pairs of states, and since any subset of
2( Icf> I+4) directed edges has 2 similar edges under
Aut¢ ({7,3}ocf» (a pair of edges are similar if there is a (J" mapping
one to the other). Thus the motion of A and B together is
modeled by a periodic curve in {3,7}.

If motion (ij) occurs eventually, then the motion of A and B
is degenerate~ they each trace circles in {7,3}oq., making no pro
gress.

Now consider the motion of A, B, C together in {7,3}ocf>. At
any point in time, either

(iii) each of A, B, C will see one or both of the other two
automata at some point in the future~

(iv) C will never see A or B again, but A and B will see each
other again (or some other permutation of A, B, C)~

(v) no pair of A, B, C will see each other again.

If (iii) occurs indefinitely, then at any time some 2 automata are
within 2 hyperfaces of each other, and infinitely often, all 3 are no
more than 2 hyperfaces apart. This says that the motion of A, B, C
together is eventually periodic. If (iv) eventually occurs and then
occurs indefinitely, then C is degenerate, while A, B are governed
by (i) or (ij) above. Otherwise, if (v) occurs eventually, then all 3
automata are degenerate.

Now we will construct a finite embedded graph such that A,
B, C cycle in the graph without visiting every vertex.

Start the automata together in {7,3 }o(j). If (v) eventually
occurs, then only a finite portion of the graph is ever visited, and
the argument of 4.1 applies. If (iii) occurs indefinitely, then the
three automata together never get very far apart, and trace a
periodic path; thus the argument of 4.1 applies (use 5.13 and 5.14
to form a cylinder such as that appearing in 4.1). Otherwise, Gv)



occurs eventuany, and then occurs indefinitely; i.e., A, B, C run
together for a while, then A,B move away from C. A and B even
tualfy trace a periodic path, and can never get more than one hyper
face apart, otherwise (in and hence (v) occurs. Then the path of A
and B together is modeled by a periodic curve x in {3,7}. If x is
finite, then only a finite portion of the graph is ever vjsited, and the
argument of 4.1 applies. Otherwise x is infinite, -and A and B get
arbitrarily far away from C (Theorem 5.1 (iin) , since C is degen
erate.

Let x be parametrized so that x(0) is near C and so that A
and B are moving in a posilive direction along x. Let k be a period
of x. When A and B get sufficiently far from C, say at x(nk), pick
them up, move them to x(;,....nk) , and put them down in the same
configuration. They wiU move in the positive direction along x
until they reach x(0) again. If they don't see C again, so much the
better. If they see C again, motion (iii) is resumed.

Later on, we will connect x (nk) and x(-nk) for some very
large n, in order to form a large periodic loop which looks locally
like x. Right now the purpose of moving A and B by hand from
x(nk) to x(-nk) is to see what the automata will do next, when the
three of them meet again near x(0).

If (iv) happens again, say this time Band C move away from
A on an infinite path,we repeat the above process -- extend the
path of Band C backward, and move them to the back end of this
path, so that they will be moving toward A.

Assume that, after being moved by- hand, the two automata
we have moved always meet up again with the third automaton,
and the subsequent motion of the three automata together eventu
ally results in motion (iv). This is the hardest case~ the other cases
(motion (iii) indefinitely~ motion (v» will be left to the reader.

Under the assumptions we have made, we must move two
automata by hand infinitely often. Eventually, the motion of A, B,
C, together with our removal of pairs of automata by hand,
becon1es periodic. We define the main band as the set of vertices
visited by automata during motion (iii). The main band is the path
taken by the 3 automata when they are all together. At times two
automata leave the main band on an infinite path, leaving the third
automaton on the main band. These two automata are then said to
be on a side band. The main and side bands are all modeled by
periodic curves in {3,7). The main band may be finite (Le. may
trace a closed circuit)~ again, this is the easier case, so we will leave
this case to the reader and assume that the main band is infinite.

If one half of a side band diverges from the main band, the
other half does as well (Proposition 5.2). If a side band adheres to
the main band, we can just include it in the main band. There are
only finitely many of these (Corollary 5.9): Also, only a finite
number of paths of pairs of automata can occupy the same side
band, and distinct side bands diverge (Corollary 5.9). Thus we
have a periodic main band with periodic side bands diverging from
it and from each other, as illusJrated.
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We now wish to separate the graph and connect the ends of the
main and side bands so that each band forms a continuous periodic
cycle. Then A, B, C will go around this graph forever without
visiting every vertex: whenever the three automata are together,
they are on the main band~ when 2 autonlata split away frorn the
third, they trace a side band around and back to the main· band, and
the three automata resume tracing the main band.

First we cut the graph and connect the ends of the main band,
making.. sure it is several periods long. This is done by fornling
(3,7}/(Tk for some large k, where fT € Aut (main band) (Theorem
5.13). Since the subgraph of {3~7} consisting of the main and side
bands is prt.~erved by tT, Coroltary 5. 14 gi yes us the following
situation:

It would be easy to connect the ends of the side bands to form a
toroidal graph, by just bringing them around the outside and attach
ing them. However, we must make the graph planar. Since all side
bands are periodic, we can make them as long as we like (there are
never any synchronization problems). There are two cases:



This con1pletes the proof.

Acknowledgnlent

We are deeply indebted to David Lichtenstein and Bruce Char
for numerous ideas and helpful discussions.

\\-hen placed on a white cell next to a barrier wlll \valk onl'C com
pletely around the boundary of' that barrier, and halt back where it
started '?

Oi) Our I-counter algorithm operates in time O(n~) and space
o(log (n)), A linear (space-) bounded automaton can search an
arbitrary I11aZe in linear tin1e, by constructing a map. Is there any
algorithm for searching n1azes in linear time using onl~1 O(log(n))
space, or even 0 (n) space'? Such a machine would not have
cnough space to construct a I11ap.

(iii) Coy (1977) has shown that no pushdown auton1aton can
search all finite planar cubic graphs, by showing that in the absence
of information fron1 the graph, the pushdown store gives no extra
power. Is there a formal relationship between this result and the
analogous fact that all context free languages over a single letter
alphabet are regular?

(iv) Give a finite set of finite aut0I11ata which together can
search all finite cubic planar graphs, or show no such set exists
(Paul and Tarjan have conjectured the latter). The lower bound
proof for two and three automata involves constructing a graph in
which two autonlata act like one automaton and one automaton acts
like a pebble. So far we have been unsuccessful in generalizing this
technique.

(v) Give a I-pebble automaton that can search all mazes, or
show that none exists.
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This will entail passing side bands through each other and through
the n1ain band. Corollary 5.6 and Theorenl 5.10 allow us to do this.
Passing the side band through the opposite side of the n1ain band
may be viewed as another side band en1anating from the n1ain band
at that point. Such extra side bands exist by Theorem 5.10.

In the second case, the construction is the same, except there
is no need to pass through the nlain band.

If we do this for every side band, the result can be en1bedded
on a sphere. Below is a picture of a main band with three side
bands:

In the fIrst case, we will bring the top of the side band around,
down through the opposite side of the main bane!, and then attach
the ends:

Conclusion

The behavior of finitc autonlata on strings is thoroughly
understood. In light of this, we find it quite intriguing that lower
bounds for their behavior in graphs and nlazes should be so
difficult. The authors, together with David Lichtenstein, worked
for some time on a lower bound for a single automaton in mazes
before discovering Budach's proof. Although he was several ideas
ahead of us, we were going in the san1C direction, after exhausting
nlany other tracks. This indicates to us that Budach's proof is the
right one, and unlikely to be sinlplified.

We are also quite excited by the wealth of interesting relation
ships which we have observed in conducting this research, nlany of
which in our opinion n1erit investigation. In particular we would
like to mention the following open problenls:

(i) Is it possible to construct a I-counter aut0I11aton that,
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