
BBN Report No. 8359

Movement Control Algorithms for Realization of
Fault Tolerant ad hoc Robot Networks

Prithwish Basu and Jason Redi
Mobile Networking Systems Department
BBN Technologies

10 Moulton St., Cambridge MA 02138

August 30, 2002

Prepared For:
Deputy Commanding General, USASMDC
Attn: SMDC-TC-MT-A (Mr. Andre)
Huntsville, AL, 35807-3801
Contract No. DASG60-02-C-0060

and

Dr. Douglas Gage
Defense Advanced Research Projects Agency
Information Processing Techniques Office

c©2002 BBNT Solutions LLC, All Rights Reserved

Abstract

Autonomous and semi-autonomous mobile multi-robot systems require a wireless communication network
in order to communicate with each other and collaboratively accomplish a given task. A multihop commu-
nications network that is self-forming, self-healing and self-organizing is ideally suited for such mobile robot
systems which exist in unpredictable and constantly changing environments. However, since every node in a
multihop (or ad hoc) network is responsible for forwarding packets to other nodes, the failure of a critical node
can result in a network partition. Hence it is ideal to have an ad hoc network configuration that can tolerate
temporary failures while allowing recovery. Since movement of the robot nodes is controllable, it is possible
to achieve such fault tolerant configurations by moving a subset of robots to new locations. In this report,
we propose a few simple algorithms for achieving the baseline metric of tolerance to node failures, namely,
biconnectivity. Our algorithms which run in polynomial time transform a connected but non-biconnected
network configuration to a biconnected one by hinting certain nodes to move to new positions. We compare
the performance of the proposed algorithms with each other with respect to a “total distance moved” metric
using simulations.

1 Introduction

Advances in electronics and mechanics have provided the basis technologies required for sophisticated robots. It
is well recognized that robots have significant operational advantages over humans as they can perform tasks
without requirements for rest, food, shelter or task heterogeneity. This makes them potentially useful in future
military exercises on the battlefields (so much so that they may end up undertaking all the missions their hu-
man counterparts perform today), in several disaster relief situations (search and rescue), in cleaning cavities
and surfaces that are otherwise cumbersome to clean, in collection of soil and samples on the surface of Mars
(distributed sensing), and in undertaking routine tasks in flexible manufacturing environments and supermarkets,
and in many more scenarios. Most of the aforementioned tasks need collaboration among different robot units
for their timely and efficient completion.

Traditionally robotics researchers have proposed the use of centralized robot networks where all members of
a team of robots communicate with a central controller (base station) over a wireless medium [9]. However,
in most application scenarios described in the previous paragraph, it is difficult to guarantee the presence of a
wireless base station which can coordinate the flow of information between any two robot units. Moreover, the
movement of robots can be severely restricted in order to keep in communication range of the base station, and
this can hamper the task that the robot team plans to execute. Hence we believe that self-forming, self-healing,
and self-organizing multihop communications networks are ideal for autonomous and semi-autonomous robotic
systems.

Although numerous ad hoc network protocols (also called packet radio, MANETs, or self-organizing networks)
have been proposed and implemented, all of them were designed to be completely transparent to applications.
One of the main reasons for adopting this approach is that the protocols are intended to be used with a wide
variety of platforms and applications. The resulting extended applicability, however, comes at the cost of severe
restrictions in the exchange of information between the application and the network, which makes it virtually
impossible for them to anticipate each other’s behavior and thus cooperate. In robotic systems such cooperation is
highly desirable because robotic applications generally entail movement, which directly affects the communication
network; conversely, the propagation of radio transmissions used for communication may be able to provide an
additional means of sensing the environment. Such interaction is a feasible proposition since robots are unique
in their integrated design in that the mission control, motion control, and networking protocols are typically all
implemented within the same architecture.

Ad hoc networks consisting of robot nodes have a salient difference from standard MANETs: in the former
the position and motion of nodes is controllable from other nodes in the network while in the latter, node motion
is determined by the owner of the node and is not usually controllable. In this report, we focus on the specific
problem of altering the positions of robots in order to achieve a desirable ad hoc network topology starting from
an arbitrary initial spatial configuration1. In particular, we focus on fault tolerance: our goal is to move a subset
of robot nodes from their initial locations to a new set of locations such that the new connectivity graph is more
tolerant to node failures than the initial graph. We utilize a baseline property for fault tolerance from graph theory,

1Since we generally advocate a close cooperation between the ad hoc network subsystem in a robot and the subsystems controlling
its mission and motion, dissemination of node locations is achieved without much overhead.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 1

namely, biconnectivity, and propose a few simple algorithms which attempt to achieve that network property in
a distributed manner. We compare the algorithms against each other with respect to a “total distance traveled”
metric which should be minimized. We show by simulations that the “Block movement” algorithm completely
outperforms the baseline “Contraction” algorithm with respect to that said metric.

The rest of the report is organized as follows: Section 2 introduces briefly the concepts from graph theory that
are relevant to our solution approach. Section 3 gives a mathematical formulation of the problem of achieving
biconnectivity by movement control of robots, and presents two algorithms. Section 4 presents the simulation
results, and Section 5 concludes the report with pointers to future research directions.

2 Preliminaries

In this section we briefly introduce the concepts in graph theory that are relevant to the development of our
problem. We then proceed to a mathematical formulation of the problem in both one dimensional and two
dimensional settings.

2.1 Graph Theoretic Terminology

A graph G = (V, E) consists of a set of vertices V and a set of edges E such that E ⊆ V × V . In our model,
a vertex is a robot node with a location attribute pos and a transmission range attribute R. We assume that
all nodes have omni-directional antennas and identical wireless propagation characteristics resulting in the same
value of R; hence an edge e = (u, v) exists between vertices u and v only if ‖u.pos, v.pos‖ ≤ R. Such graphs are
also known as unit disk graphs. G is called r-partite if V admits a partition into r classes such that every edge has
its ends in different classes, i,e, vertices in the same partition class must not be adjacent. “2-partite” is usually
referred to as bipartite.

A non-empty graph G is called connected if any two of its vertices are linked by a path in G. If G′ ⊆ G and G′

contains all edges xy ∈ E with x, y ∈ V ′, then G′ is a subgraph of G induced or spanned by V ′ in G. A maximal
connected subgraph of G is called a connected component of G. If A, B ⊆ V and X ⊆ V ∪E are such that every
A−−B path in G contains a vertex or an edge from X , we say that X separates the sets A and B in G. A vertex
which separates two other vertices of the same connected component is called a cutvertex and an edge separating
its endpoints is a bridge. Thus, the bridges in a graph are precisely those edges that do not lie on any cycle.

G is called k − connected if |G| > k and G − X is connected for every set X ⊆ V with |X | < k. In other
words, no two vertices in G are separated by fewer than k other vertices. The greatest integer k such that G is
k − connected is the connectivity κ(G) of G. If κ(G) = 2, then G is said to be biconnected, i.e., removal of no
vertex of G causes a separation of the remaining vertices.

2.2 Achieving Biconnectivity

It can be easily seen from the discussion in Section 2.1 that biconnectivity is a desirable property for a network to
have for fault tolerance. In a battle-bot scenario, if the ad hoc network formed by the robots is biconnected, even
if any one robot fails or is shot down by the enemy, the network still remains connected. Hence robots should
always attempt to form a biconnected network as long as that does not interfere with their current mission. This
necessitates movement for some of them (assuming no power control in the radios) in order to create extra links
such that the resultant topology is biconnected. Figure 1 illustrates the idea. The more general property of
k − connectivity is seemingly much harder to achieve, and we do not investigate that in this paper.

Achieving a biconnected configuration in a systematic fashion is difficult from purely local information since
the identification of cutvertices of a network requires global knowledge of the network (explained in greater detail
in Section 3.3). Hence proactive link state based MANET routing protocols such as OLSR [3] and HSLS [7] where
each node keeps knowledge about the rest of the network, are more suitable for our endeavors. Reactive routing
protocols on the other hand keep incomplete knowledge of the topology and this poses greater challenges for our
schemes. We assume the presence of proactive link state routing protocols in this work.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 2

cutvertex

1

2

3

4

5

6

2

3

4

5

6

1

node 1 moves

(Biconnected Network)

Figure 1: Achieving Biconnectivity by Node Movement

3 Movement Control Algorithms

In this section we present various algorithms for movement of robot nodes with the objective of making the
network biconnected.

3.1 One Dimensional Case

We start our analysis with the 1-dimensional version of the problem where all nodes lie on the Real line, and have
only one degree of freedom in movement: they can move either to the right or to the left.

Suppose, the initial positions of the nodes are given by pm, ∀m ∈ [1, N], pm ∈ R where N is the total number of
nodes. Without any loss of generality, we assume that the transmission range is 1.0. Suppose the positions of the
nodes in a new configuration Cnew are given by p′m, ∀m ∈ [1, N], p′m ∈ R. We want to come up with a movement
schedule for the nodes such that Cnew is a biconnected configuration. At the same time we want to minimize the
total distance moved by all nodes in the 1D network (an isomorphic metric is average distance moved by a node).
We can formulate the problem as follows:

minimize Dtotal =
N∑

m=1

|p′m − pm|

subject to:

p′1 ≥ p1; (1)
p′N ≤ pN ; (2)

p′m − p′m−1 ≥ 0, ∀m ∈ [2, N]; (3)
p′m − p′m−2 ≤ 1, ∀m ∈ [3, N]; (4)

Constraints 1 and 2 are non-binding constraints which just illustrate the fact that the 1-dimensional network
will compress in length after a biconnected configuration is reached. The N − 1 linear ordering constraints in 3
restrict the search space as no node needs to move past its neighbors to achieve biconnectivity. Biconnectivity
is ensured by the N − 2 constraints which basically impose a condition on the nodes that every alternate pairs
of nodes are within transmission range of each other. It is easy to see that these constraints are necessary and
sufficient for ensuring biconnectivity.

The problem formulated above can be solved optimally. Since the objective function has a non-linear term
(absolute value), the problem can be solved using �1 norm minimization techniques [1, 2], more specifically, using
an iteratively re-weighted least squares technique. We do not investigate the 1-D example further in this report
and move on to discuss the more interesting two dimensional scenario of robots on flat plane ground.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 3

BLOCK TREE

��

��

�� ��

��

��

��

��

��

��

��

��

�� ��

Figure 2: Decomposition into Biconnected Components and the Corresponding Block Tree

3.2 Two Dimensional Case: A Contraction Algorithm

In a higher dimensional setting, “contraction” is a very simple scheme that can be easily implemented in a
distributed fashion. Every robot node includes its location information (GPS coordinates or indoor relative
location information) whenever it floods an LSU (link state update) to the rest of the network. When all LSUs
have arrived at a node X and no more LSUs are arriving from new nodes, X extracts the location information
for all the other nodes in the network and calculates the geographic center C for the entire network using the
following formula:

C =
1
N

N∑

m=0

pm, (5)

where pm is the position vector of node m. In 1-dimensional space, pm ∈ R, whereas in 2-dimensional space,
pm = (xm, ym), xm, ym ∈ R. After calculating the geographic center C of the network, all nodes move towards
C by a weighted distance calculated as follows: if the contraction parameter is α, a node m with current position
pm moves radially inward towards the center by distance (1− α) ‖ �C − �pm‖.

As a result of following this algorithm, a nodes near the periphery of the network move greater distance than
the nodes in the interior of the network. In fact the nodes very near the center move very little distance. The
rationale behind moving the robot nodes towards the center is that as they move inward, the topology will become
richer and richer, and because of the introduction of more edges, the cutvertices will be removed and sooner or
later the network will become biconnected.

The choice of parameter α is somewhat important here. If limα → 1.0, every nodes moves only a small
distance. On the other hand if limα → 0, everything collapses to the center of the network eventually. Hence
choosing a large α results in unnecessarily dense networks (albeit with higher connectivity than 2!), whereas
choosing a small α results in little change in network topology. In the latter case, the contraction algorithm has
to be repeatedly applied until the network is biconnected.

Note that each node m travels on the same straight line joining its starting position pm and C even when mul-
tiple iterations are needed to make the network biconnected. Hence when the network reaches a final biconnected
configuration with node positions p′m, the total distance traveled will be given by:

Dtotal =
N∑

m=0

‖ �p′m − �pm‖ (6)

3.3 Two Dimensional Case: A Block Movement Algorithm

Now we describe more systematic mechanisms for achieving a biconnected configuration which we believe will
reduce Dtotal while allowing efficient execution in low order polynomial time.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 4

As mentioned in Section 2.1, removal of a cutvertex breaks a connected graph G into more than one connected
components. Hence, the basic rationale behind the algorithm presented in this section will be to consciously
remove all the cutvertices from the network by moving robot nodes appropriately to new locations. Note that
the contraction algorithm presented in Section 3.2 does not attempt to remove the cutvertices systematically.

In Figure 2(left), the biconnected components of a graph have been identified along with its cutvertices. On
the right side of the same figure, a corresponding graph whose vertices are biconnected components (or blocks)
and cutvertices of the original graph has been depicted. Such a graph is referred to as a Block graph [4]. A block
graph has the following properties:

P1 A block can have between 0 and N nodes (both inclusive). If two cutvertices are connected by a bridge,
then the corresponding block contains no nodes. Block B3 in Figure 2 illustrates this point. If the original
graph has no cutvertices, then it is already biconnected and its block graph consists of only one node which
contains all N vertices.

P2 A block graph is a bipartite graph. The two classes of the bipartite graph are Cutvertices and Blocks. No
two cutvertices can be adjacent in the block graph, neither can be two blocks.

P3 A block graph is a tree. This can be proved easily. Since the block graph is bipartite, it cannot have an
odd-cycle. The presence of an even cycle would mean that some two blocks are connected via two different
cutvertices; in that case one of the two cutvertices can be safely removed without disconnecting the graph
– thus we arrive at a contradiction and a block graph is a tree.

P4 A block tree of a graph G can be computed in linear (O(|V | + |E|)) time. This can be achieved during a
depth first traversal (DFS) of G in the same pass [8].

While executing DFS on an undirected graph, we start at an arbitrarily chosen node which becomes the root.
We keep traversing fresh edges and mark nodes as “visited”; on the way we keep pushing nodes into a stack data
structure. This process is continued until we reach a node which is only connected to already visited nodes. At
this point we keep backtracking upto a vertex which has edges connecting them to nodes which have hitherto
not been visited. With a little thought it can be seen that such a node will always be a cutvertex of the graph.
Alongside the identification of the cutvertex, it is easy to pop the downstream nodes from the stack into a set
which corresponds to a biconnected component or a block. Since the above steps can be executed during DFS in
the same pass, identification of cutvertices and blocks takes only linear time.

3.3.1 A Heuristic Algorithm for Translation of Blocks

After a brief introduction to algorithms for the identification of blocks and cutvertices in a graph G, we present
an algorithm for computing new positions for certain nodes which results in making G biconnected and thus
collapses all blocks into a single one.

As described in Section 3.2, every node receives LSU updates from other nodes in the network and extracts
their position information from the LSUs. Additionally neighbor information of a node is also extracted from
an LSU in order to construct a view of the current network topology. Although in a perfect world, knowing the
locations and the transmission range of each radio is enough to construct a view of the network topology, in the
real world, one actually needs neighbor information from every node to construct a view. Since LSU packets
contain that information anyway, no extra overhead is registered. After constructing a full view of the topology,
each node independently computes the block tree BT of the topology graph G. Note that every node should
have the same view of the topology hence internal representation of the graph should be consistent so that DFS
results in the same block tree at all nodes. This can be easily achieved by a systematic insertion of nodes and
edges ordered by node IDs into G at every node.

A salient property of a block is that it is a connected subgraph of G. Hence if all nodes in a block are translated
together using the same translation vector, distances between all pairs of nodes in that block will remain the same,
and hence there will not be any change in the connectivity inside that block. On the other hand, if some nodes
in a block are translated, it may result in a change of connectivity within the block. Because of this fact we
advocate collective translation of all nodes in a block whenever needed so that the connectivity within the block
is preserved while progress is made in increasing the connectivity of the network by moving the block itself. The
sub-optimality of our scheme stems from this fact as it may not be necessary to move all nodes in a block, but it
does result in a faster algorithm.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 5

Algorithm 1 MakeBiconnected(G)
1: Given: G
2: Gorig ← G;
3: BT ← Compute Biconnected Components(G);
4: while (Number of Nodes(BT) �= 1) do
5: MarkRootBlock(BT); /* Select ROOT block with maximum number of nodes */
6: MarkOtherBlocks(BT); /* Mark LEAF, INTERMEDIATE blocks and parents */
7: Move Leaf Blocks(G, BT); /* Algorithm 2 for translating leaf blocks */
8: BT ← nil;
9: Recalculate Edges(G);

10: BT ← Compute Biconnected Components(G);
11: end while
12: G is biconnected now;
13: Dtotal ← Calculate Distance Moved(Gorig, G);

Algorithm 2 Move Leaf Blocks(G, BT)
1: Given: G, BT
2: for all nodes blk ∈ BT do
3: if (blk is a BLOCK node and a LEAF) then
4: parcv ← BT.parent [blk]; /* parent cutvertex */
5: parblk ← BT.parent [parcv]; /* parent BLOCK */
6: if (Number of Nodes(BT [parblk]) �= 0) then
7: nearest← Find Nearest Node(G, blk, parblk); /* find a node in parblk nearest from blk */
8: Translate Block(BT, blk, nearest); /* translate all nodes in blk towards nearest */
9: else

10: pcv ← parent cutvertex of parblk;
11: Translate Block(BT, blk, pcv); /* translate all nodes in blk towards pcv */
12: end if
13: end if
14: end for

Which blocks to move and where? Suppose block Bk has edges with two cutvertices cu and cv in BT . Let
Bm and Bn be two blocks connected to cu and cv, respectively. Now, since we want to minimize the Dtotal metric,
we should move nodes as little as possible. If we translate Bk towards Bm, cu may cease to be a cutvertex but
some other node in Bn may become one as the link between Bk and cv may be broken. Hence we may not have
made any progress towards reducing the number of cutvertices in G after this translation step. To prevent this
from happening, we only translate blocks in BT which have degree 1. In order to heuristically minimize the total
distance moved, we choose the block which has the maximum number of nodes as the root of BT , and identify
all other blocks with degree 1 as leaf nodes.

Algorithm 1 shows the steps of making a robot network biconnected in a systematic fashion. In every iteration
of our algorithm, we attempt to remove a number of cutvertices from BT . In the context of Figure 1, block B5

will be the root block in BT and B1, B2, B4 will be leaf blocks. All nodes in B4 will translate towards B5 since the
latter is the parent of the former block. B1 and B2 on the other hand have en empty parent block B3, and hence
all nodes in the respective blocks will translate towards the parent cutvertex of the parent block, that is c2. Every
block is translated towards the nearest node in the parent block, whenever applicable, by enough distance such
that exactly one new edge appears between the current and the parent block. The appearance of this new edge
causes the cutvertex between the two blocks to vanish. Hence in one iteration of the algorithm, several cutvertices
are removed. The time complexity of finding the nearest node as a target edge partner requires B2 comparisons
if B is the average number of nodes in a block. Since B = O(|V |) in the worst case, the Find Nearest Node

function has a worst case time complexity of O(|V |2).
For large networks several iterations may be needed to remove layers of cutvertices before only one block

remains. Also, after every iteration as the number of blocks increases, the blocks grow in size. Hence a small

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 6

cutvertex

nearest
node

BLOCK

cutvertex

nearest
node

BLOCK

OSCILLATIONS

Figure 3: Exception to the Block Movement Scheme

translation by a large block may contribute a significant amount to Dtotal.
In the worst case, we can have O(|V |) iterations of the while loop in Algorithm 1 before achieving a biconnected

configuration (e.g. case of a line graph). However since the number of iterations is bounded, convergence is
guaranteed in almost all situation except very special cases as depicted in Figure 3. This special case can be
solved by translating the block towards the nearest node which is a direct parent of the cutvertex. Although
doing this repeatedly also guarantees convergence, we follow this only when translation toward a nearest node in
the parent block does not remove a cutvertex. This is because, the former is likely to take many more iterations
before achieving biconnectivity for the whole network.

Note that there can be two different schemes for moving the robots: (1) robots start moving as soon as a
single iteration is over, or (2) no robot node actually starts moving until the final positions of robots have been
determined, i.e., after convergence of Algorithm MakeBiconnected(G). Since the convergence occurs rapidly
even for large networks, we adopt the latter scheme which is better since it may result in a much lower value of
Dtotal due to the vector addition of translation vectors for every node over all iterations of the algorithm.

Figure 4 depicts a complete execution of the Make Biconnected algorithm on a randomly selected initial
topology. The dark points represent cutvertices in the network. We can observe the several steps of the algorithm
in action as the graph becomes biconnected after only two iterations.

The algorithm described in the previous section attempt to translate leaf blocks only towards their parent
blocks or cutvertices in order to remove cutvertices. However, it is easy to conceive of situations where a slight
movement towards a non-parent block may cause removal of several cutvertices in a single iteration. Hence a more
intelligent block movement scheme can reduce Dtotal as well as the number of iterations in suitable scenarios. At
the time of writing this memo, we have only envisaged a scheme which can yield better results than the algorithms
proposed in this report, and it is work in progress.

3.4 Related Work

To the best of our knowledge this is the first approach to efficient fault tolerant network design using node
movement as a primitive. Ramanathan et al. have proposed optimal schemes for topology control in ad hoc
networks using variation of transmission power as a primitive [6]. They monotonically increase transmit power
locally at every node and attempt to satisfy properties of connectivity and biconnectivity. Our problem is very
different from theirs since the movement of a node aimed at the removal of a cutvertex by creating a new edge can
instead result in the creation of a cutvertex at another location near the moved node in the network. Although
we do take care during block movement so as not to create new cutvertices, the Euclidean nature of the Dtotal

metric makes it is extremely difficult to characterize the optimal solution.
Li and Rus have mentioned the use of node motion in order to relay messages between nodes in [5] but they

have not considered the problem of efficient network design. Winfield has proposed the use of MANETs for
networking between robots [10] but he too has not considered the problem of efficiently moving robots to achieve
a desirable network configuration.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 7

(a) Initial Configuration (b) After Iteration 1

(c) After Iteration 2 (d) Final (Biconnected) Configuration

Figure 4: Execution of the Block Movement Algorithm

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 8

0

500

1000

1500

2000

2500

0 5 10 15 20 25 30 35 40 45 50 55 60

T
ot

al
 d

is
ta

nc
e

m
ov

ed
 b

y
no

de
s

(m
et

er
s)

Number of Nodes

Nodes uniformly distributed; area = 1km x 1km; Tx = 250m

BLOCK-move
Contraction(0.95)

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 d
is

ta
nc

e
m

ov
ed

 b
y

no
de

s
(m

et
er

s)

Number of Nodes

Nodes uniformly distributed; area = 1km x 1km; Tx = 250m

BLOCK-move
Contraction(0.95)

(a) Dtotal moved by a node (b) Davg moved by a node

Figure 5: Distance Moved by Nodes

4 Simulation Results

In this section, we report results of simulation of the execution of our biconnectivity algorithms on random initial
configurations. We simulated a 1km × 1km square area with upto 50 robots randomly distributed therein. All
robots were assumed to have omni-directional radios with transmission ranges of 250 meters each. The ground is
assumed to be flat and devoid of obstacles and trenches thus allowing the robots to move anywhere they want.
Harder versions of the problem which include obstacles and imperfect radio propagation are beyond the current
scope of this work and are left for future investigation. The initial random configuration of robots obeys the
uniform probability distribution while keeping the network connected – we keep generating topologies until a
connected topology is found. We simulated 100 runs for every data point with the same parameters.

Figure 5 compares the performance of the block movement algorithm against the baseline contraction algorithm
with respect to the distance moved metric while varying the number of nodes (and hence the density) in the
network. We can clearly observe that the contraction algorithm is completely outperformed by the block movement
algorithm for all values of N considered. This is obviously because contraction is an ad hoc approach which
unnecessarily moves every node which adds up to the value of Dtotal.

We observe that the total distance moved increases and then decreases for both algorithms as N is increased
from 10 to 50. The reason behind this is that for low values of N , there are only a few nodes that can move and
also since the topology is connected, the nodes are not very far from each other. This results in a low value of
Dtotal. As N increases, more nodes have to move to make the network biconnected, and this increases Dtotal.
However, as N is increased beyond a certain threshold, Dtotal begins to drop significantly. This is because higher
values of N result in richer, denser topologies which do not have a large number of biconnected components. In
other words, a little movement causes the topology to be biconnected.

We also plot the average distance moved metric in Figure 5(b) against N . The curves look similar to their
counterparts for the Dtotal metric apart from the fact that the peaks are shifted slightly to the left owing to
division by N . For low values of N there are only a few blocks (see Figure 6) and the initial connectivity is sparse
hence a large fraction of blocks have to move in order to make the network biconnected. This results in a high
value of Davg. For large values of N , however, the number of blocks reduces as the network is richly connected
at many places, and only a small fraction of blocks needs to be moved to make the network biconnected. This
results in low values of Davg. In fact for N = 50, a node has to move less than 5 meters on average while following
the block movement algorithm whereas the contraction algorithm makes nodes move about 30 meters each.

Figure 7(a) shows the number of iterations needed to achieve biconnectivity. We observe that the block
movement scheme requires lesser number of iterations than the contraction scheme. To be fair to the latter, if
the parameter α is lowered to the 0.7–0.8 range, then a lesser number of iterations should be required. However,
in that case, there is a possibility of contracting the robot network more than necessary. Hence we chose a high
value for α.

Figure 7(b) illustrates the impact of the block movement algorithm on the diameter of the network which

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 9

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 N
um

be
r

of
 B

ic
on

ne
ct

ed
 C

om
po

ne
nt

s

Number of Nodes

Nodes uniformly distributed; area = 1km x 1km; Tx = 250m

Figure 6: Average Number of Blocks in G

is defined as the maximum length of a shortest path over all source-destination node pairs. As expected, the
diameter shrinks for all values of N as it is a monotonic property, in the sense that it can only decrease when
edges are added to the network.

While this simulation study is by no means complete or representative of the real world, it definitely gives
us an insight into how block movement algorithms work and how they fare against simple contraction schemes.
Other metrics that we have not investigated in this report but feel are interesting are: (1) the number of nodes
moved by the algorithm, and (2) fairness in node movement. There can be application scenarios where these
metrics are as important as the total/average distance moved metric. We plan to investigate these in future.

4.1 Simulations of Distributed Algorithms

We simulated our algorithms in the OPNET Network Simulator too where all the real world protocols for neighbor
discovery, link formation and link state routing were simulated. The distributed version of the algorithm is trivial
to construct from a centralized version if we assume that all nodes in the network use proactive link state routing
to get information about the entire MANET topology. Each node executes the same algorithm and moves to a
new location if the algorithm prescribes it to move there. Nodes which are kept static by the algorithms do not
move. We also assume that all nodes start execution of the block movement algorithm at the same time when
the LSU floods have died down and the topological views are the same at every node. This precludes the use
of the algorithm, as it is, in highly mobile scenarios. We argue that our algorithm will be invoked only under
the directive of the mission control subsystem, and the latter will do so only when nodes are not highly mobile.
Achieving biconnectivity while nodes are moving to achieve their mission is a harder problem and is beyond the
current scope of this report.

5 Conclusions

Fault tolerance is an extremely desirable property in network design, and biconnectivity is a baseline feature in
that domain. Since the position and movement of nodes in an ad hoc network of robots are controllable, greater
fault tolerance can be achieved by means of moving nodes to locations which results in richer topologies. At the
same time nodes should move as little distance as possible insofar the desired topological property is achieved.
In this paper, we proposed simple algorithms for moving nodes to new locations such that the resulting network
becomes biconnected. We then compared the more sophisticated and systematic algorithm Make Biconnected

against a baseline heuristic which although very simple and efficient is quite sub-optimal as it cause many nodes
to move much greater distances than necessary. Make Biconnected on the other hand attempts to remove
cutvertices from the graph in a systematic iterative manner. We recognize that finding a polynomial time optimal
algorithm is extremely hard and plan to actively pursue this search for optimal algorithms in the future.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 10

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60

A
ve

ra
ge

 N
um

be
r

of
 I

te
ra

tio
ns

 to
 C

on
ve

rg
e

Number of Nodes

Nodes uniformly distributed; area = 1km x 1km; Tx = 250m

BLOCK-move
Contraction(0.95)

0

2

4

6

8

10

0 5 10 15 20 25 30 35 40 45 50 55 60

Nodes uniformly distributed; area = 1km x 1km; Tx = 250m

before
after

(a) Average number of Iterations (b) Average Diameter of Network

Figure 7: Number of Iterations and Diameter of Network

Acknowledgments

We thank DARPA for sponsoring this work. (Project ERNI is supported under Contract No. DASG60-02-C-
0060.) Additionally, we also thank Ram Ramanathan for sharing with us his insights into the problem domain.

References

[1] R. L. Branham Jr., “Alternatives to least-squares,” Astrophysics Journal, 87, 1982, pp. 928–937.

[2] T. M. Cavalier and B. J. Melloy, “An Iterative Linear Programming Solution to the Euclidean Regression
model,” Computers Ops Res., 18, 1991, pp. 655–661.

[3] T. Clausen, P. Jacquet, A. Laouiti, P. Minet, P. Muhlethaler, A. Qayyum, L. Viennot, “Optimized Link State
Routing Protocol,” Internet Draft, September 2001. Work in progress.

[4] R. Diestel, “Graph Theory,” Graduate Texts in Mathematics, 173, Springer, 1997.

[5] Q. Li and D. Rus, “Sending Messages to Mobile Users in Disconnected Ad-hoc Wireless Networks,” Proc.
ACM MobiCom 2000, Boston MA, August 2000.

[6] R. Ramanathan and R. Rosales-Hain, “Topology Control of Multihop Wireless Networks using Transmit
Power Adjustment,” Proc. IEEE Infocom 2000, Tel Aviv, Israel, March 2000, pp. 404–413.

[7] C. Santivanez and R. Ramanathan, “Hazy Sighted Link State (HSLS) Routing: A Scalable Link State Algo-
rithm,” BBN Technical Memo. 1301. 2001.

[8] R. Sedgewick, “Algorithms,” Addison Wesley, 1984.

[9] A. F. T. Winfield and O. E. Holland, “The Application of Wireless Local Area Technology to the Control of
Mobile Robots,” Microprocessors and Microsystems, 23/10, 2000, pp. 597–607.

[10] A. F. T. Winfield, “Distributed Sensing and Data Collection via Broken Ad Hoc Wireless Connected Networks
of Mobile Robots,” Distributed Autonomous Robotic Systems 4, Eds. L. E. Parker, G. Bekey, and J. Barhen,
Springer, 2000, pp. 273–282.

BBN Report No. 8359 c©2002 BBNT Solutions LLC. 11

