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Abstract—In this paper we propose a decentralized algo- In this paper, our goal is to maximize the second smallest
rithm to increase the connectivity of a multi-agent system. The eigenvalue of the Laplacian matrix (calledgebraic con-

connectivity property of the m_ulti-agent system is quantified nectivity) of the state dependent proximity graph of agents,
through the second smallest eigenvalue of the state dependent . ilarlv to 1111 but with a d tralized h
Laplacian of the proximity graph of agents. An exponential de-  Smiiarly to [11], but with a decentralized approach.

cay model is used to characterize the connection between agents.  The starting point of our work is the observation that the
A supergradient algorithm is then used in conjunction with  algebraic connectivity is a concave function of the Laplacian
a recently developed decentralized algorithm for eigenvector matrix. Thus we can easily find a supergradient for it.
computation to maximize the second smallest eigenvalue of the Motivated by results in [13], we demonstrate in this paper
Laplacian of the proximity graph. A potential based control law - . Y . Lo
is utilized to achieve the distances dictated by the supergradient that "_i supergradient dlrectl_on fqr the algebraic cqnnectmty IS
algorithm. The algorithm is completely decentralized, where function of the corresponding eigenvector, the Fiedler vector.
each agent receives information only from its neighbors, and This eigenvector is computed in a decentralized way by
uses this information to update its control law at each step of ysing the algorithm in [14]. In this way we blend the results
g;eolrtﬁrr]izlon. Simulations demonstrate the effectiveness of the of [13] and [14] to realize a decentralized supergradient

g ' algorithm which allows each agent to maximize the algebraic
connectivity by working only with one row of the Laplacian
matrix.

Cooperative control of multi-agent systems is a very However, contrary to [13], the supergradient cannot mod-
active research area of control theory. In the past few yealfy directly the entries of the Laplacian matrix, because in
problems such as flocking, consensus, coverage and patteff framework the Laplacian is a state dependent matrix.
formation have been studied. The study is generally focusddnis means that each iteration of the supergradient algorithm
on the development of distributed control laws in order t@nly provides agents with set-points, that have to be used to
reach a global objective [1]-[7]. generate the actual control. The control law used is a simple

One interesting problem recently analyzed regards tHPtential-based flow [15].
connectivity maintenance of the distance-dependent graph ofThe paper is organized as follows. In Section II, we show
the network. In such a graph, known alsafaslisk graph [7], the framework of our problem. In Section IlI, we describe
there is an edge between two nodes if their Euclidealiie optimization problem and the proposed algorithm, with
distance is less than or equal to a pre specified nuniber convergence properties. In Section 1V, we present the control
The difficulty in connectivity maintenance stems from thdaw for the agents, with convergence properties. In Section
fact that connectivity is an inherently global property and» We explain some simulation results. The paper concludes
a complicated function of the motion of the nodes. Othewith a summary of the proposed work.
attempts to model changes in topology, such as [1], ighore the
dependence of switching on motion. Several attempts have
been made in the wireless networking literature to follow We consider a multi-agent system composed\bggents,
local rules that guarantee connectivity. One example is ttibat move on the plane. The state of the agents is defined by
“sector rule” which guarantees connectivity of thiadisk the vectorz = (z1, z2,...zx) € R?Y. The dynamic of each
graph on the plane if each agent has at least one neighboragenti is:
every sector of 120 degrees [8]. Another interesting solution Zi = Uy, 1)
to the connectivity problem is given by the circumcenter 5 ) _
algorithm, which increases gradually the degree of each ageifferéw: € R” is the control action of agent
and constraints the motion of the agents to avoid the lost The link among each pair of agents is assumed to be
of previously present connections [7]. Many authors in thdependent on their distance: if the distance is at most equal

control theory literature have also made progress on thig @ fixedconnection radius?, then the agents are said to be
problem [9]-[12]. connected, otherwise they are not connected. Moreover the

strength of the connection decreases smoothly with distance
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. INTRODUCTION

Il. PROBLEM FORMULATION



distance is due to physical reasons: in a multi-robot systemteresting to take a look on their values. Sinkéz) is
each robot is equipped with sensors whose resolution p@sitive semi-definite and symmetric, its eigenvalues are all
decaying exponentially with the distance to the object taonnegative. By ordering the eigenvalues in a increasing way,
observe. we have:

_ =A< X <. < Ay
A. Graph representation O=A <A< <Ay

The multi-agent system can be represented by a graph [1'5I]1e eigenvector corresppnding to t.he first eigenva!ue is
G = (V,€) whereV is the set of nodes (agents) afidis always 1. The second eigenvalug, is called algebraic

the set of edges (connections). An edge is a paif) of connectivity[17] of the system, and it is an indicator of how
distinct nodes of), which are the representation of agent§nUCh Fhe graph is connectgd: The value\gfis zero if the .
whose mutual distance is at most equal to the connecti(%aph is not connected, and it increases when the connectivity
radius R. When the connection is specified as above, th@' the graph |ncr(ra]ases.hTher:naX|mprn.vall%lé;lgis equal to
nodei is said to be connected to all the nodes that are in th&» @nd it is reached when the entrigis;) of the adjacency

circular neighborhood of, which is a subset ob defined Matrix are all equal tal, that is the graph is completely
as: connected (all the possible edges are present in it) and the

distances among agents in the original system are all at most
A . . .
Ci={jeV.ij#itlrl=lz—-zl<Ry @ p _ N

We assume thaR has the same value for all the agents, thus The rel_at|on between, a_md the graph connectivity can t.)e.

. ) . used to find a control action that preserves the connectivity
the graphg is undirected. The grap§ is state dependent, .~ . . . )
) . L9 o .~ in time. Generally speaking). is function of the state of
in the sense that it evolves in time with its connectivit

Y, . L
. the entire system, thus we can write it &s(L(z)). What
governed by the dynamics of the agents. we want to show is how to increase the value)af with

B. Laplacian matrix a decentralized control action, in which each agent knows
The graph can be also represented using the Laplaci@Rly information about its neighbors, while it doesn’t know
matrix: the current value of\, because it is function of the entire
L(z) = A(z) - A(2), (3) Laplacian matrix. .
The optimization problem to solve is:

where A(z) is the adjacency matrix, whose entrids; are
positive if j € C;, and zero otherwise:

1 3 . It can be decomposed in two subproblems, which consider
||rlJ|| < P

max A2(L(z)).

A —5(lmg;l—p) @) the dependance on the external and the internal unknowns,
iy =\ e o) p < lrijll < R; L andz. Firstly, the dependance on the Laplacian matrix is
0 sl > B represented in the external optimization problem:
and A(z) is a diagonal matrix, with elementsd; = max Ag (L), (%)
L

>_j—1..n Aij along the diagonal. _ _ _ _

The entry A;; represents the strength of the connectiotvhere the Laplaciadl. has to satisfy the constraints defined
among agentsi, j), which decays exponentially with the in (3)-(4). This optimization is realized in open loop, because
distancé. Figure 1 shows the shape df;. the dependance on the state of the ageritsnot included.
The solution found is called.*. In Section Il we will show
the iterative algorithm of the decentralized supergradient that
solve this problem.

A The closed loop optimization is realized when each agent
usesL* as a reference for its controller, and moves according
to the control action. At the equilibrium, the Laplacibiiz)

is updated with the current value of the state. This updated
0 i o Laplacian matrix is assumed to be the starting point for the

i new iteration of the supergradient. In Section IV we will

Fig. 1. Adjacency matrix elemend;; as a function of the distance describe the control _actlon applied by e"?‘Ch agent, with the
between agents and j. At the distance||r;;|| = R, the agents COnNvergence properties of the supergradient.

lose the connection. FunctioA;; is not continuous in the point [1l. M AXIMIZATION OF (L)

R, but the value that it assumes Bt can be considered a good _. . . )
approximation of zero. First, we note that(L) is a concave function aL in the

spacel™, in fact it is the infimum of a set of linear functions

. . . in L
The eigenvalues of the Laplacian matrix capture some
interesting properties of the underlying graph, thus it is

T
. viLv
o ) ] ) Ao (L)viv < vILv,¥v € 1t = A2(L) = inf { T 1.
1The coefficient5 in the expression ofA;; is due to the convergence vell - viv
property of the exponential function: whéjm; ;|| = R, A;; = e=> =~ 0. (6)




The optimization of\, has been performed by the SDP [11],The statement of the optimization problem (5) becomes:
but this method is not decentralized. Since we want to solve

the problem in a decentralized framework, we have to choose max Ao Z

a different optimization algorithm. One that is suitable for =l Nog >
decentralization is the supergradient algorithm [13]. st. =1 <p; <0 V(ij) (14)

Now, we recall the notion of supergradient for a concavgnere the feasibility constraints derive from (3)-(4).

function. . The function)\(p) is concave inp:
Definition Let f : RY — R be a concave function. The

vector g is a supergradient of in the pointx if for all  X\2(p) < Xa(p)+ Z < vovs  Eij(ij — pij) >
y # x the following inequality holds: i=1,...,N,j>i

fy) < fx)+g"(y —x) = X(P)+ >, (ViEyva)(Bi — pij)- (15)

i=1,...,N,j>1i

Eijpi;)

To maximize the functiory, the updating rule of the super-
gradient at the step is:

x(E+D) = x(®) 4 (R g (k).

From the last equality we can observe that the supergradient
vector forp is:

g= (ng12v2, ey VgEijVQ, ey V;EN_I Nv2);  (16)
wherea®) > 0 is the step-size to choose.

Using the notion of supergradient, it is simple to find a
supergradient matrix foke(L). We start from the following Gij = Vs Eijv2 = —(vg, — U2_7)2. a7
inequality:

and for each component @f; the relative supergradient is:

@) The updating rule for each element of the vegbois:
w(k+1) _ (k) k) (k)

b;; =p;  + al )g” (18)

where o*) and g(f) are respectively the coefficient of the

supergradient method and the supergradient at thekstep

vIi(L)ve = vILvy+vI(L-L)v, Then the updated componem@%k“) have to be projected

vI o (L)ve + vI(L — L)v, on the feasible set defined in (14). Sirmé’“)ggf) <0 al-

— MN(L)+ <vovi,(L—L)> (8) Ways, the update ensures _tbéﬁk*l) < pff’“)._The projection

on the feasible set requires only to satisfy the condition

Ao (L)vg v < vj (L)va,

whereL # L, andv, € 1+ is the unit eigenvector of
L corresponding to\o(L). The right side of the previous
equation can be rewritten as:

Composing (7) and (8) we obtain that: pi"*" > —1, which can be done by solving a least square
Xo(L) < Ao(L)+ < vavl (L —L) >, 9) problem whose solution is:
*(k *(k

which shows that the matri; = v,v? is a supergradient pi Y = max(—1,p ). (19)
for Ao (L). The updating rule for th& matrix is: . . N

2(L) P 9 Equation (19) gives the update valuesqu'““). The values

L) = L0 oM G®, (10)  of L;*™) are computed for all = 1,..., N by:

From [18]-[20] it is known that if the step-size(*) is the
coefficient of a not summable but square summable series, L = Z L *(h+1), (20)
the supergradient method converges to the optimal value. J=1,j#i

The decentralized computation of the supergradient matrix the decentralized supergradient updates each entry
G is discussed in [13], [19]; here we apply the procedure ti* (k+1) separately, by knowing the componen&% andv2 k)
find the supergradient of the Laplacian matrix. of the second eigenvects, of the Laplacian. J

A. Decentralized supergradient algorithm This means that each agent, in order to apply the super-

Let's define a vectop = (p:;) of elements of the matrit. gradient, needs to know the components of the eigenvector
for all the possible conngé{ions of agerits;): " vy from its neighbors. Once this information is obtained,
J)- each agent uses the supergradient method to update the

pij = Lij,i=1,..,N,j>1 (11) corresponding row of the Laplacian matrix. The skepf the
The dimension ofp is N(N — 1)/2, that is the maximum supergradient (a;l)qonthm applied by agérns the following:
number of links in the graph. « computeuvy;; _ (
Then we define a matrik;; for each pair(i, 5): e receive fro(m) the neighbors the updated valuewzé?,
and send?’ to them;
Eijij = Eijji = ]"Eijiz‘ = Eijjj = -1, (12) >

« update the entriegﬁf) using (17) for allj € C;;

o update the entrieﬂ*(k“) using (18) for allj € C;;

L= Z Ei;pij- (13) o project the updatecL*(k“) on the feasible set using
=1,...,N,j>i (19);

with 0 in all the other entries; thus we can now write:



. computeL;(’““) using (20); The matrixM is weighted, and its entries are given by:

At the stepk = 0, agent; receives information aE:)out the _ (1 ) je i
positions of the neighbors, and compute the er with M;; = { 0 e otherwise (23)
(3)-(4). My=1-% . M,
Next section describes the algorithm for the decentralized s jec:
computation of the eigenvectors of tle matrix as given wheren; andn; are respectively the valencies of agents
in [14]. and j, that is the number of agents connected respectively
with agentsi and ;.
B. Decentralized Computation of the eigenvectord.of The convergence of the method to the real average among

The decentralized computation of the eigenvectordof all agents is studied in [21].
follows the Decentralized Orthogonal Iteration Algorithm 2) Decentralized Orthonormalizatiorit derives from the

(DOI) [14]. Let w; be the row vector associated with agencentralized orthonormalization. In the centralized approach,
i the orthonormalization is typically performed by the factor-

(21) ization of the matrixW' in the form: E = WH, where the
rows of the matriXE are the not orthonormal eigenvectess
whose entries are theth component of all the eigenvectors (the same that are computed by I from each agent),
of L. Let W be the matrix: and H is a upper triangular matrix to find. To finH, we
define the matriXS = ETE, and compute the product:

Ww; = [1)11‘7027:7---7UN71],

W1 V11 V21 UN1
Wo V12 V22 UN2 ETE _ HTWTWH _ HTH
W=|..|=].. , (22)
The last equality is valid becaud is orthonormal. From
Wy VIN U2N ... UNN that equality the matriXS can be found by the Cholesky
whose columns are the eigenvectorsiof factorization:
Assume that agentreceives the rowv; from each agent S =H"H = H = chol(S).
4 connected with it. Agent updatesw; by following the ) )
DOI algorithm: In the decentralized case ageérdoes not know the entir8

L ©) matrix. But we can observe th&t can be written as:
« initialize w; ’ with a random vector;

A

o D — Ly (s+1) N N
e, L;”"W) wheree, is the update of the S —E'E — ZeiTei _ Z S, (24)

row w; at the steps + 1 of the algorithm L") is the
i-th row of the Laplacian matrix; since each element

L*) is nonzero only for connected agents, the produc?ince agent computese;, it knows the matrixS; and it
) ) ' ) receives the matriceS; from its neighbors. Thus, by using
L;”"W() requires only the rows of the matridV

\ated with th d with once again the heuristic averaging algorithm, an average of
related with the agents connected wit the S matrix is computed, and the real value $fis simply

i=1

_(s+1)
« computec, ', that is the average value of the second,pained by multiplying the average for the numberof
eigenvector ofL; (1) _ the agents in the graph. The proposed algorithm is:
« project the second eigenvector in the spactee.; initiali (0)
gsﬂ) (s+1) . |n(|t|i11|)ze S, =e; (%, "
7 il . kA M S T
. wZ(S“)—orthonormalrzatrort( sthy, PO

. repeat the Ioop untll convergence

« repeat the loop until convergence of the vector . computeS = S; N.

Two steps of theDOI require attention: the computation
of the averagee,’ ™" and the orthonormalization. Each of IV. CONTROL ACTION FOR EACH AGENT

them is carried out by a nested iteration. The two steps areThe computation of the supergradient and the update of
analyzed in the following. Note that in the computation okhe optimum Laplacial,*(*) at thek-th step is an open loop
the eigenvectorsL has indexk, that is the index of the computation. Since the agents move on the plane and their
supergradient algorithm, while is the index of the nested motion causes the variation of the state dependent Laplacian
iteration necessary to compute the eigenvectors. L(z), there is at each step of the supergradient algorithm an
1) Computation of the average®": it is necessary to error between the current Laplacidr{z) and the optimum
project the second eigenvector of the Laplacian in the spagglue L*(*). This error can be minimized by applying to
1+. Agenti USGS an heuristic averaging algorithm to computeach agent a decentralized control action that drives the

the averagez +. group toward a configuration corresponding to the optimal
. initialize e{”) = e(sﬂ), Laplacian_L*f"'). .
,(r+1) E M ( ) The optimization problem can be formulated for the agent
° j=1

. repeat the Ioop untrl convergence of eaehto the i as:

. *(k
averages ™ min [[Li(z) — L3, (25)



whereL;(z) is the row: of the Laplacian matrix, as function then the error between the real vecfdf 1) and the optimal
of the state of the agents, arfd*) is the row of the vector is:
optimal Laplacian found by agent at the stepk of the

S (k1) ok w(kt1) (k1) ok (k1) (k1)
supergradient. The minimization problem is solved by using P =P te p=e te (32)

potential functions. The error can be limited in norm (see [19] for a similar
From eachL:j(k), by using (3) and by reversing (4), we proof):
Qb.tain the desired distanczi%“) between connected agents ||I~)(k+1) . He(k+1) +€(k+1)||§ _ He(kJrl)Hg
1,7 .
! o = AN L) (26) + fle" V3 + 200 FUTD,(33)
1) 1] 1] °
For each pair of connected agefitsj) a quadratic potential The last term of the previous relation can be rewritten as:
function V;;(||r;;]|) is defined as: 2eFHDT(b+1)  — (kD)2 4| e(k+1)12
k+1 k+1) 12
(Irigl = 657 Il < B S
Vij = (k)\ ‘ (27) < |lHD) 2 (k+1))12. (34
(R—0;;")? [zl > R. < eI+ e V)55 (34)

The potential functionV;;(||r;;|) is positive definite, it is BY substituting (34) in (33), using (18) and the definition of
zero when the distanctr;;|| is equal to the desired value Supergradient, the error becomes:

(k) : ) . )
d;;» and it becomes constant when the distafieg| is D _pr2 < 2|2 4 2)e® D)2

nstant B¢
greater than the connection radits

(k+1) )12 (k) 2
The control action for agent is defined by solving the < 2”2 ) 1!2 ;L 2{llp A p~”,f
optimization problem, equivalent to (25): + a®g®3 + 20 (A (™)) - A3)];
min Z Vi (28) %)
o jeo From the last expression, singp(*+1) —p*||2 > 0, the error

from which the control action on agentis defined as the between the current value of and the optimal\; can be
sum of the negative gradients of the potentils for all bounded:
jed 2005 = 2B®) < VP + p® - pr?
U; = — Z eri‘/ij' (29) (k)2 )| (k) |[2

jec. + o g3 (36)
Each agent moves according to the control action (29), untilBy considering the first steps of the supergradient, a bound
an equilibrium for the group is reached. At the equiliboriumon the error between the optimal vale,,,, reached with
agenti stops and sends the information about its currerthe supergradient, and the final optimal valyg can be
position z;(t) to the neighbors, and receives their currentound:

positions. With this information, agentupdates the row Zkf ||eli+D)2 ZIZ a(i)2||g(k)||g
of the Laplacian matrid(z). This updated row will be used A3 — A2,.., < =L 5 =L 5
from agent; at the stept + 1 of the supergradient. %Zi:l @ 22 i@

The potential based control applied by the agents does + lp® - p*|3. (37)

not ensure the minimization of (25), because it presents local . "2 i .
minima if the graph of connections of the group is not a trgegi tzsgzgnviih()fathr;ee rﬁggsn?;,gf th!%gggg’geg?; t';h(;r

Thus, an analysis of the convergence of the supergradlerpgrm of the supergradient matrix is bounded'at each step
algorithm is necessary to show that the error on the Laplaciz%n

(k) |2 i i k)
matrix does not affect the convergence to the optimwun  g™l5 < G, then, by choosmg the series of") as .
square summable, the error is bounded and the supergradient

A. Convergence of the supergradient algorithm converges.

As we did in Section llI-A, we callp**+1) the vector V. SIMULATION RESULTS
of components of the updated Laplaclh* 1) at the step In thi i imulat il be sh o test
k + 1 of the supergradient. The application of the potential n this section some simulations will be shown [0 1es

control to the agents move them to the a new configuration &He effez_:tweness of the proposed algorithm. The mulU-agent
the plane corresponding to a different vector, caieh). system is composed lfiyagents on the plane. The connection
’ radius isR = 30. The maximum theoretical value a§ (L) is

The difference between the two vectors is an error vector: - ) .
equal toN, and it is reached if each agent reaches a distance

plhtt) = pr(ktD) y ((hHD) (30) at most equal te with all the others. The chosen step-size
for the supergradient algorithm is(®) = 1/(k + 1), thus
ensuring the convergence of the algorithm.

In the first simulation the minimum distance js= 2.

Figure 2 shows respectively, from left to right, and from
elFtl) — pr(kt1) _ p* (31) up to down, the value of\,, the initial configuration, an

If we call the error at the step+ 1 of the supergradient,
between the vectop*(*+1) and the final optimal vectop*,
corresponding to the maximum value df:



intermediate configuration, and the final configuration of the VI. CONCLUSIONS

agents on the plane. The circles are the agents, the lines arg, this paper we proposed an iterative decentralized algo-
the connections among agents. The graph of connectionsjthm for the connectivity control of a multi-agent system.
the intermediate configuration is completely connected, anghe algorithm maximizes the second smallest eigenvalue of
it corresponds to the iteratidsV) of the supergradient, where ne | aplacian matrix by a supergradient method, in conjunc-
A2 ~ 4. The final configuration, corresponding 2 = 5,  tjon with a potential based control that drives the agents
has one agent, at the center of the formation, at distancggyard a formation defined at each step of the supergradient.
equal top with all others, and all the other distances greatefpe convergence of the supergradient is shown analytically

thanp. and by simulations.
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