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Abstract— In this paper we propose a decentralized algo-
rithm to increase the connectivity of a multi-agent system. The
connectivity property of the multi-agent system is quantified
through the second smallest eigenvalue of the state dependent
Laplacian of the proximity graph of agents. An exponential de-
cay model is used to characterize the connection between agents.
A supergradient algorithm is then used in conjunction with
a recently developed decentralized algorithm for eigenvector
computation to maximize the second smallest eigenvalue of the
Laplacian of the proximity graph. A potential based control law
is utilized to achieve the distances dictated by the supergradient
algorithm. The algorithm is completely decentralized, where
each agent receives information only from its neighbors, and
uses this information to update its control law at each step of
the iteration. Simulations demonstrate the effectiveness of the
algorithm.

I. INTRODUCTION

Cooperative control of multi-agent systems is a very
active research area of control theory. In the past few years
problems such as flocking, consensus, coverage and pattern
formation have been studied. The study is generally focused
on the development of distributed control laws in order to
reach a global objective [1]–[7].

One interesting problem recently analyzed regards the
connectivity maintenance of the distance-dependent graph of
the network. In such a graph, known also asR-disk graph [7],
there is an edge between two nodes if their Euclidean
distance is less than or equal to a pre specified numberR.
The difficulty in connectivity maintenance stems from the
fact that connectivity is an inherently global property and
a complicated function of the motion of the nodes. Other
attempts to model changes in topology, such as [1], ignore the
dependence of switching on motion. Several attempts have
been made in the wireless networking literature to follow
local rules that guarantee connectivity. One example is the
“sector rule” which guarantees connectivity of theR-disk
graph on the plane if each agent has at least one neighbor in
every sector of 120 degrees [8]. Another interesting solution
to the connectivity problem is given by the circumcenter
algorithm, which increases gradually the degree of each agent
and constraints the motion of the agents to avoid the lost
of previously present connections [7]. Many authors in the
control theory literature have also made progress on this
problem [9]–[12].
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In this paper, our goal is to maximize the second smallest
eigenvalue of the Laplacian matrix (calledalgebraic con-
nectivity) of the state dependent proximity graph of agents,
similarly to [11], but with a decentralized approach.

The starting point of our work is the observation that the
algebraic connectivity is a concave function of the Laplacian
matrix. Thus we can easily find a supergradient for it.
Motivated by results in [13], we demonstrate in this paper
that a supergradient direction for the algebraic connectivity is
function of the corresponding eigenvector, the Fiedler vector.
This eigenvector is computed in a decentralized way by
using the algorithm in [14]. In this way we blend the results
of [13] and [14] to realize a decentralized supergradient
algorithm which allows each agent to maximize the algebraic
connectivity by working only with one row of the Laplacian
matrix.

However, contrary to [13], the supergradient cannot mod-
ify directly the entries of the Laplacian matrix, because in
our framework the Laplacian is a state dependent matrix.
This means that each iteration of the supergradient algorithm
only provides agents with set-points, that have to be used to
generate the actual control. The control law used is a simple
potential-based flow [15].

The paper is organized as follows. In Section II, we show
the framework of our problem. In Section III, we describe
the optimization problem and the proposed algorithm, with
convergence properties. In Section IV, we present the control
law for the agents, with convergence properties. In Section
V, we explain some simulation results. The paper concludes
with a summary of the proposed work.

II. PROBLEM FORMULATION

We consider a multi-agent system composed byN agents,
that move on the plane. The state of the agents is defined by
the vectorz = (z1, z2, ...zN ) ∈ R2N . The dynamic of each
agenti is:

żi = ui, (1)

whereui ∈ R2 is the control action of agenti.
The link among each pair of agents is assumed to be

dependent on their distance: if the distance is at most equal
to a fixedconnection radiusR, then the agents are said to be
connected, otherwise they are not connected. Moreover the
strength of the connection decreases smoothly with distance
(see [6], [11], [16]). If the distance between two agents is
less than a thresholdρ, the agents are “strongly” connected.
Otherwise the connection is exponentially weakened as the
distance increases, until the distanceR, where they practi-
cally lose the connection. The strength dependence on the



distance is due to physical reasons: in a multi-robot system
each robot is equipped with sensors whose resolution is
decaying exponentially with the distance to the object to
observe.

A. Graph representation

The multi-agent system can be represented by a graph [17]
G = (V, E) whereV is the set of nodes (agents) andE is
the set of edges (connections). An edge is a pair(i, j) of
distinct nodes ofV, which are the representation of agents
whose mutual distance is at most equal to the connection
radius R. When the connection is specified as above, the
nodei is said to be connected to all the nodes that are in the
circular neighborhood ofi, which is a subset ofV defined
as:

Ci , {j ∈ V, j 6= i : ‖rij‖ = ‖zi − zj‖ ≤ R}. (2)

We assume thatR has the same value for all the agents, thus
the graphG is undirected. The graphG is state dependent,
in the sense that it evolves in time with its connectivity
governed by the dynamics of the agents.

B. Laplacian matrix

The graph can be also represented using the Laplacian
matrix:

L(z) = ∆(z)−A(z), (3)

whereA(z) is the adjacency matrix, whose entriesAij are
positive if j ∈ Ci, and zero otherwise:

Aij =


1 ‖rij‖ < ρ;

e
−5(‖rij‖−ρ)

(R−ρ) ρ ≤ ‖rij‖ ≤ R;
0 ‖rij‖ > R;

(4)

and ∆(z) is a diagonal matrix, with elements∆i =∑
j=1...N Aij along the diagonal.
The entryAij represents the strength of the connection

among agents(i, j), which decays exponentially with the
distance1. Figure 1 shows the shape ofAij .

Fig. 1. Adjacency matrix elementAij as a function of the distance
between agentsi and j. At the distance‖rij‖ = R, the agents
lose the connection. FunctionAij is not continuous in the point
R, but the value that it assumes atR can be considered a good
approximation of zero.

The eigenvalues of the Laplacian matrix capture some
interesting properties of the underlying graph, thus it is

1The coefficient5 in the expression ofAij is due to the convergence
property of the exponential function: when‖rij‖ = R, Aij = e−5 ≈ 0.

interesting to take a look on their values. SinceL(z) is
positive semi-definite and symmetric, its eigenvalues are all
nonnegative. By ordering the eigenvalues in a increasing way,
we have:

0 = λ1 ≤ λ2 ≤ ... ≤ λN .

The eigenvector corresponding to the first eigenvalue is
always 1. The second eigenvalueλ2 is called algebraic
connectivity[17] of the system, and it is an indicator of how
much the graph is connected. The value ofλ2 is zero if the
graph is not connected, and it increases when the connectivity
of the graph increases. The maximum value ofλ2 is equal to
N , and it is reached when the entries(i, j) of the adjacency
matrix are all equal to1, that is the graph is completely
connected (all the possible edges are present in it) and the
distances among agents in the original system are all at most
ρ.

The relation betweenλ2 and the graph connectivity can be
used to find a control action that preserves the connectivity
in time. Generally speaking,λ2 is function of the state of
the entire system, thus we can write it asλ2(L(z)). What
we want to show is how to increase the value ofλ2 with
a decentralized control action, in which each agent knows
only information about its neighbors, while it doesn’t know
the current value ofλ2 because it is function of the entire
Laplacian matrix.

The optimization problem to solve is:

max
z

λ2(L(z)).

It can be decomposed in two subproblems, which consider
the dependance on the external and the internal unknowns,
L andz. Firstly, the dependance on the Laplacian matrix is
represented in the external optimization problem:

max
L

λ2(L), (5)

where the LaplacianL has to satisfy the constraints defined
in (3)-(4). This optimization is realized in open loop, because
the dependance on the state of the agentsz is not included.
The solution found is calledL∗. In Section III we will show
the iterative algorithm of the decentralized supergradient that
solve this problem.

The closed loop optimization is realized when each agent
usesL∗ as a reference for its controller, and moves according
to the control action. At the equilibrium, the LaplacianL(z)
is updated with the current value of the state. This updated
Laplacian matrix is assumed to be the starting point for the
new iteration of the supergradient. In Section IV we will
describe the control action applied by each agent, with the
convergence properties of the supergradient.

III. M AXIMIZATION OF λ2(L)
First, we note thatλ2(L) is a concave function ofL in the
space1⊥, in fact it is the infimum of a set of linear functions
in L:

λ2(L)vT v ≤ vT Lv,∀v ∈ 1⊥ ⇒ λ2(L) = inf
v∈1⊥

{v
T Lv
vT v

}.
(6)



The optimization ofλ2 has been performed by the SDP [11],
but this method is not decentralized. Since we want to solve
the problem in a decentralized framework, we have to choose
a different optimization algorithm. One that is suitable for
decentralization is the supergradient algorithm [13].

Now, we recall the notion of supergradient for a concave
function.
Definition: Let f : RN → R be a concave function. The
vector g is a supergradient off in the point x if for all
y 6= x the following inequality holds:

f(y) ≤ f(x) + gT (y − x)

To maximize the functionf , the updating rule of the super-
gradient at the stepk is:

x(k+1) = x(k) + α(k)g(k),

whereα(k) > 0 is the step-size to choose.
Using the notion of supergradient, it is simple to find a

supergradient matrix forλ2(L). We start from the following
inequality:

λ2(L̃)vT
2 v2 ≤ vT

2 (L̃)v2, (7)

where L̃ 6= L, and v2 ∈ 1⊥ is the unit eigenvector of
L corresponding toλ2(L). The right side of the previous
equation can be rewritten as:

vT
2 (L̃)v2 = vT

2 Lv2 + vT
2 (L̃− L)v2

= vT
2 λ2(L)v2 + vT

2 (L̃− L)v2

= λ2(L)+ < v2vT
2 , (L̃− L) > (8)

Composing (7) and (8) we obtain that:

λ2(L̃) ≤ λ2(L)+ < v2vT
2 , (L̃− L) >, (9)

which shows that the matrixG = v2vT
2 is a supergradient

for λ2(L). The updating rule for theL matrix is:

L∗(k+1) = L∗(k) + α(k)G(k). (10)

From [18]–[20] it is known that if the step-sizeα(k) is the
coefficient of a not summable but square summable series,
the supergradient method converges to the optimal value.

The decentralized computation of the supergradient matrix
G is discussed in [13], [19]; here we apply the procedure to
find the supergradient of the Laplacian matrix.

A. Decentralized supergradient algorithm

Let’s define a vectorp = (pij) of elements of the matrixL,
for all the possible connections of agents(i, j):

pij = Lij , i = 1, ..., N, j > i (11)

The dimension ofp is N(N − 1)/2, that is the maximum
number of links in the graph.
Then we define a matrixEij for each pair(i, j):

Eijij
= Eijji

= 1, Eijii
= Eijjj

= −1, (12)

with 0 in all the other entries; thus we can now write:

L =
∑

i=1,...,N,j>i

Eijpij . (13)

The statement of the optimization problem (5) becomes:

max
p

λ2(
∑

i=1,...,N,j>i

Eijpij)

s.t. −1 ≤ pij ≤ 0 ∀(i, j) (14)

where the feasibility constraints derive from (3)-(4).
The functionλ2(p) is concave inp:

λ2(p̃) ≤ λ2(p) +
∑

i=1,...,N,j>i

< v2vT
2 ,Eij(p̃ij − pij) >

= λ2(p) +
∑

i=1,...,N,j>i

(vT
2 Eijv2)(p̃ij − pij). (15)

From the last equality we can observe that the supergradient
vector forp is:

g = (vT
2 E12v2, ...,vT

2 Eijv2, ...,vT
2 EN−1,Nv2); (16)

and for each component ofpij the relative supergradient is:

gij = vT
2 Eijv2 = −(v2i

− v2j
)2. (17)

The updating rule for each element of the vectorp is:

p
∗(k+1)
ij = p

∗(k)
ij + α(k)g

(k)
ij (18)

whereα(k) and g
(k)
ij are respectively the coefficient of the

supergradient method and the supergradient at the stepk.
Then the updated componentsp

∗(k+1)
ij have to be projected

on the feasible set defined in (14). Sinceα(k)g
(k)
ij ≤ 0 al-

ways, the update ensures thatp
∗(k+1)
ij ≤ p

∗(k)
ij . The projection

on the feasible set requires only to satisfy the condition
p
∗(k+1)
ij ≥ −1, which can be done by solving a least square

problem, whose solution is:

p
∗(k+1)
ij = max(−1, p

∗(k+1)
ij ). (19)

Equation (19) gives the update values ofL
∗(k+1)
ij . The values

of L
∗(k+1)
ii are computed for alli = 1, ..., N by:

L
∗(k+1)
ii = −

N∑
j=1,j 6=i

L
∗(k+1)
ij . (20)

The decentralized supergradient updates each entry
L
∗(k+1)
ij separately, by knowing the componentsv

(k)
2i andv

(k)
2j

of the second eigenvectorv2 of the Laplacian.
This means that each agent, in order to apply the super-

gradient, needs to know the components of the eigenvector
v2 from its neighbors. Once this information is obtained,
each agent uses the supergradient method to update the
corresponding row of the Laplacian matrix. The stepk of the
supergradient algorithm applied by agenti is the following:

• computev
(k)
2i ;

• receive from the neighbors the updated values ofv
(k)
2j ,

and sendv(k)
2i to them;

• update the entriesg(k)
ij using (17) for allj ∈ Ci;

• update the entriesL∗(k+1)
ij using (18) for allj ∈ Ci;

• project the updatedL∗(k+1)
ij on the feasible set using

(19);



• computeL
∗(k+1)
ii using (20);

At the stepk = 0, agenti receives information about the
positions of the neighbors, and compute the rowL(0)

i with
(3)-(4).

Next section describes the algorithm for the decentralized
computation of the eigenvectors of theL matrix as given
in [14].

B. Decentralized Computation of the eigenvectors ofL

The decentralized computation of the eigenvectors ofL
follows the Decentralized Orthogonal Iteration Algorithm
(DOI) [14]. Let wi be the row vector associated with agent
i:

wi = [v1i, v2i, ..., vNi], (21)

whose entries are thei-th component of all the eigenvectors
of L. Let W be the matrix:

W =


w1

w2

...

...
wN

 =


v11 v21 ... vN1

v12 v22 ... vN2

... ... ... ...

... ... ... ...
v1N v2N ... vNN

 , (22)

whose columns are the eigenvectors ofL.
Assume that agenti receives the rowwj from each agent

j connected with it. Agenti updateswi by following the
DOI algorithm:

• initialize w(0)
i with a random vector;

• e(s+1)
i = L(k)

i W(s), wheree(s+1)
i is the update of the

row wi at the steps + 1 of the algorithm,L(k)
i is the

i-th row of the Laplacian matrix; since each element
L

(k)
ij is nonzero only for connected agents, the product

L(k)
i W(s) requires only the rows of the matrixW

related with the agents connected withi;
• computeē

(s+1)
2 , that is the average value of the second

eigenvector ofL;
• project the second eigenvector in the space1⊥: e

(s+1)
2i =

e
(s+1)
2i − ē

(s+1)
2 ;

• w(s+1)
i =orthonormalization(e(s+1)

i );
• repeat the loop until convergence of the vectorwi.

Two steps of theDOI require attention: the computation
of the averagēe(s+1)

2 and the orthonormalization. Each of
them is carried out by a nested iteration. The two steps are
analyzed in the following. Note that in the computation of
the eigenvectors,L has indexk, that is the index of the
supergradient algorithm, whiles is the index of the nested
iteration necessary to compute the eigenvectors.

1) Computation of the averagēe(s+1)
2 : it is necessary to

project the second eigenvector of the Laplacian in the space
1⊥. Agenti uses an heuristic averaging algorithm to compute
the averagēe(s+1)

2 :

• initialize ē
(0)
i = e

(s+1)
2i ;

• ē
(r+1)
i =

∑N
j=1 M

(k)
ij ē

(r)
j ;

• repeat the loop until convergence of eachēi to the
averagēe(s+1)

2 ;

The matrixM is weighted, and its entries are given by:

Mij =
{ 1

max(ni,nj)
j ∈ Ci;

0 otherwise;
Mii = 1−

∑
j∈Ci

Mij

(23)

whereni and nj are respectively the valencies of agentsi
and j, that is the number of agents connected respectively
with agentsi and j.
The convergence of the method to the real average among
all agents is studied in [21].

2) Decentralized Orthonormalization:it derives from the
centralized orthonormalization. In the centralized approach,
the orthonormalization is typically performed by the factor-
ization of the matrixW in the form:E = WH, where the
rows of the matrixE are the not orthonormal eigenvectorsei

(the same that are computed by theDOI from each agent),
and H is a upper triangular matrix to find. To findH, we
define the matrixS = ET E, and compute the product:

ET E = HT WT WH = HT H.

The last equality is valid becauseW is orthonormal. From
that equality the matrixS can be found by the Cholesky
factorization:

S = HT H ⇒ H = chol(S).

In the decentralized case agenti does not know the entireS
matrix. But we can observe thatS can be written as:

S = ET E =
N∑

i=1

eT
i ei =

N∑
i=1

Si. (24)

Since agenti computesei, it knows the matrixSi and it
receives the matricesSj from its neighbors. Thus, by using
once again the heuristic averaging algorithm, an average of
the S matrix is computed, and the real value ofS is simply
obtained by multiplying the average for the numberN of
the agents in the graph. The proposed algorithm is:

• initialize S(0)
i = eT

i ei;
• S(r+1)

i =
∑N

j=1 M
(k)
ij S(r)

j ;
• repeat the loop until convergence;
• computeS = SiN .

IV. CONTROL ACTION FOR EACH AGENT

The computation of the supergradient and the update of
the optimum LaplacianL∗(k) at thek-th step is an open loop
computation. Since the agents move on the plane and their
motion causes the variation of the state dependent Laplacian
L(z), there is at each step of the supergradient algorithm an
error between the current LaplacianL(z) and the optimum
value L∗(k). This error can be minimized by applying to
each agent a decentralized control action that drives the
group toward a configuration corresponding to the optimal
LaplacianL∗(k).

The optimization problem can be formulated for the agent
i as:

min
zi

‖Li(z)− L∗(k)
i ‖22, (25)



whereLi(z) is the rowi of the Laplacian matrix, as function
of the state of the agents, andL∗(k)

i is the row of the
optimal Laplacian found by agenti at the stepk of the
supergradient. The minimization problem is solved by using
potential functions.

From eachL∗(k)
ij , by using (3) and by reversing (4), we

obtain the desired distanceδ(k)
ij between connected agents

i, j:
δ
(k)
ij = A−1

ij (L∗(k)
ij ). (26)

For each pair of connected agents(i, j) a quadratic potential
function Vij(‖rij‖) is defined as:

Vij =

{
(‖rij‖ − δ

(k)
ij )2 ‖rij‖ ≤ R;

(R− δ
(k)
ij )2 ‖rij‖ > R.

(27)

The potential functionVij(‖rij‖) is positive definite, it is
zero when the distance‖rij‖ is equal to the desired value
δ
(k)
ij , and it becomes constant when the distance‖rij‖ is

greater than the connection radiusR.
The control action for agenti is defined by solving the

optimization problem, equivalent to (25):

min
zi

∑
j∈Ci

Vij , (28)

from which the control action on agenti is defined as the
sum of the negative gradients of the potentialsVij for all
j ∈ Ci:

ui = −
∑
j∈Ci

∇zi
Vij . (29)

Each agenti moves according to the control action (29), until
an equilibrium for the group is reached. At the equilibrium,
agent i stops and sends the information about its current
position zi(t) to the neighbors, and receives their current
positions. With this information, agenti updates the rowi
of the Laplacian matrixL(z). This updated row will be used
from agenti at the stepk + 1 of the supergradient.

The potential based control applied by the agents does
not ensure the minimization of (25), because it presents local
minima if the graph of connections of the group is not a tree.
Thus, an analysis of the convergence of the supergradient
algorithm is necessary to show that the error on the Laplacian
matrix does not affect the convergence to the optimumλ2.

A. Convergence of the supergradient algorithm

As we did in Section III-A, we callp∗(k+1) the vector
of components of the updated LaplacianL∗(k+1) at the step
k + 1 of the supergradient. The application of the potential
control to the agents move them to the a new configuration on
the plane corresponding to a different vector, calledp̃(k+1).
The difference between the two vectors is an error vector:

p̃(k+1) = p∗(k+1) + ε(k+1). (30)

If we call the error at the stepk + 1 of the supergradient,
between the vectorp∗(k+1) and the final optimal vectorp∗,
corresponding to the maximum value ofλ2:

e(k+1) = p∗(k+1) − p∗, (31)

then the error between the real vectorp̃(k+1) and the optimal
vector is:

p̃(k+1)−p∗ = p∗(k+1)+ε(k+1)−p∗ = e(k+1)+ε(k+1) (32)

The error can be limited in norm (see [19] for a similar
proof):

‖p̃(k+1) − p∗‖22 = ‖e(k+1) + ε(k+1)‖22 = ‖e(k+1)‖22
+ ‖ε(k+1)‖22 + 2e(k+1)T ε(k+1); (33)

The last term of the previous relation can be rewritten as:

2e(k+1)T ε(k+1) = ‖ε(k+1)‖22 + ‖e(k+1)‖22
− ‖ε(k+1) − e(k+1)‖22
≤ ‖ε(k+1)‖22 + ‖e(k+1)‖22; (34)

By substituting (34) in (33), using (18) and the definition of
supergradient, the error becomes:

‖p̃(k+1) − p∗‖22 ≤ 2‖ε(k+1)‖22 + 2‖e(k+1)‖22
≤ 2‖ε(k+1)‖22 + 2[‖p̃(k) − p∗‖22
+ α(k)2‖g(k)‖22 + 2α(k)(λ2(p̃(k))− λ∗2)];

(35)

From the last expression, since‖p̃(k+1)−p∗‖22 ≥ 0, the error
between the current value ofλ2 and the optimalλ∗2 can be
bounded:

2α(k)(λ∗2 − λ2(p̃(k))) ≤ ‖ε(k+1)‖2 + ‖p̃(k) − p∗‖2

+ α(k)2‖g(k)‖22. (36)

By considering the firstk steps of the supergradient, a bound
on the error between the optimal valueλ2best

reached with
the supergradient, and the final optimal valueλ∗2 can be
found:

λ∗2 − λ2best
≤

∑k
i=1 ‖ε(i+1)‖22
2

∑k
i=1 α(i)

+
∑k

i=1 α(i)2‖g(k)‖22
2

∑k
i=1 α(i)

+ ‖ ˜p(1) − p∗‖22. (37)

If the series of the error norms‖ε(k)‖22 is not divergent, or
diverges with a rate less than the series ofα(k), and the
norm of the supergradient matrix is bounded at each step
k, ‖g(k)‖22 ≤ G, then, by choosing the series ofα(k) as
square summable, the error is bounded and the supergradient
converges.

V. SIMULATION RESULTS

In this section some simulations will be shown to test
the effectiveness of the proposed algorithm. The multi-agent
system is composed by6 agents on the plane. The connection
radius isR = 30. The maximum theoretical value ofλ2(L) is
equal toN , and it is reached if each agent reaches a distance
at most equal toρ with all the others. The chosen step-size
for the supergradient algorithm isα(k) = 1/(k + 1), thus
ensuring the convergence of the algorithm.

In the first simulation the minimum distance isρ = 2.
Figure 2 shows respectively, from left to right, and from
up to down, the value ofλ2, the initial configuration, an



intermediate configuration, and the final configuration of the
agents on the plane. The circles are the agents, the lines are
the connections among agents. The graph of connections in
the intermediate configuration is completely connected, and
it corresponds to the iteration60 of the supergradient, where
λ2 ≈ 4. The final configuration, corresponding toλ2 = 5,
has one agent, at the center of the formation, at distances
equal toρ with all others, and all the other distances greater
thanρ.

Fig. 2. From left to right, from up to down: value ofλ2 during the
iterations, initial, intermediate and final configuration of the agents
on the plane. Agents are represented by ’o’ and links by lines.

In the second simulation we haveρ = 0, thus the
maximumλ2 is obtained when agents reach the same point
in the plane (rendezvous). Since the control action for the
agents does not include the collision avoidance, it is possible
for the agents to reach the rendezvous, as shown in Figure
3.

Fig. 3. From left to right, from up to down: value ofλ2 during
the iterations, initial and intermediate configuration of the agents
on the plane, motion of the agents on the plane.

VI. CONCLUSIONS

In this paper we proposed an iterative decentralized algo-
rithm for the connectivity control of a multi-agent system.
The algorithm maximizes the second smallest eigenvalue of
the Laplacian matrix by a supergradient method, in conjunc-
tion with a potential based control that drives the agents
toward a formation defined at each step of the supergradient.
The convergence of the supergradient is shown analytically
and by simulations.
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