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Abstract

This paper presents control and coordination al-
gorithms for networks of autonomous vehicles.
We focus on groups of vehicles performing dis-
tributed sensing tasks where each vehicle plays
the role of a mobile tunable sensor. We design
distributed gradient descent algorithms for a class
of utility functions which encodes optimal cover-
age and sensing policies. These utility functions
are studied in geographical optimization, vector
quantization, and sensor allocation contexts. The
algorithms exploit the computational geometry of
spatial structures such as Voronoi diagrams.

1 Introduction

Motivation: The objective of this paper is the
design of control and coordination algorithms for
groups of vehicles. We focus on vehicles that per-
form distributed sensing tasks and refer to them
as active sensor networks. Such systems are being
developed for applications in remote autonomous

surveillance, exploration, information gathering,
and automatic monitoring of transportation sys-
tems. For active sensor networks, we envision the
need for a distributed control and coordination
architecture: a wireless network provides the ve-
hicles with the ability to share some information,
but no overall leader might be present to coordi-
nate the group. As the vehicle network evolves
in time, the ad-hoc communication graph and
neighborhood relationships change. It is inter-
esting therefore to design distributed algorithms
for ad-hoc multi-vehicle networks.

References: The technical approach proposed
in this paper relies on methods from computa-
tional geometry [1], facility location [2], and dis-
tributed algorithms [3]. We exploit a formulation
of a vector quantization problem, whose solution
is closely related to the computational geometric
notion of centroidal Voronoi partition [4]. This
problem and its variations are also related to the
p-median and p-center problem in facility loca-
tion [2, 5].

More generally, this problem is related to a num-
ber of technological areas including data com-
pression in image processing (vector quantiza-
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tion), optimal quadrature rules (integration), grid
generation for finite differences methods (PDE
discretization), clustering analysis, optimal re-
source placement, facility location and combina-
torial optimization, mesh optimization methods
(mesh relaxation, Laplacian smoothing), and sta-
tistical pattern recognition (learning vector quan-
tization).

Contribution and paper organization: We
consider a coverage optimization problem for an
active sensor network. To characterize the qual-
ity of service provided by a spatially distributed
active sensor network, we introduce a notion of
coverage based on locational optimization. With
this motivation, Section 2 reviews certain loca-
tional optimization problems and their solutions
as centroidal Voronoi tessellations. In Section 3,
we provide a continuous-time version of the clas-
sic Lloyd algorithm from vector quantization and
apply it to the setting of multi-vehicle networks.
We consider an interesting worst-case setting, re-
ferred to as the p-center problem in facility loca-
tion, and design a similar coverage control law.

In Section 4, we describe in some detail a dis-
tributed version of the Lloyd algorithm and dis-
cuss a supporting infrastructure required for its
implementation in an ad-hoc network. Next, in
Section 5, we design density functions that lead
the multi-vehicle network to predetermined geo-
metric patterns. In this sense, the proposed cov-
erage control scheme can be regarded as a forma-
tion control algorithm. We then consider the set-
ting of time-varying density functions and inves-
tigate target tracking problems. Finally, we ex-
tend the proposed coverage control scheme to the
vehicle models with higher order dynamics than
a simple integrator. Section 6 presents control
designs for second-order dynamics, and mobile
wheeled dynamics. We present our conclusions
and directions for future research in Section 7.

2 From location optimization to
centroidal Voronoi partitions

Locational optimization & facility location

In this section we describe a collection of known
facts about a meaningful optimization problem.
References include the theory and applications of
centroidal Voronoi partitions, see [4], and the dis-
cipline of facility location, see [2].

Let Q be a convex polygon in R2; we shall also
consider the extension to convex polyhedra in RN .
We call a map φ : Q → R+ a distribution den-
sity function if it represents a measure of infor-
mation or probability that some event take place
over Q. In equivalent words, we can consider
Q to be the bounded support of the function φ.
Let P = (p1, . . . , pn) be the location of n sen-
sors moving in the space Q. Because of noise
and loss of resolution, the sensing performance
at point q taken from ith sensor at the position
pi degrades with the Euclidean distance ‖q − pi‖
between q and pi; we describe this degradation
with a non-decreasing function f : R+ → R+.
Accordingly, f (‖q − pi‖) provides a quantitative
assessment of how poor the sensing performance
is. This assumption on the sensing performance is
well-suited for various electromagnetic and sound
sensors that have signal-to-noise ratios inversely
proportional to distance.

We consider the task of minimizing the location
optimization function

H(P,W) =
n
∑

i=1

∫

Wi

f(‖q − pi‖)dφ(q), (1)

where we let W = {W1, . . . ,Wn} be a partition
of Q, and we assume that the ith sensor is re-
sponsible for measurements over its “dominance
region” Wi. Note that the function H is to be
minimized with respect to both (1) the sensor lo-
cation P , and (2) the assignment of the domi-
nance regions W . This problem is referred to as
a facility location problem and in particular as a
continuous p-median problem in [2].



Voronoi partitions

One can easily see that, at fixed sensors location,
the optimal partition of Q is the Voronoi parti-
tion V(P ) = {V1, . . . , Vn} generated by the points
(p1, . . . , pn):

Vi = {q ∈ Q| ‖q − pi‖ ≤ ‖q − pj‖ ∀j 6= i}.

We refer to [1, 5] for comprehensive treatments
on Voronoi diagrams, and briefly present some
relevant concepts. Since Q is a convex polyhe-
dron in a finite dimensional Euclidean space, the
boundary of each Vi is a convex polygon. When
the two Voronoi regions Vi and Vj are adjacent,
pi is called a (Voronoi) neighbor of pj (and vice-
versa). It is known that (i) the nearest vehicle
pj to pi is a neighbor, (ii) the average number of
neighbors on Q ⊂ R2 is six. In what follows, we
shall write

HV = H(P,V(P )).

Remarkably, one can show [4, 6] that

∂HV
∂pi

(P ) =
∂H

∂pi

(P,V(P ))

=

∫

Vi

∂

∂pi

f (‖q − pi‖) dφ(q), (2)

and deduce some smoothness properties of HV .
Since the Voronoi partition V depends at least
continuously on P = (p1, . . . , pn), and assuming
f is a continuous function, the function HV is at
least continuously differentiable.

Centroidal Voronoi partitions

Let us recall some basic quantities associated to
a region V ⊂ RN and a mass density function
ρ. The (generalized) mass, centroid (or center of
mass), and polar moment of inertia are defined as

MV =

∫

V

ρ(q) dq, CV =
1

MV

∫

V

q ρ(q) dq,

JV,p =

∫

V

‖q − p‖2 ρ(q) dq.

We refer to [7] for closed form expressions for
area, centroid, and polar moment of inertia for

uniform densities over RN ; see also [6] for expres-
sions in the R2 setting.

Let us consider again the locational optimization
problem (1), and suppose now we are strictly in-
terested in the setting

H(P,W) =
n
∑

i=1

∫

Wi

‖q − pi‖
2dφ(q), (3)

that is, we consider the setting f(‖q − pi‖) =
‖q − pi‖

2. Under this assumption, an applica-
tion of the parallel axis theorem leads to simpli-
fications for both the function HV and its partial
derivative:

HV(P ) =
n
∑

i=1

JVi,CVi
+

n
∑

i=1

MVi
‖pi − CVi

‖2

∂HV
∂pi

(P ) = 2MVi
(pi − CVi

).

It is useful to write HV as the sum of two terms
and compute their respective partials as

HV,1 =
n
∑

i=1

JVi,CVi
,

∂HV,1

∂pi

= 0,

and

HV,2 =
n
∑

i=1

MVi
‖pi − CVi

‖2,

∂HV,2

∂pi

= 2MVi
(pi − CVi

).

Therefore, the (not necessarily unique) local min-
imum points for the location optimization prob-
lem are described as follows. The critical points
for HV(P ) are centroids , i.e., the point pi satisfies
two properties simultaneously, it is the generator
for the Voronoi cell Vi and it is its centroid. In
other words

CVi
= argminpi

HV(P )

HV,1 = min(p1,...,pn)HV(P ).

Accordingly, the critical partitions and points for
H are centroidal Voronoi partitions ; see [4]. This
discussion provides a proof alternative to the one
given in [4] for the necessity of centroidal Voronoi
partitions as solutions to the continuous p-median
location problem.



3 Coverage control: a continuous-
time Lloyd descent

In this section, we describe algorithms to com-
pute location of sensors that minimize the cost
H. We propose a continuous-time version of the
classic Lloyd algorithm; see [8] for a reprint of
the original report, [9] for a historical overview,
and [4, 5] for numerous applications in other tech-
nological areas. In our setting, both the positions
and partitions evolve in continuous time, whereas
Lloyd algorithm for vector quantization is usually
designed in discrete time. Similarly to the orig-
inal Lloyd’s scheme, the proposed algorithm is a
gradient descent flow.

Assume the sensors location obeys a first order
dynamical behavior described by

ṗi = ui.

Consider HV a cost function to be minimized and
impose that the location pi follows a gradient de-
scent. In equivalent control theoretical terms,
consider HV a Lyapunov function and stabilize
the multi-robot system to one of its local minima
via a dissipative LgV control. Formally, we set

ui = −k(pi − CVi
), (4)

where k is a positive gain, and where we assume
that the partition V(P ) = {V1, . . . , Vn} is contin-
uously updated.

Lemma 3.1 (Continuous-time Lloyd de-
scent). For the closed loop induced by equa-
tion (4), the sensors location P = (p1, . . . , pn)
converges asymptotically to a critical point of the
cost function HV . The cost function HV con-
verges to a critical value HV,1 with exponential
convergence rate 2k.

Proof. Since HV(P ) = HV,1+HV,2(P ), the closed
loop is a gradient flow for the cost function
HV,2(P ). We have

d

dt
HV,2(P ) =

n
∑

i=1

∂HV,2

∂pi

ṗi

= −2k
n
∑

i=1

MVi
‖pi − CVi

‖2 = −2kHV,2.

Note that this gradient descent is not guaranteed
to find the global minimum. For example, in the
vector quantization and signal processing litera-
ture [9], it is known that for bimodal distribu-
tion density functions, the solution to the gradi-
ent flow reaches local minima where the number
of generators allocated to the two region of max-
ima are not optimally partitioned.

Despite the difficulty in obtaining global minima
of HV , we regard the continuous-time Lloyd de-
scent as at least an interesting heuristic. To study
the performance of this heuristic, we implemented
it in Mathematica. The algorithm is implemented
as a single centralized program; it computes the
bounded Voronoi diagram using the Mathemat-
ica package ComputationalGeometry, and com-
putes mass, centroid, and polar moment of iner-
tia of polygon via the numerical integration rou-
tine NIntegrate. Careful attention was paid to
numerical accuracy issues in the computation of
the Voronoi diagram and in the integration. We
illustrate the performance of the closed loop in
Figure 1.

Generalized settings, worst case design,
and the p-center problem

Different performance functions f in equation (1)
and different distance powers in equation (3) cor-
respond to different optimization problems. How-
ever, the Voronoi partition computed with re-
spect to the Euclidean metric remains the optimal
partition. In general, it is not possible anymore
to decompose HV into the sum of terms similar
to HV,1 and HV,2. Nevertheless, it is still possible
to implement the gradient flow via the expression
for the partial derivative (2).

More generally, various distance notions can be
used to define performance functions and accord-
ingly compute the optimal partition. We refer
to [10, 11] for a discussion on locational optimiza-
tion via weighted Voronoi partitions. According
to the definition of performance function, one can
then define various notions of “center of a region”



Figure 1: Lloyd continuous-time algorithm on a convex polygonal environment, with Gaussian den-
sity φ = exp(5.(x2 − y2)) centered about the gray point in figure. The left (respectively, right)
figure illustrates the initial (respectively, right) locations and Voronoi partition. The central figure
illustrates the gradient descent flow.

(any notion of geometric center, mean, or average
is an interesting candidate). These can then be
adopted in designing coverage algorithms.

Choosing between these possible avenues of in-
vestigation, let us here focus on an interesting
variation on the original problem. The location
optimization problem for the function in equa-
tion (1) can be stated as

min
p1,...,pn

E

[

min
i∈{1,...,n}

‖q − pi‖
2

]

,

where the expected value is computed with re-
spect to φ regarded as a probability density func-
tion. As mentioned above, the facility location
literature [2, 12] refers to this optimization prob-
lem as the continuous p-median problem.

In addition to the p-median problem, it is instruc-
tive to consider the worst case problem

min
p1,...,pn

[

max
q∈Q

[

min
i∈{1,...,n}

‖q − pi‖
2

]]

.

This optimization is referred to as the p-center
problem in [12, 13]. It corresponds to a version
of the sphere packing problem: how to cover a
region with (possibly overlapping) disks of mini-
mum radius disks. If D1 ⊂ R2 is unit disk, the
problem reads:

min
∪i(RD1+pi)⊇Q

R.

It is immediate to derive an heuristic for the p-
center problem exactly similar to the Lloyd algo-
rithm: each vehicle moves toward the center of
the minimum spanning circle containing its own
Voronoi polygon, i.e., the center of the circle of
minimum radius enclosing the polygon. Note that
the center of the minimum spanning circle for
a given convex polygon can be computed via a
convex problem [14], or via the closed form al-
gorithm in [15]. It is interesting to note that no
convergence proof appears to be available for this
heuristic; see [13].

In what follows, we shall restrict our attention to
the p-median problem and on centroidal Voronoi
tessellations.

4 A distributed implementation

In this section we show how the Lloyd algorithm
can be implemented in a distributed fashion. By
distributed we mean that the algorithm is run on
a group of agents performing the same sequence of
instructions and sharing information in a prede-
termined way. We refer to [3] for a comprehensive
treatment on distributed algorithms.

In its distributed form, the coverage algorithm is
a feedback mechanism in the sense that it allows
the network to adapt to changes in the number
of nodes due to agents departures, arrivals or fail-
ures. It is also a natural way of obtaining scala-



bility with respect to the number of agents. Note
that we consider for simplicity the setting of syn-
chronous networks, and leave the extensions to
asynchronous networks to future works.

Distributed algorithms for groups or networks of
mobile agents can be regarded as local interac-
tion rules; e.g., see [16] and references therein.
Behavioral rules are then studied in terms of
emerging behaviors they induce for the overall
network. By casting the coverage control laws
in distributed fashion, we show how a coverage
behavior emerges from a local Lloyd interaction
rule.

Because the communication and computation in
a distributed network typically take place over
discrete time, we assume the agents follow a first
order dynamics in discrete time with bounded in-
put:

pi(t+ 1) = pi(t) + ui(t), ‖ui‖ ≤ 1.

A distributed version of Lloyd algorithm for the
solution of the optimization problem (1) is as fol-
lows:

Name: Coverage behavior
Goal: distributed optimal agent loca-

tion
Assumes: pi(t+ 1) = pi(t) + ui, ‖ui‖ ≤ 1
Requires: (i) own Voronoi cell computa-

tion, (ii) centroid computation

For all i, agent i performs:

1: determine own Voronoi cell Vi

2: determine centroid CVi
of Vi

3: set ui = (CVi
− pi)/(1 + ‖CVi

− pi‖)

A key requirement of this implementation of
Lloyd algorithm is that each agent must be able
to compute its own Voronoi cell. To do so,
each agent needs to know the relative location
(distance and bearing) of each Voronoi neigh-
bor. Therefore, this implementation of the cov-
erage algorithm is distributed only to the extent
that Voronoi neighbors can be computed in a dis-
tributed fashion.

Let us therefore sketch a distributed algorithm

to compute the Voronoi cell of an agent; we do
so following the lines of [17]. The algorithm is
based on basic properties of Voronoi diagrams;
e.g., see [1]. We assume that each vehicle has the
ability to detect the relative location of other ve-
hicles within a certain distance. The objective is
to determine the smallest distance Ri for vehicle i
which provides sufficient information to compute
the Voronoi cell Vi. We start by noting that Vi is
a subset of the convex polygon

W (pi, Ri) = Q ∩
(

∩j:‖pi−pj‖≤Ri
Sij

)

, (5)

where the half planes Sij are

{q ∈ RN : 2q · (pi − pj) ≥ (pi + pj) · (pi − pj)}.

The equality Vi = W (pi, Ri) holds when all
Voronoi neighbors of pi are within distance Ri

from pi. This is guaranteed to happen provided
Ri is twice as large as the maximum distance
between pi and the vertices of W (pi, Ri). The
minimum adequate sensing radius is therefore
Ri,min = 2maxq∈W (pi,Ri,min) ‖pi − q‖.

Remark 4.1. The ability of locating neighbors
plays a central role in numerous (distributed) al-
gorithms for localization, media access, routing,
and power control in ad-hoc wireless communica-
tion networks; e.g., see [18, 19, 20] and references
therein. Therefore, any motion control scheme
might be able to obtain this information from the
underlying communication layer.

Instead of assuming that each vehicle can observe
the relative location of neighbors within a cer-
tain radius, one might assume that the agents
can query an ad-hoc communication network for
this type of information. For example, the work
in [18] provides a synchronous distributed algo-
rithms based on a 1-hop communication exchange
for a wireless network.

5 Density function design

In this section, we investigate interesting ways of
designing density functions and solving problems
apparently unrelated to coverage.



Geometric patterns and formation control

Here we suggest the use of decentralized cover-
age algorithms as formation control algorithms,
and we present various density functions that lead
the multi-vehicle network to predetermined geo-
metric patterns. In particular, we present simple
density functions that lead to segments, ellipses,
polygons, or uniform distributions inside convex
environments.

Consider a planar environment, let k be a large
positive gain, and denote q = (x, y) ∈ Q ⊂ R2.
Let a, b, c be real numbers, consider the line ax+
by + c = 0, and define the density function

φ1(q) = exp(−k(ax+ by + c)2).

Similarly, let (xc, yc) be a reference point in R2,
let a, b, r be positive scalars, consider the ellipse
a(x−xc)

2+b(y−yc)
2 = r2, and define the density

function

φ2(q) = exp
(

− k(a(x− xc)
2 + b(y − yc)

2 − r2)2
)

.

We illustrate this density function in Figure 2.

Finally, define the smooth ramp function
SRk(x) = x(arctan(kx)/π + (1/2)), and the den-
sity function

φ3(q) =

exp(−k SRk(a(x− xc)
2 + b(y − yc)

2 − r2)).

This density function leads the multi-vehicle net-
work to obtain a uniform distribution inside the
ellipsoidal disk a(x − xc)

2 + b(y − yc)
2 ≤ r2. We

illustrate this density function in Figure 3.

It appears straightforward to generalize these
types of density functions to the setting of arbi-
trary curves or shapes. The proposed algorithms
are to be contrasted with the classic approach to
formation control based on rigidly encoding the
desired geometric pattern. We refer to [21] for
previous work on algorithms for geometric pat-
terns, and to [22, 23] for formation control algo-
rithms.

Tracking in time-varying environments

Next, we consider environments in which the den-
sity function is allowed to depend on time. The

time-dependence might model an example situa-
tion where a target of interest enters the environ-
ment under observation. In this case, we would
define (xtarget(t), ytarget(t)) as the target location
and define

φ(q, t)

= exp
(

−k(x− xtarget(t))
2 − k(y − ytarget(t))

2
)

.

Given a time-varying distribution density func-
tion φ(q, t), we define a time-varying locational
optimization function

HV(P, t) =
n
∑

i=1

∫

Vi

‖q − pi‖
2φ(q, t)dq.

We can compute its time derivative as

d

dt
HV(P, t) =

d

dt
HV,1(t) +

d

dt
HV,2(P, t)

=
∑

i

(

d

dt
JVi,CVi(t)

(t) + ṀVi
‖pi − CVi

‖2

+MVi
(pi − CVi

)′(ṗi − ĊVi
)
)

,

where, at fixed Vi, we compute

ṀVi
=

∫

Vi

φ̇(q, t)dq,

ĊVi
=

1

MVi

(
∫

Vi

qφ̇(q, t)dq − ṀVi
CVi

)

.

Considering a first order dynamics, we design a
feedback plus feedforward control law as

ṗi = ĊVi
−

(

k +
ṀVi

MVi

)

(p− CVi
), (6)

to obtain the closed loop behavior:

d

dt
HV =

d

dt
HV,1 − kHV,2.

Now, assume the time-varying density function is
characterized by a constant optimal value for the
locational optimization function, i.e., assume that
HV,1 is constant and that d

dt
HV,1 = 0. Under this

assumption, the control law in equation (6) ob-
tains perfect tracking in the following sense: the
vehicles asymptotically converge to form a (mov-
ing) centroidal Voronoi tessellation or, if starting
from one such tessellation, their configuration re-
mains optimal at all time.



Figure 2: Coverage control with “circular” density function φ2. The parameter values are: k = 500,
a = 1.4, b = .6, xc = yc = 0, r2 = .3.

6 Variations in vehicle dynamics

In this section we consider vehicles systems de-
scribed by more general linear and nonlinear dy-
namical models.

Second order dynamics

We start by considering second order systems de-
scribed by an equation of motion of the form
p̈i = ui. For such systems, we devise a propor-
tional derivative (PD) control via,

ui = −2kpropMVi
(pi − CVi

)− kderivṗi,

where kprop and kderiv are scalar positive gains.
The closed loop induced by this control law can
be analyzed with the Lyapunov function

E = kpropHV +
1

2

n
∑

i=1

ṗ2
i ,

and its derivative along the closed loop: Ė =
−kderiv

∑n

i=1 ṗ
2
i . Convergence to a centroidal

Voronoi tessellation is obtained invoking the clas-
sic LaSalle’s invariance principle.

Mobile wheeled dynamics

Next, we consider a classic model of mobile
wheeled dynamics and we propose a feedback law
based on the design in [24]. Assume the ith vehi-
cle has configuration (θi, xi, yi) ∈ SE(2) evolving

according to

θ̇i = ωi

ẋi = vi cos θi

ẏi = vi sin θi,

where (ωi, vi) are the control inputs for vehicle i.

Note that the definition of (θi, vi) is unique up
to the discrete action (θi, vi) 7→ (θi + π,−vi).
We use this symmetry to require the equality
(cos θi, sin θi)·(pi−CVi

) ≤ 0 for all time t. Should
the equality be violated at some time t = t0, we
shall redefine θi(t

+
0 ) = θi(t

−
0 ) + π and vi as −vi

from time t = t0 onwards.

We consider the control law

ωi = 2kprop arctan
(− sin θi, cos θi) · (pi − CVi

)

(cos θi, sin θi) · (pi − CVi
)

vi = −kprop(cos θi, sin θi) · (pi − CVi
),

where kprop is a positive gain. This law differs
from the original stabilizing strategy in [24] only
in the fact that no final angular position is pre-
ferred. We illustrate the performance of this con-
trol law in Figure 4. Stability of the multi-vehicle
network is guaranteed since, for each vehicle, the
proposed control law leads to decreasing error
‖pi − CVi

‖2 for all time.

7 Conclusions

We have presented a novel approach to coordina-
tion algorithms for multi-vehicle networks. The



Figure 3: Coverage control to a ellipsoidal disk. The density function parameters are as in Figure 2.

scheme can be thought of as an interaction laws
between agents and as such it is implementable
in a distributed fashion.

Numerous extentions appear worth pursuing. We
plan to investigate the setting of non-convex en-
vironments and non-isotropic sensors. Further-
more, we plan to consider more general sensing
tasks, such as target identification, and uncon-
trollable vehicle dynamics, such as aircraft.
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