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Abstract— Kinodynamic planning algorithms like Rapidly-
Exploring Randomized Trees (RRTs) hold the promise of
finding feasible trajectories for rich dynamical systems with
complex, non-convex constraints. In practice, these algorithms
perform very well on configuration space planning, but struggle
to grow efficiently in systems with dynamics or differential
constraints when using conventional proximity metrics like
the Euclidean distance. Here we argue that linear quadratic
regulator (LQR) design can be used to produce a pseudo-
distance metric which captures the essential properties of
proximity in state space at a reasonable computational cost.
We demonstrate improved exploration of the state spaces of
the double integrator, torque-limited pendulum, and acrobot
when using this metric within the RRT framework.

I. INTRODUCTION

Kinodynamic motion planning algorithms attempt to find
feasible trajectories for a dynamical systems from a start
state to a goal state while respecting constraints on position,
velocity, and/or acceleration. The problem is believed to be
at least PSPACE-hard[6], however a number of randomized
algorithms have been proposed[?], [?] which can achieve fast
average-time performance for a large variety of problems[1],
[2], [3], [5].

A common theme running through many path-planning
algorithms is some notion of proximity in the space in which
trajectories lie. In algorithms that attempt to create roadmaps,
paths are found between neighboring nodes. In the Rapidly
Exploring Random Tree (RRT) algorithm, nodes of a tree are
grown toward randomly selected goals; only the node that is
closest to the randomly selected goal is expanded [2], [3].

The proximity function that maps two points to a prox-
imity score can be defined however the user sees fit. It does
not need to meet the formal requirements of a metric, such
as symmetry. It provides the user with the opportunity to in-
corporate his/her prior knowledge about the problem; he/she
defines what makes two nodes neighbors in a roadmap, or
what makes a point close enough to a goal state for a path to
be considered complete, or to which nodes it is least costly
to steer the system, from some specified initial state (i.e.,
cost-to-go).

The performance of the RRT, a particularly popular and
simple randomized path-planning algorithm that is currently
one of the most promising methods for planning in phase
space and for solving other problems with differential con-
straints [12], can vary greatly as a function of the definition
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Fig. 1. Illustration of one iteration of growing an RRT, adapted from [7].

1: procedure BUILD RRT(xinit)
2: T .init(xinit);
3: for k = 1 to K do
4: xrand ← RANDOM STATE();
5: EXTEND(T, xrand)
6: end for
7: Return T
8: end procedure
9: procedure EXTEND(T, x)

10: xnear ← NEAREST NEIGHBOR(x, T );
11: if NEW STATE(x, xnear, xnew, unew) then
12: T .add vertex(xnew);
13: T .add edge(xnear, xnew, unew);
14: end if
15: end procedure

TABLE I
THE BASIC ALGORITHM FOR CONSTRUCTING RRTS, ADAPTED FROM [7]

of proximity [7]. The basic RRT algorithm is shown in Table
I, and illustrated in Fig. 1. When used to find paths from
xinit to a specific xgoal, xgoal is assigned to xrand for
some small percentage of the interations of BUILD RRT.
The definition of proximity has its effect by determining
which node the NEAREST NEIGHBOR function returns for
the RRT to extend.

For our proposed proximity function, we use a finite-
horizon linear quadratic regulator (LQR) to calculate optimal
cost-to-go functions of linearizations of the plant for multiple
time horizons in order to locally approximate the optimal
proximity measure. In Section II, we place this in the
context of previously proposed metrics. We elaborate on the
problem formulation in Section III and give a more detailed
explanation of our metric and our method of evaluating it
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in Section IV. In Section V, we show RRT trees grown on
three benchmark systems and compare outcomes when using
our proximity function to the outcomes obtained when using
a standard proximity function. Finally, in Section VI, we
discuss the results and future work.

II. RELEVANT LITERATURE

A common proximity heuristic used within RRTs is the
Euclidean distance metric. This metric works well on holo-
nomic systems, but performs far more poorly in phase space.
It encodes no information about the constrained relationship
between position and velocity. In the phase space of a
frictionless one-dimensional brick shown in Fig. 2, points A
and B are equidistant from point C with respect to Euclidean
distance. Yet, as observers with a priori knowledge about
phase space, we know that the brick at point A is moving
toward point C, while the second instance of the brick, at
point B, is moving away from point C. Since the proximity
function determines which branch will be extended toward
C, it makes intuitive sense to define proximity so that A is
in fact closer to C than B.

Fig. 2. Nodes A and B are equidistant to point C with respect to the
Euclidean distance metric. Children of A could be even closer to C with
respect to Euclidean distance. However the children of node B, which has
positive velocity, must be to the right of their parent, and therefore cannot
get closer to C. In this case, Euclidean distance fails to distinguish between
two branches, one which is clearly the right choice for extending towards
C, and the other which is not.

When LaValle and Kuffner first published the RRT al-
gorithm, they explicitly tackled the problem of planning in
phase space [2]. While they documented their algorithm’s
successes, they acknowledged that the single additional com-
ponent that would address remaining barriers to more effi-
ciently exploring state space is a perfect, quickly computable
proximity function.

[7] articulated the possibility of using a cost-to-go function
from an optimal control problem as a distance metric.
should cite navigation functions here. However, computing
the true cost-to-go functions is equivalent to computing a
complete plan from every initial condition, as at least as
costly as solving the originally specified motion planning

problem. Finding general, quickly computable optimal cost-
to-go functions, or their approximations, is still a continuing
topic of research.

Problem-specific metrics do exist. For simple systems,
like a torque-limited pendulum, an energy-based metric can
be very effective. [17] used a metric based on Hamilton’s
principle for unforced rigid bodies. Frazzoli et al. [18] used
RRTs to plan dynamic trajectories for helicopters by using
cost-to-go functions from the unconstrained problem to solve
for combinations of trim trajectories (maneuvers/motion
primitives) in an environment with obstacles. The cost-to-go
calculation was made even more tractable by exploiting sym-
metries and relative equilibria of helicopters, along with the
construction of motion primitives. Without making problem-
specific assumptions, the optimal cost-to-go, where cost was
time, was approximated in [19] with a first order calculation.

[12] recently published a Ph.D. thesis on his contribu-
tions to RRT exploration of phase space, and while he
acknowledges the need for a distance metric that encodes
the cost-to-go more accurately than Euclidean distance, he
continues to use Euclidean distance and proposes a variant
of the RRT algorithm itself. The RRT variant, called RRT-
Blossum, changes which nodes are eligible for expansion
to reduce redundancies and relaxes constraints to allow for
some regression when other nearby branches have hit dead
ends. Similarly, [20] collects collision information online
and uses that to bias search, rather than designing a new
metric. Cheng and LaValle [9] also attempt to improve the
RRT algorithm itself by proposing a way to make it less
sensitive to a poor proximity heuristic, rather than generating
a better proximity heuristic. While these changes improve
RRT-based planning in phase space, they do not address the
fundamental problems caused by using a highly inaccurate
proximity function.

In [4], LaValle and Kuffner suggested considering Lya-
punov functions, fitted spline curves, steering methods, and
the cost-to-go functions from applying optimal control to lin-
earizations of the systems to be steered. This paper takes that
last suggestion of using locally linearized systems’ optimal
cost-to-go functions as proximity heuristics and develops it
further.

III. PROBLEM FORMULATION

Following the RRT framework, we require the following
components:

1) State Space: A 2n-dimensional differentiable mani-
fold, X , that denotes the state space. A state, x ∈ X ,
is defined as x = (q, q̇), for q ∈ C, where C is the
n-dimensional configuration space.

2) Metric: A real-valued function, ρ : X ×X → [0,∞),
which specifies the cost of traveling between pairs
of points in X in accordance with a specified cost
function.

3) Boundary Values: xinit ∈ X and Xgoal ⊂ X .
4) Constraint Satisfaction Detector: A function, D :

X → {true, false} which indicates when global
constraints have been satisfied or violated.
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5) Inputs: A set U of inputs containing all inputs that
affect the state.

6) Equation of Motion: The dynamics expressed as a
differential equation ẋ = f(x, u).

7) Incremental Simulator: A function for generating
future states of the agent given the current state, the
equations of motion, a time interval, and u over that
time interval.

The objective of the metric design problem is to find an
approximation of the optimal cost-to-go function between
any two states that can be computed efficiently and scales
well with the number of state variables. Since the cost-to-go
from an arbitrary point A to another arbitrary point B may
not be the same as the cost of going from point B to point
A, the metric design problem is technically a pseudo-metric
design problem.

IV. DESIGNING THE LQR-BASED PROXIMITY
HEURISTIC

The linear quadratic regulator (LQR) is an optimal con-
troller for linear systems with quadratic cost functions of
state and/or action. In the process of calculating the optimal
controller, the LQR-producing function produces a closed-
form expression for the exact cost-to-go when using that
optimal controller, given any initial point in phase space. This
cost-to-go function can be calculated by simply integrating a
couple of differential matrix equations over some set period
of time and since evaluating the cost-to-go function simul-
taneously at many points in the phase space is equivalent
to a simple matrix multiplication, LQR was identified as a
promising method for use within an approximate cost-to-go
function for nonlinear systems.

A. Infinite-Horizon LQR

For a function that calculates the infinite-horizon LQR, the
inputs are a stabilizable linear plant’s dynamics

ẋ = Ax+Bu (1)

and some matrices specifying the relative weights given to
components of a quadratic cost function of state and action

J =
∫ ∞

0

(
xTQx+ uTRu+ 2xTNu

)
dt (2)

where x ∈ <n represents a point in phase space, u ∈ <m is
a vector of inputs, A,Q ∈ <n×n, R ∈ <m×m, and B,N ∈
<n×m.

The output is a state-feedback policy, u = −Kx, and an
exact cost-to-go function, xTSx, where K ∈ <m×n and
S ∈ <n×n. The policy drives the plant to the origin with
the minimal possible cost. The cost-to-go function evaluated
at any point in phase space gives the total cost incurred for
following that optimal policy for all time. S is the steady-
state solution to a differential matrix equation, also called the
Riccati equation, which incorporates the A and B matrices
from the system dynamics and the matrices specifying the
cost function.

The infinite-horizon LQR cannot, however, be used to cal-
culate the cost-to-go to a point in phase space with a non-zero
velocity, which is not a fixed point. It is physically impossible
for a system to, for all time, get asymptotically closer and
closer to being at a particular position at a particular non-
zero velocity. The integrand of the cost function will not
decay asymptotically and the integral will not converge as
t → ∞. Therefore our metric is based on the finite-horizon
LQR. The differential equation for S stays the same, but
rather than finding its steady-state solution, the dynamics of
the time-varying S(t) are simulated out to whatever finite
time-horizons are selected by the user. It makes sense that
the cost-to-go function for a point x, that is not a fixed point,
would be time-varying. Let us consider an example where
applying non-zero inputs is very costly. The cost of steering
the plant from some point x′ to x in t1 seconds may be
small, especially if the passive dynamics are doing most of
the work and little additional input is needed. The cost of
steering the plant from x′ to x in t2 seconds, on the other
hand, may be very costly, if it requires heavy actuation to
prevent the system from passing through x too early or too
late.

B. Finite-Horizon LQR with a Hard Constraint on the Final
State and a Free Final Time

We chose to place an additional constraint on the LQR
used within our proposed proximity heuristic: a constraint
requiring the policy to drive the system to the desired final
state by the end of the specified finite time horizon. This is in
contrast to a soft constraint, where there is only a penalty for
not being at the desired final state at the end of the specified
time horizon. The extra requirement also allows us to the
remove Q from the cost function. As result, how far a path
strays away (in terms of squared Euclidean distance xTQx)
from the desired final state does not affect the path’s overall
cost, as long as the path does ultimately reach the desired
final state at the final time.

Since the finite-horizon LQR solution is recursive (the
solution for the t1 time horizon is dependent on the solution
for the t−1 time horizon), solving for some maximum time
horizon, tmax, also produces the solutions for all time
horizons less than tmax. We can therefore treat the time
horizon as a free variable to optimize over for each pair
of nodes whose proximity we wish to calculate.

C. The LQR-Based Proximity Heuristic
Let us consider a controllable, smoothly differentiable,

nonlinear system:

ẋ = f(x, u) (3)

and xrand, a random sample in the phase space produced by
the RRT algorithm building a tree on this nonlinear system.
Define a new coordinate system, where xrand (which is also
serving as the goal for this particular example iteration of the
RRT algorithm) in the old coordinate system coorresponds
to the origin in the new coordinate system:

x̄ = x− xrand. (4)
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Now linearize the system around xrand:

˙̄x =
d

dt
(x(t)− xrand) = ẋ(t) (5)

≈ f(xrand, uf ) +
δf

δx
(x(t)− xrand) +

δf

δu
(u− uf ) (6)

= Ax̄+Bū+ c (7)

Assume uf , the input vector at tf , the end of the finite
horizon, is zero. Define a quadratic cost on ū, plus an
added constant, which serves as a penalty on paths of longer
durations:

J(x̄, t0, tf ) =
∫ tf

t0

[
1 +

1
2
ūT (t)Rū(t)

]
dt,R = RT > 0.

(8)

To complete the specification of a finite time horizon LQR
problem with a hard constraint on the final state, add the
requirements that

x̄(tf ) = ~0 (9)
x̄(t0) = x0 (10)

Using Pontryagin’s minimum principle, a necessary condi-
tion for optimality, it can be derived that the inverse of
S(t), referred to here as P (t), is governed by the following
differential matrix equation:

Ṗ (t) = AP (t) + P (t)AT +BR−1BT , P (tf ) = 0 (11)

The resulting cost-to-go is

J∗(x̄, tf ) = tf +
1
2
dT (x̄, tf )P−1(tf )d(x̄, tf ) (12)

where

d(t) = eAtfx+
∫ tf

0

eA(tf−τ)cdτ (13)

. The LQR-based proximity heuristic’s value for the distance
from x to xrand is:

LQR-based proximity(x→ xrand) = mintfJ
∗(x̄, tf )

(14)

This is shown in Table II.
In order to handle state variables that require wrapping,

such as angles, one must not only minimize over tf but also
over different unwrapped points in phase space that wrap
back to the same point.

In Figure 3, we have visualized the proximity to the state
(2, 5), given the dynamics of a undamped brick, which is
equivalent to a double integrator. It is clear that the LQR-
based proximity function agrees with our intuition about the
relative benefit of extending branch A or B in the original,
motivating example illustrated in Figure 2.

1: procedure LQR-BASED PROXIMITY(x,x′,plant dynamics)
2: A,B, c← Linearize plant dynamics at x′.
3: S(t)← COST TO GO(linearized plant dynamics)
4: d(t)← eAtf x+

R tf
0 eA(tf−τ)cdτ

5: RETURN the minimum value of t + 1
2
dTS(t)d over all t from

t = 0 to tf . (t + 1
2
dTS(t)d is the time-dependent cost-to-go from x

to x′ for the linearized system.)
6: end procedure
7: procedure COST TO GO(linearized plant dynamics)
8: Substitute matrices A, B, c, and R into Equ. 11.
9: Calculate P (t) by integrating the Equ. 11 backwards in time from
t = tf to t = 0 and saving the intermediate results for P . (tf is the
maximum considered trajectory duration.)

10: S(t)← the inverse of the matrix P (t) at each t.
11: RETURN S(t)
12: end procedure

TABLE II
PSUEDOCODE FOR THE LQR-BASED PROXIMITY HEURISTIC, WHICH

COMPUTES THE APPROXIMATE COST-TO-GO FROM x TO x′

(a) LQR-Based Proximity

(b) Euclidean Distance

Fig. 3. Maps of the proximity to the state (2, 5), given the dynamics of a
undamped brick (equivalent to a double integrator).
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V. EXPERIMENTS
A. Evaluation

We wish to assess the performance of metrics for planning
paths to any arbitrary goal region in state space. A good
metric should enable the goal-directed RRT algorithm to find
a feasible path from the initial state to the goal region quickly
and/or without creating an unreasonably large number of
tree nodes. We run an RRT on the demonstration problem
without specifying a goal region and compute a measure of
how much phase space the resulting tree reaches. It serves
as a surrogate measure for the mean time to find a feasible
path. [19] also used this technique to quantitatively compare
planning algorithms’ effectiveness.

1) Measuring Coverage: The RRT algorithm attempts to
grow the tree towards random samples (xrand) which are
taken from some finite-volume subset of the infinitely large
phase space. This sampled space was divided into bins. The
percentage of populated bins is our measure of coverage.

B. Qualitative Coverage Results

We have grown RRTs on three classic dynamical systems,
without bias toward a goal state. The only differences be-
tween the trees is the algorithm defining the distance between
points in state space. R was arbitrarily set to 1, and the
maximum considered finite horizon length was 5 seconds.
The green “X” indicates the location of the tree root (xinit).

1) Brick Example: The first example system is an un-
damped brick that moves along a single dimension, and
to which forces of limited magnitude can be applied. It is
equivalent to a double integrator.

In Figure 4, the 500 nodes of the RRT built using
Euclidean distance has only two prominent paths extending
out from the tree’s root: one in which the brick is pushed
to the left with the maximum allowable force and one in
which the brick is pushed to the right with the maximum
allowable force. In contrast, the 500 nodes of the RRT built
using the LQR-based heuristic has four prominent paths,
each extending into a different quadrant of phase space
surrounding the initial state of stillness at the origin. The
two additional prominent paths represent being pushed away
from the origin and then reapproaching the origin.

2) Pendulum Example: The second example is a torque-
limited simple pendulum.

In Figure 5, the 500-node RRT built using Euclidean
distance grows paths that make the pendulum swing faster
and faster around its pivot point. As a result, a good deal of
the phase space is reached. The 500-node RRT built using the
LQR-based heuristic, however, doesn’t just sweep quickly
through a good percentage of the sampled space, it hits many
different points in each bin.

3) Acrobot Example: The third and final example is the
torque-limited acrobot, which is a double pendulum with
actuation only at the joint between the two links.

In Figure 6, it is clear that more of the sampled phase
space is reached by branches of the 500-node RRT using the
LQR-based heuristic than by the 500-node RRT using the
Euclidean distance measure.

(a) Using LQR-Based Proximity

(b) Using Euclidean Distance

Fig. 4. 500-node RRTs grown on an undamped brick (double integrator).

C. Quantitative Coverage Results

In the final figure, Figure 7, the coverage metric is applied
to the preceeding graphs and shown in bar graphs so that the
coverage of the trees can be quantitatively compared.

Interestingly, for trees of 200 nodes, the coverage of the
ED-based trees was just as good or better than that of
the LQR-based trees. However, when the size of the trees
was increased to 500 nodes, the LQR-based trees’ coverage
overtook that of the ED-based trees.

VI. DISCUSSION

When limited to some given maximum number of nodes in
the tree, the LQR-based proximity heuristic clearly enhances
the RRT’s ability to grow branches into all the possible places
that a goal region might be in state space, when compared
to the typical Euclidean distance metric. This is important
because some distance-function-based planning algorithms,
like LQR-Trees [21], benefit immensely from covering the
greatest amount of phase space with the fewest possible
nodes.

However, some applications are more dependent on time,
not the number of nodes in the tree. Methods for speeding
up the calculation of the LQR-based proximity heuristic
will soon be implemented, so that meaningful comparisons
of coverage can be made as a function of time, not just
nodes. Furthermore, scaling factors within the Euclidean and
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(a) Using LQR-Based Proximity

(b) Using Euclidean Distance

Fig. 5. 500-node RRTs grown on a torque-limited pendulum.

(a) Using LQR-Based Proximity

(c) Using Euclidean Distance

Fig. 6. 500-node RRTs grown on the Acrobot

Fig. 7. Comparative Coverage of 500-node RRTs’ Exploration of the State
Space

LQR-based proximity measures will be optimized in future
testing, and overall coverage scores will be the average of the
coverage scores of RRTs grown from each of many randomly
selected initial states, rather than just one, as was done
here. We have shown the promise of kinodynamic planning
with the LQR-based proximity heuristic within the context
of three simple two- and four-dimensional systems, and we
hope it will signficantly reduce the difficulty of planning
sophisticated, dynamic movements for high-dimensional sys-
tems, like humanoid and industrial robots.
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